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Abstract—The added encoding efficiency and visual quality
that is offered by the latest HEVC standard is mostly attained at
the cost of a significant increase of the computational complexity
at both the encoder and decoder. However, such added complexity
greatly compromises the implementation of this standard in com-
putational and energy constrained devices, including embedded
systems, mobile and battery supplied devices. To circumvent this
limitation, this paper proposes the exploitation of embedded GPU
devices already equipping many state of the art SoCs to accelerate
the HEVC in-loop filters (i.e. deblocking filter and sample adap-
tive offset). The presented approaches comprehensively exploit
both fine and coarse-grained parallelization opportunities of these
filters in an NVIDIA Tegra GPU.According to the conducted
experimental evaluation, the proposed approach showed to be a
remarkable strategy to satisfy the real-time requirements of the
HEVC decoder, being able to filter each Ultra HD 4K intra frame
in less than 20 ms (about 50 fps).

I. INTRODUCTION

When compared with previous video standards (e.g., the
H.264/MPEG-4 AVC), the state-of-the-art High Efficiency
Video Coding (HEVC) standard [1] has shown to provide
equivalent subjective visual quality, while achieving bit rate
reductions as high as 50%. However, such coding efficiency
comes at the cost of a substantial increase in the computational
complexity of both the video encoder and decoder [2]. Such
added cost is often regarded as an important limiting factor
not only for desktop environments, but specially for embedded
and portable systems with constrained computational resources
(e.g. battery supplied smartphones, tablets, smartTVs, etc.).

To benefit from the offered bitrate reduction and improved
visual quality, the HEVC encoder and decoder tightly couples
the functionality of several modules, each with different com-
putational complexities and execution profiles. In particular,
the in-loop filters that are present both at the encoder and de-
coder sides, i.e., Deblocking Filter (DBF) and Sample Adaptive
Offset (SAO), are responsible for reducing the block artifacts
and for applying gradient based filtering, thus promoting the
resulting visual quality and compression efficiency.

In particular, when regarded from the video compression
performance perspective, the HEVC DBF module is responsi-
ble for an average bit rate reduction between 3.3% and 6% [3].
Conversely, the HEVC SAO filter has shown to provide bit rate
reductions between 3.5% and 23.5% [4]. When evaluated from
the computational load perspective, the conducted profiling of
the decoder [2] on an ARM Cortex-A9 processor has shown
that the HEVC in-loop filters are responsible for 19%-21%
of the decoding time. As a consequence, reducing the HEVC
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decoding time via parallelization of the decoder modules
represents an important research topic in modern video coding,
namely the in-loop filters.

To overcome this problem, most System on Chips (SoCs)
for embedded and mobile devices already include dedicated
hardware for encoding and decoding of one or more video stan-
dards. For example, the NVIDIA Tegra® K1, Samsung Exynos
5 Octa and Allwiner A80 SoCs natively support H.264/MPEG-
4 AVC decoding through hardware. However, the offered
video encoder/decoder capabilities are usually highly restricted
to specific standard profiles and video configurations (e.g.,
resolution, encoding tools and frame rate).

In this scenario, the work proposed herein represents a
first step towards a software-based video decoding solution
for embedded systems that is fully compliant with the HEVC
standard. In particular, this work focuses on efficient par-
allelization of the HEVC in-loop filters on state-of-the-art
SoCs with embedded Graphics Processing Unit (GPU). In fact,
modern SoCs from several manufactures already encompass
low-power GPUs, such as Tegra (NVIDIA), Mali (ARM),
PowerVR (Imagination Technologies), Adreno (Qualcomm),
etc. Besides their original graphic purposes, these embedded
GPUs can also be used for general-purpose computations,
due to their ability to efficiently exploit data-parallelism in
different applications. Specifically, the NVIDIA’s Tegra Kl
GPU demarks from this vast set because it supports the
Compute Unified Device Architecture (CUDA) [5], allowing
a migration of existing CUDA algorithms from desktop to
embedded platforms, by requiring a carefully redesign due to
the limited capabilities of embedded GPUs.

Although some HEVC decoder modules (namely DBF [6]
and Inverse Transform [7]) have been already implemented
for desktop state-of-the-art GPUs, to the best of the authors’
knowledge there is not yet any state-of-the-art approaches in
the literature targeting the parallelization of all HEVC in-
loop filters on GPU, specially in embedded environments.
Therefore, the proposed parallel implementation of the HEVC
in-loop filters that is herein presented improves the GPU DBF
algorithm [6] and develops the parallel HEVC SAO module.

