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Abstract Considering the prevalent usage of multimedia

applications on commodity computers equipped with both

CPU and GPU devices, the possibility of simultaneously

exploiting all parallelization capabilities of such hybrid

platforms for high performance video encoding has been

highly quested for. Accordingly, a method to concurrently

implement the H.264/ advanced video coding (AVC) inter-

loop on hybrid GPU ? CPU platforms is proposed in this

manuscript. This method comprises dynamic dependency

aware task distribution methods and real-time computa-

tional load balancing over both the CPU and the GPU,

according to an efficient dynamic performance modeling.

With such optimal balance, the set of rather optimized

parallel algorithms that were conceived for video coding on

both the CPU and the GPU are dynamically instantiated in

any of the existing processing devices, to minimize the

overall encoding time. The proposed model does not only

provide an efficient task scheduling and load balancing for

H.264/AVC inter-loop, but it also does not introduce any

significant computational burden to the time-limited video

coding application. Furthermore, according to the pre-

sented set of experimental results, the proposed scheme has

proved to provide speedup values as high as 2.5 when

compared with highly optimized GPU-only encoding

solutions or even other state of the art algorithm. Moreover,

by simply using the existing computational resources that

usually equip most commodity computers the proposed

scheme is able to achieve inter-loop encoding rates as high

as 40 fps at a HD 1920 9 1080 resolution.

Keywords Video coding � GPU � Hybrid CPU ? GPU

Platforms � Load balancing � CUDA

1 Introduction

The increasing demand for high-quality video communi-

cation and the tremendous growth of video contents on

Internet and local storages stimulated the development of

highly efficient compression methods over the past dec-

ades. When compared with previous standards, the H.264/

MPEG-4 advanced video coding (AVC) [1] achieves

compression gains of about 50 %, keeping the same quality

of the reconstructed video [2]. However, such compression

efficiency comes at the cost of a dramatic increase of the

involved computational requisites, making real-time video

coding hard to be achieved even on the most recent single-

core central processing units (CPUs).

The latest generations of commodity computers, equip-

ped with both multi-core CPUs and many-core graphics

processing units (GPUs), already offer high computing

performances to execute a broad set of signal processing

algorithms. In particular, the GPU architectures consist of

hundreds of cores especially adapted to exploit fine-grained

parallelism, and as such are frequently applied to imple-

ment complex signal processing applications. On the other

hand, on the multi-core CPUs the data-parallelism can be

exploited either at a coarse grained level, by concurrently

running multiple threads on different cores, or at a fine-

grained level, by using vector instructions. Hence, the

simultaneous exploitation of all these different
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parallelization models, involving both the CPUs and the

GPUs, leads to complex, but rather promising, challenges

that are widely attractive and worth to be exploited by the

most computationally demanding applications. However,

even though these devices are able to run asynchronously,

new and efficient parallelization models are needed to

maximally exploit the computational power offered by

these concurrently running devices. Nevertheless, such

models must assure the inherent data dependencies in the

parallelized algorithm, as well as a load-balanced execu-

tion on the processing devices.

The H.264/AVC [1] standard represents one of the most

efficient video coding paradigms based on motion-com-

pensated prediction. In the H.264/AVC, each frame is

divided in multiple Macroblocks (MBs), which are subse-

quently encoded using either inter or intra prediction

modes (see Fig. 1). In the most computationally demand-

ing and most frequently applied inter mode, the best-

matching predictor of each MB is searched within a

restricted set of already encoded reference frames (RFs).

This process, denoted by motion estimation (ME), is based

on a further division of each 16 9 16 pixels MB into 7

different partitioning modes, namely, 16 9 8, 8 9 16,

8 9 8, 8 9 4, 4 9 8 and 4 9 4 pixels. The search proce-

dure is then further refined by using the interpolated RFs

with half-pixel and quarter-pixel precision. Then, an inte-

ger transform is applied to the residual signal, which is

subsequently quantized and entropy coded, before it is sent

to the decoder, alongside with the corresponding motion-

vector information. The decoding process, composed of the

dequantization, the inverse integer transform and

deblocking filtering, is also implemented in the feedback

loop of the encoder, to reconstruct the encoded RFs. This

reconstruction is finalized by the application of a

deblocking filter, to mitigate blocking artifacts that were

introduced by the encoding process.

Recently, several proposals have been presented to

implement parallel video encoding algorithms by using

GPU devices [3–9]. A promising set of adaptive ME

algorithms for NVIDIA GPUs was presented by Lu and

Hang [3] and Schwalb et al. [4]. These algorithms mainly

feature a reduction of the algorithm complexity, but still

keep a high parallelization potential. However, the pro-

vided evaluation results only consider very low resolutions,

which does not guarantee their efficiency for high-defini-

tion (HD) video sequences in what concerns both the

performance and the encoding quality. Moreover, such

results are not directly compared with other state of the art

parallel GPU algorithms that have been proposed for the

H.264/AVC. Furthermore, all these proposals mostly

exploit data-level parallelism and most of them only focus

on a single module of the prediction-loop of the H.264/

AVC encoder.

Meanwhile, Cheung et al. [10] referred to the task par-

tition between the CPU and the GPU as the main challenge

for efficient video coding on commodity computers. At this

respect, a computational model for scalable H.264 video

coding for embedded many-core devices was proposed by

Azevedo et al. [11]. These authors proposed the applica-

tion of scheduling techniques at the MB level. For such

purpose, a lightweight scheduling was achieved by using a

specialized hardware for the optimized task submission/

retrieval unit. However, the implementation of the sched-

uling control strategy that was considered for each MB

makes this model rather expensive for CPU ? GPU

platforms.

A different approach for parallel implementations of the

entire H.264/AVC encoder on CPU ? GPU systems was

proposed by Chen and Hang [12]. This approach com-

pletely offloads the ME task (including the interpolation

and sub-pixel ME) to the GPU, keeping the rest of the

modules to be executed on the CPU. However, this

approach does not consider the possibility of concurrent

and asynchronous implementation of the video coding

algorithm on both the CPU and the GPU devices, which

could potentially decrease the overall processing time. To
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the best of the authors’ knowledge, there is still not any

proposal that effectively considers a hybrid co-design

parallelization approach, where the whole encoder struc-

ture is simultaneously scheduled on the CPU and on the

GPU.

By taking this idea in mind, an entirely new parallel-

ization approach is proposed herein. Such approach is

based on a novel dynamic performance model for parallel

implementation of the entire inter loop of the encoder that

simultaneously and dynamically exploits the CPU and the

GPU platforms. To optimize such a hybrid parallelization,

a method for dynamic task and data distribution is

proposed.

The proposed method relies on a realistic performance

model that is built at run-time and improved in each iter-

ation of the algorithm, to capture the real system behavior

and automatically discover the performance of the devices.

Even though non-dedicated or non-reliable systems are not

the main target of this work, the proposed dynamic per-

formance model also allows an automatic correction of

perturbations or eventual performance variations due to

external causes that may occur in real systems. Moreover,

it exploits several parallelization levels currently available

in these systems, ranging from the fine-grained thread-level

parallelism on the GPU, to both thread and vector-level

parallelization on the CPU side.

In contrast to Momcilovic et al. [13], this paper provides

a complete parallelization strategy comprising all inter-

frame processing modules of the H.264/AVC encoder,

considering both CPU and GPU devices, as well as an

improved scheduling algorithm for collaborative video

encoding on hybrid GPU ? CPU