The proposed parallel approaches of the HEVC DBF
and SAO modules allow to efficiently exploit the fine-grain
GPU parallelism, by re-designing the execution pattern of
these decoding modules. As a result, the proposed algorithms
allow to achieve lower overall processing time, e.g., up to
20 ms for Ultra HD 4K (3840x2160) frames on the CUDA-
enabled Jetson TK1 development board, which corresponds to
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Fig. 1. Block diagram of the HEVC decoder.

a minimum frame rate of 50 frames per second (fps).

The remaining of this paper is organized as follows. Section
II provides a brief overview on the basic functional principles
behind the HEVC in-loop filters, while Section III revises the
state-of-the-art approaches for HEVC filtering modules. The
proposed algorithms and consequent parallel implementations
are presented in Section IV. The obtained experimental results
and the derived conclusions are presented in Sections V and
VI, respectively.

II. HEVC DECOMPRESSION

Figure 1 depicts a generic block diagram of the HEVC
decoder. First, the input bitstream is decoded by the entropy
decoder, in order to produce the coefficient data, as well
as all other information needed to decompress the video
sequence. The coefficient data is then de-quantized and inverse
transformed, in order to obtain the residual data. The recon-
structed block is computed by adding the residual data with
the predicted block from either inter or intra prediction. To
attenuate the blocking artifacts introduced by the block-based
prediction and transform coding, the DBF is then applied at
the boundaries of the reconstructed blocks. Finally, the mean
sample distortion is further reduced with the application of the
SAO module, where the final video output is produced.

Along the HEVC encoding procedure, each picture is
partitioned into a grid of LxL pixel blocks (denoted as
Coding Tree Units (CTUs)), where L is dynamically selected
by the encoder procedure (L€{16,32,64}). The CTUs are
then grouped in slices or tiles, which are processed in raster
scan order at the decoder. Each CTU is independently split
in smaller blocks (called Coding Units (CUs)) according to a
quadtree structure, from a maximum size of 64 x64 pixels to a
minimum size of 8§x8§ pixels. Additionally, each CU is further
divided in Prediction Units (PUs) and Transform Units (TUs),
corresponding to the prediction and to the residual blocks,
respectively [8]. Inside each CTU, the CUs are decoded by
following a z-scan order, as well as the PUs and the TUs
within each CU.

For each video component (i.e., luma and both chromas),
the same frame partitioning (CTU, CU, PU and TU) is applied.
In particular, when the usual 4:2:0 chroma subsampling is
adopted, the chroma blocks are four times smaller than the cor-
responding luma blocks, until the minimum size of 4 x4 pixels.

A. Deblocking Filter

In the HEVC standard, the deblocking filter is only applied
to the boundaries of the PU and TU, which rely on a 8x8
samples grid for both luma and chroma. For each boundary,

Boundary Types Strong Filtering Normal Filtering

» 0000|0000 0090|0060 Q000e|6000
Horizontal £|0000|0000 0000|0060 0000lecoo
N R Sy Ee]elele] (elele)e] 0090|0060 Q000|060 00
filtering ~.oocee|eocee 0000|0060 0000|®000
i (7 " . @ potentially
Vertical Boundary © filtered pixels O filtered pixels
[ JeJel J Q000 0000
Vertical e cooe 0500
fiﬁerlic:g 3| 8008 4 ceee 0000
3| e00@ i 0000 0000
= | e00e Horizontal 0000 0000
eOOe@ Boundary 0000 0000
[ JeJel ] Q000 0000
Fig. 2. Boundary types of the HEVC Deblocking Filter. Filtering decisions

are made based on the pixel lines or columns dark-filled.

a Boundary filtering Strength (BS) is evaluated, according to
several conditions from the neighboring blocks. The resulting
BS value varies between 0 and 2, where 0 means that no
deblocking filter will be applied. Whenever one of the neigh-
boring blocks is intra-predicted, the BS value is always set
to 2. Moreover, only when the BS value is two, the chroma
samples are filtered [3].

In what concerns luma boundaries, additional conditions
are verified to determine whether the DBF should be applied.
Each condition is verified for each set of 8 x4 or 4x8 pixels,
corresponding to the vertical and horizontal edges, respectively
(see Boundary Types in Fig. 2). Accordingly, a set of pixels in
the first and the last row (or column) are used to decide which
filter is going to be applied, i.e., none, normal or strong (see
dark-filled pixels in Fig. 2). In each side of the boundary, only
up to four neighboring samples have to be considered and up
to three may be modified. Taking the luma component as an
example, the strong filtering is applied on three pixels in each
side of the boundary, while at most two pixels may be filtered
on each side of the boundary in the normal filtering, which
depends on a set of DBF conditions (see Strong Filtering and
Normal Filtering in Fig. 2). In contrast, the normal filtering
is only applied on a single pixel in each side of the boundary
for chroma samples. Finally, the HEVC standard specifies that
all vertical edges from the frame are processed by the DBF
before the filtering procedure of the horizontal edges [1].

B. Sample Adaptive Offset

As depicted in Fig. 1, the reconstructed samples are pro-
cessed by the SAO module soon after being filtered by the DBF
module. In this case, the deblocked samples are subsequently
modified by adding an offset value whose magnitude depends
on a set of SAO parameters, namely, Type, four Offset Values
and Band Position/Edge Class. These SAO parameters are
encoded in the bitstream for each CTU and can have different
values for the luma and the two chroma components of each
CTU [4]. In particular, the SAO Type parameter signals the
decoder which SAO filtering should be applied (none, band
offset or edge offset).

Regarding the band offset mode, the full amplitude of the
pixel range is divided by 32 in order to define a set of bands.
The filtering procedure for this mode consist of adding a offset
value to all samples whose values belong to the same band. For
example, in Fig. 3(a), the deblocked samples from bands with
indexes k, k+1 and k+2 are added to offset values of +2, —3
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Fig. 3. SAO Band Offset and Edge Offset modes.

and —1, respectively, in order to push the final sample values
towards the original ones. To reduce the complexity, in the
HEVC standard, only four consecutive bands are considered
for SAO band offset filtering. In this way, only the lowest band
index needs to be stored in the bitstream, namely the SAO Band
Position (k in Fig. 3(a)). For each processed band, a single
offset value is provided in the respective SAO Offset Value
parameter. In Fig. 3(b), an example of corrupted deblocked
samples by the quantization errors are presented in gray-filled
dots, where the horizontal and vertical axis denote sample
spatial position and value, respectively. In this case, the final
filtered samples (dark-filled dots in Fig. 3(b)) from bands k
to k + 3 are corrected with the SAO band offset filtering by
moving towards to the original samples (white-filled dots).

For the edge offset SAO mode, the decoded CTU samples
are classified into four categories according to the corre-
sponding gradient direction, as specified in the SAO Edge
Class parameter. Figure 3(c) depicts all four possible gradient
directions and allowed SAO categories. Similarly to the band
offset mode, the offset value assigned to each category is stored
in the SAO Offset Value parameter. The SAO Offset Value is
positive for categories 1 and 2 and negative for categories
3 and 4 (see arrows in Fig. 3(c)). Hence, whenever a pixel
is classified in one of these categories, its deblocked sample
is added to the corresponding SAO Offset Value. Whenever,
the deblocked samples can not be classified in any of these
categories the SAO edge offset filtering is not applied.

III. RELATED WORK

Several video encoding and decoding modules have been
implemented in high-end GPU devices along the past years.
At the encoder side, most of such GPU-based implementations
deal with the most computational demading motion estimation
schemes (often also supporting relaxed dependencies), as pro-
posed in [9], [10] for HEVC and in [11] for H.264/MPEG-
4 AVC. However, very few efficient GPU approaches for
HEVC decoding have been proposed and even less have
considered the explotation of mobile GPUs. In fact, parallel

implementations often pose difficult challenges at the decoder
side, not only because the decoder should be able to support
bitstreams produced by any encoder configuration, but also
because the processing platform at the decoding device often
imposes restrictive processing capabilities.

In [12], Chi et al. exploit Single Instruction, Multiple Data
(SIMD) parallelism to implement HEVC decoder modules by
specifically focusing on modern multi-core Central Process-
ing Unit (CPU) architectures, including ARM processors. To
maximize the attained performance, the authors in [12] divide
the computational load among CPU cores, by relying on an
alternative method based on the HEVC Wavefront Parallel Pro-
cessing (WPP) [1]. At the end, an average frame rate of 35.5
and 77.8 fps for Full HD video sequences was achieved with
an ARM Cortex-A9 and an ARM Cortex-Al5, respectively.
However, the time consumed per HEVC decoding modules
was not provided for ARM processors by these authors [12],
making a direct comparison difficult to be established. Fur-
thermore, contrary to the multi-core implementation proposed
in [12], the GPU parallel implementations proposed herein are
fully compliant with the HEVC standard. Also, it could take
advantage of both HEVC parallelization techniques, namely
Tiles and WPP [8].

When looking at different approaches based on dedicated
hardware often supported on Field-Programmable Gate Array
(FPGA) technology, the HEVC in-loop modules have also been
designed for the encoder [13] and decoder [14]. However,
such implementations usually represent different compromises
in terms of programmability, resources utilization and energy
efficiency, preventing a fair comparison with high-performance
computing platforms, like GPUs.

Despite the absence of existing approaches that tackle
GPU implementations of the entire HEVC decoder, individual
decoding modules (such as, deblocking filtering [6] and inverse
quantization and transform [7]) have already been proposed by
the authors targeting high performance GPU platforms. How-
ever, convenient changes and adaptations had to be developed
in order to make it suitable for embedded GPUs. Moreover,
a new GPU parallel algorithm of the SAO filtering module
is proposed in this paper, which represents one of the first
approaches in the literature to handle this HEVC module in
embedded GPUs.

IV. PROPOSED PARALLEL ALGORITHMS

The proposed implementation of the HEVC in-loop were
devised to efficiently exploit the offered parallel processing
capabilities already made available on mobile GPU architec-
tures. They leverage the fine-grain parallelism of these compu-
tationally complex modules, while providing fully compliant
HEVC decoding. The GPU execution is organized in groups
of 32 parallel threads (warps), which are grouped in several
Thread Blocks (ThBs). To maximize the attained performance,
the proposed algorithms carefully maximize the number of
active warps by targeting for embedded GPUs, while ensuring
that all threads in a warp perform the same operation from
the GPU code (kernel). Furthermore, the data accesses were
carefully managed, in order to efficiently exploit the complex
embedded GPU memory hierarchy (i.e., global, cache, shared
and constant) [5].
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Fig. 4. Edge-level parallelism exploited by the proposed GPU deblocking
filtering algorithm.

A. Deblocking Filter

As referred in Section II, the DBF module considers up
to four samples within a 4x8 (or 8x4) pixel region, in order
to filter up to three samples in each side of the considered
boundary (as it was shown in Fig. 2). According to the HEVC
standard [1], this procedure is firstly applied on all vertical
edges in a frame, followed by the processing of the horizontal
ones.

However, although this processing order fits well with CPU
architectures, it might not deliver a suitable degree of par-
allelism when exploiting GPU hardware, specially embedded
GPUs. First, inevitable synchronization between the two DBF
stages may significantly degrade the overall GPU performance,
since it is required either to launch separate GPU kernels or to
synchronize the execution over the global memory. Second,
this approach involves many superfluous data transfers and
does not allow efficient utilization of the embedded GPU
memory hierarchy. For example, upon the processing of the
vertical edges, the data needs to be stored in the global
memory, and retrieved again when filtering the horizontal
edges. Additionally, the memory access pattern for the vertical
filtering involves column-wise strided data accesses, which
require several global memory transactions to fetch a single
portion of horizontally filtered data.

To circumvent these limitations, the proposed DBF im-
plementation exploits an improved strategy for efficient GPU
parallelization, by relying on a different paradigm for the
execution of the two DBF stages. As presented in Fig. 4,
when two consecutive horizontal 4x8 filtering regions are
considered, one can identify several non-ovelapping blocks that
can be filtered in parallel [6]. These 8 x8 pixel blocks, herein
referred to as Boundary Blocks (BBs), allow performing both
horizontal and vertical filtering on a small subset of locally
stored and independent input data. Hence, all 8x8 BBs in
a frame can be simultaneously executed without any need for
synchronization, leading to an efficiently utilization of the GPU
memory hierarchy.

As shown in Fig. 5, which depicts the assignments of the
proposed DBF GPU algorithm, each ThB is assign to perform
the deblocking filter on a row of 32 BBs (i.e., 256x8 luma
pixels). Inside each ThB, four warps are in charge of carrying
out the deblocking filter in a row of 8 BBs (i.e., a block
of 64x8 luma pixels). In order to cope with the increased
warp-level data requirements, the shared memory is used as
an additional memory space to store the GPU register values.
As a result, each warp has its own 64x8 memory space for
storing the intermediate filtered samples.
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Fig. 5. Thread block assignments for one frame, consisting of four warps
per ThB and eight BBs per warp (Wi).
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Figure 6 represents the execution of the proposed data-
parallel DBF algorithm at the level of a single warp. First,
all threads in a warp simultaneously copy a 64 x8 luma block
from the global memory to its own portion of shared memory
space (Data Prefetching). In this case, each thread copies one
pixel at time, leading to one memory instruction to copy 32
luma pixels in a row. The consecutive 32 pixels in the same
row are also copied with one memory instruction. Since this
data is already coalesced, the GPU L2 cache can be maximally
exploited.

Then, the deblocking filter is performed on the data that is
already in the shared memory, where two threads are assigned
to perform DBF on a single BB. For each BB, two edges are fil-
tered at the same time, i.e., two horizontal filtering procedures
are performed on vertical boundaries (Horizontal Filtering)
before the two vertical filtering procedures are applied on the
horizontal boundaries (Vertical Filtering). Finally, the data is
stored back into the GPU global memory (Data Storing).

For both filtering steps, the input data that is required
to calculate the BS conditions are packed by following an
approach like to the one in [6] for each 4x4 edge. The BS
conditions and the adopted bit encoding (in a byte) are shown
in Fig. 6 (see BS Conditions). Herein, the neighboring blocks
information is packed in bits 0 to 4, where bit 4 signals if
one of the blocks are intra predicted and bits 0 to 3 contain
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Fig. 7. Frame-level and warp-level processing of the proposed parallel SAO
algorithm, where each ThB is responsible for four CTUs in a row and each
warp (Wi) is assigned to one CTU.

related inter prediction data of neighboring blocks (residual
data, reference frames and motion vectors). The remaining bits
are related with boundaries characteristics, where bits 5, 6 and
7 signal if the boundary is a PU edge, a TU edge and belongs to
the 8x8 grid, respectively. This approach reduces the required
memory transfers in the GPU, where the final BS value for
each boundary can be quickly obtained with simple bitwise
operations. Finally, each BB requires only four bytes to be
processed, two bytes for Horizontal Filtering and two bytes
for Vertical Filtering.

It is also worth nothing that the whole shared memory
block that is assigned to a warp is used for both luma and
chroma components. Hence, while such 64 x8 space is used (in
its entirety) to perform the DBF of the luma component, this
same amount of space is equally divided for the two chroma
components, i.e., a 32x8 chroma Cb and 32x8 chroma Cr
blocks are retrieved (in parallel) in the Data Prefetching phase,
and the DBF procedure is simultaneously performed on both
chroma components.

B. Sample Adaptive Offset

In the proposed parallel implementation of the SAO algo-
rithm, each ThB (with four warps) is responsible for applying
the SAO filtering to 4 CTUs in a single frame row, where each
warp is assigned to one CTU, as depicted in Fig. 7 (see Frame-
level Processing). Hence, each warp executes (in parallel) out
the SAO procedure for 32 pixels, i.e., one pixel line at a time.

The 32 pixels of each line of the 32x32 chroma block, are
simultaneously processed, as shown in Fig. 7 (see Warp-level
Processing). In contrast, when greater CTUs are considered
(i.e., 64 x64 luma block), the SAO is applied to each 64 pixels
line, where the left-most set of 32 pixels is processed first, and
then the right-most 32 pixels of the same row are processed.

In order to handle the complexity of the SAO procedure
and to efficiently use the GPU memory hierarchy, a specific
data structure was developed, i.e., the SAO Control and Offset
Data, as depicted in Fig. 8. For each frame component, the
proposed 4-byte structure allows storing the maximum size of
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Fig. 9. Thread-level processing of the proposed SAO algorithm.

each SAO parameter, as specified by the HEVC standard, while
still providing an unused bit (0). As it is shown in Fig. 8, the
SAO parameters are divided in SAO Control and Offset Data
fields, where the SAO Control field contains the SAO Type
and the SAO Band/Class. Here, bits 1 and 2 are used to store
the three possible SAO Types, namely, 0: none, 1: band offset
and 2: edge offset. Contrasting to the SAO Class field, which
can only have four possible values (gradient directions), the
SAO Band can contain up to 32 different values, in order to
represent the considered SAO band position. Hence, to ensure
the compliancy with the HEVC standard, the SAO class/band
has to be stored in a five bits field, i.e. bits 3 to 7. Finally,
the remaining bits are used to store the four SAO Offsets (bits
8 to 31), where each positive/negative offset occupies 6 bits,
since its magnitude can be up to 31, according to the HEVC
standard. Hence, the SAO parameters for each CTU are stored
in a 12-byte word (4-bytes for the luma and each chroma).

Figure 9 also provides a general overview of the data-
parallel Thread-level processing applied on a set of 32 pixels,
in order to perform the computations from the Band Offset and
Edge Offset SAO types. For the Band Offset (see Fig. 9(a)),
each thread (from 1 to 32) performs the following set of
operations: i) the data is firstly fetched from the global
memory; ii) the sample pixel value is classified according
to the SAO Band parameter in the Band Classifier; iii) the
corresponding Offset[i] is added; and iv) the final value is
stored in the global memory. A similar procedure is performed
in the Edge Offset (see Fig. 9(b)), where each thread fetches 3
pixel samples according to the SAO Class parameter, then the
Edge Classifier is applied to determine the pixel category and
choose the corresponding Offset[i] value. In order to reduce
the complexity and avoid branch divergence, a parallel version
of the fast sample classifiers proposed in [4] was implemented.

V. EXPERIMENTAL EVALUATION

To experimentally evaluate the efficiency of the proposed
parallel algorithms of the HEVC in-loop filters in a mobile

SAO Control and Offset Data (32 bits = 1 Integer)
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Fig. 8. Data structure used by the proposed parallel SAO implementation.



GPU, the recommended JCT-VC test conditions were adopted
with an All Intra configuration [15]. The set of video bitstreams
from the highest frame resolution (classes A, B and E) were
considered, since they are the most computationally demand-
ing. To further challenge the proposed GPU implementation,
an additional set of Ultra HD 4K sequences [16] was also
evaluated (class S).

To fully exploit the targeted GPU architecture, the proposed
algorithms were implemented with the CUDA framework [5]
and integrated in the reference HM 15.0 HEVC decoder [17].
Accordingly, the proposed parallel implementations of the
HEVC DBF and SAO modules were handled by the GPU,
while other decoder modules were executed by the CPU.

To conduct this evaluation, NVIDIA Jetson TK1 CUDA-
enabled development board (with CUDA 6.5) was chosen. This
board provides a Tegra® K1 SoC, containing a NVIDIA Ke-
pler GK20a GPU @ 852 MHz — one Streaming Multiprocessor
(SMX) with 192 CUDA cores — and the 4-Plus-1™ quad-core
ARM® Cortex-A15 CPU @ 2.32 GHz.

Since the CPU and GPU share the same memory space,
the input data required to perform the HEVC in-loop filters is
directly obtained from the SoC main memory through CUDA
zero copy instruction. Due to the limited compute capability
of this embedded GPU, the GPU kernel configurations (i.e.
number of warps per ThB, shared memory usage, registers
consumption, etc.) must be carefully chosen to maximize the
number of active warps in the SMX. To attain the maximum
performance, the kernel configurations of the proposed ap-
proaches were experimentally determined by evaluating trade-
offs between register spilling and number of active warps.

Table I presents the experimentally obtained average pro-
cessing times for each proposed GPU implementation of the
HEVC in-loop filters. In this evaluation, all the adopted video
sequences from A, B, E and S classes were encoded with
the lowest and the highest considered Quantization Parameters
(QPs) (i.e., 22 and 37) since they are the most and least
computationally demanding configurations. As it was expected,
the average frame processing time obtained with the proposed
GPU HEVC parallel modules varies across different classes
(e.g., the processing of the highest resolution frames results in
the highest per-module time). Moreover, for all tested video se-
quences and QP parameters, the DBF represents the most time
consuming in-loop filter, due to its higher computational load
and to the fact that the parallel SAO module exploits a higher
amount of data parallelism, thus resulting in a significantly
lower processing time. However, in all tested configurations,

TABLE 1. RESULTING AVERAGE PROCESSING TIME (IN
MILLISECONDS) PER HEVC MODULES IN THE GK20A AND K20cC GPUs.
GK20a K20c
Class QP sA0 DBF DBF 6]

S 22 7.06 1025 2.99

3840x2160 37  6.01  11.67 3.01

A 22 3.83 5.54 1.71

2560 x 1600 37 3.48 6.13 1.72

B 22 216 2.85 1.08

19201080 37 1.84 3.25 1.09

E 22 099 1.42 0.71

1280x 720 37 092 1.60 0.71

TABLE II. AVERAGE FRAME PROCESSING TIME (IN MILLISECONDS)
TO EXECUTE THE DBF AND SAO WITH THE ORIGINAL HM 15.0
(SINGLE-CORE OF CORTEX-A15) AND WITH THE PROPOSED PARALLEL
MODULES IN GK20A MOBILE GPU.

Class Sequence QP HM 150 GK20a
22 295.70 18.19
27 275.85 18.95
CrowdRun 32 26129 1928
37 23891 18.83

22 272.27 16.73
27 305.60 18.36

DucksTakeOff 3 20188 18.08

37 176.89 16.83

S 22 248.05 16.99
3840%2160 InToTree 27 226.49 17.81
32 201.12 1825

37 166.71 16.79

2 273.54 16.57

, 27 277.64 18.05

OldTownCross 35 55547 18.41

37 194.25 15.57

22 275.95 18.08

27 256.27 18.56

ParkJoy 32 23603 184l

37 229.22 18.52

Traffic 22 163.92 9.82

A PeopleOnStreet 22 161.25 9.74
2560 % 1600 Nebuta 22 86.00 8.89
SteamLocomotive 22 102.35 9.00

Kimono 22 62.04 498

B ParkScene 22 80.68 5.09
Cactus 22 75.73 5.06

19201080 BQTerrace 2 7590 4.80
BasketballDrive 22 77.07 5.11

E FourPeople 22 37.16 2.46
Johnny 22 29.67 234

1280x720 g iigenAndSara 22 32.04 243

the real-time in-loop filtering (less than 12 ms) was achieved
on GK20a with an average power consumption of 8.4 W at
the level of the overall development board.

The last column in Table I refers to the processing times
obtained with an alternative HEVC DBF parallel implemen-
tation, as proposed in [6], evaluated on an NVIDIA Tesla
K20c @ 706 MHz GPU (including 13 SMXs) with CUDA
version 5.5. As expected, the higher computational capabilities
of K20c resulted in achieving even lower processing times.
However, this high performance was achieved at a the cost of
significantly higher power consumption, i.e., 88 W when only
the K20c GPU is considered. As a result, the herein proposed
approaches for the HEVC in-loop filtering provide up to 70%
energy savings on considered embedded device.

Although these two DBF implementations allow achieving
real-time processing, it is worth to emphasize that their direct
comparison can hardly be performed on a fair basis, since these
approaches target GPU devices with different purposes and
capabilities (e.g. the number and architecture of the SMXs).
Moreover, in the considered NVIDIA Jetson TK1 development
board the energy savings are expected to be even higher if
power consumption of only the GPU GK20a is considered.
However, in contrast to K20c, the NVIDIA Jetson TK1 does
not provide the precise power consumption monitoring facil-
ities to obtain these power measurements. Hence, the power
consumption of the overall development board was obtained
with an external power meter.
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Fig. 10. Average speedup for all tested classes and QPs obtained with the proposed GPU HEVC in-loop decoding modules (DBF + SAO) on GK20a over the

HM 15.0 on a single-core of the ARM Cortex-A1lS5.

Another interesting phenomena is also worth noting in the
considered set of video sequences when comparing the DBF
processing time across different QPs: within a single class,
the processing time slightly increases with the QP value. Such
increment for larger QPs (lower bitrates) might be explained by
the fact that the encoder tends to favor bitrate over distortion,
in order to achieve higher bitrate savings. This yields to an
increased presence of block artifacts, which are more visible
for larger QPs, thus increasing the computation demand for the
HEVC DBF module on the decoder side. On the other hand,
the SAO module reveals to be more computational demanding
for lower QPs, due to the increased details for higher spatial
sample frequencies, i.e., more visual details obtained from
higher bitrates.

In order to further evaluate the efficiency of the proposed
GPU HEVC in-loop filters (DBF+SAOQO), Table II presents the
experimentally obtained average frame processing times for
each considered test sequence. The reported time for the orig-
inal HM 15.0 implementation when only DBF and SAO are
considered was obtained on a single core of the ARM Cortex-
A1S5 processor. The HM 15.0 in-loop filters implementation
was chosen for the baseline comparison reference, since it
is the most commonly used implementation in the literature.
Moreover, there are no other state-of-the-art approaches in
the literature implementing the considered HEVC in-loop
decoding modules on desktop or embedded GPUs for a direct
comparison.

As it can be observed in Table II, the overall processing
time for the original HM 15.0 in-loop filtering significantly
increases with the decrease of QP for all considered S class
sequences. On the other hand, the processing time correspond-
ing to the herein proposed parallel algorithms only slightly
varies with the QP. This can be justified by the fact that
when the processing time from one module increases, the time
required by the other module decreases as it was shown in
Table I. Accordingly, only the results corresponding to the
more demanding evaluation (QP=22) are shown in Table II
for the tested set of sequences from other classes, i.e., classes
A, B and C.

The results presented in Table II also show the variation

of the processing time according to the encoded data, i.e.,
video content. As it can be observed, the average processing
time varies for the same class and QP in both the original
HM 15.0 and the proposed GPU implementations. However, in
the proposed GPU parallelizations, the impact of these encoder
decisions is significantly attenuated. Moreover, the proposed
algorithms achieve significantly lower processing times when
compared with the HM 15.0. On average, across all sequences
and QPs, the proposed algorithms outperform the HM 15.0
CPU execution for about 13x on the GK20a.

Figure 10 presents the speedups obtained on GK20a for
all tested video bitstreams with the proposed algorithms when
compared to the single-core HM 15.0 execution. As it can be
seen, the higher speedups are obtained for the higher frame-
resolution sequences, due to the increased amount of compu-
tational load. In general, the obtained speedup is higher for
lower QP values (most computational demanding), since the
processing time of the proposed GPU parallel implementation
slightly varies over the QP value, as it was shown in Table II.
Among the considered classes, an average speedup of 12X,
13.3x, 13x and 13.5x were obtained for classes E, B, A
and S, respectively, where a maximum speedup of 16.7x was
achieved (Traffic sequence with QP=22).

In Fig. 11, it is depicted the obtained average frame rate
on GK20a for different QP parameters across a set of video
sequences from different classes, namely, from classes S, A,
B and E (see Fig. 11(a), 11(b), 11(c) and 11(d), respectively).
As it can be observed, the proposed GPU implementation can
handle real-time processing for all video sequences, i.e., a
frame rate of at least 30 fps is always achieved. In particular,
the proposed GPU algorithms allow achieving an average
frame-rate of 51.9 fps for class S, 92.8 fps for class A, 185.5
fps for class B and 355 fps for class E, thus demonstrating
the feasibility of effectively accelerating the in-loop decoding
modules by using low-power GPUs from embedded devices in
the overall decoding pipeline. In this scenario, an optimized
CPU implementation of the HEVC decoder could handle the
other video decoder modules while offloading the execution of
HEVC in-loop filters to the GPU.
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Fig. 11. Average frame rate obtained with the proposed GPU HEVC in-loop decoding modules (DBF + SAO) on GK20a.

VI. CONCLUSION

To circumvent the added complexity of the decoding pro-
cedure defined by the HEVC standard, this paper proposed
an efficient parallelization of the in-loop filtering modules
(DBF and SAO) of the HEVC decoder by adopting low-
power GPU accelerators of embedded systems. To attain
such objective, the presented approaches extensively exploit
both fine and coarse-grained parallelization techniques in an
integrated perspective, by re-designing the execution pattern
of the involved modules, while simultaneously coping with
their inherent computational complexity targeting embedded
GPUs. According to the presented experimental evaluation, the
proposed parallel algorithms provide a significant reduction in
the overall processing time (to less than 20 ms for Ultra HD
4K intra frames, i.e. 50 fps) over a single-core implementation,
thus contributing for a software-based HEVC decoder solution
in nowadays embedded systems, like tablets and smartphones.
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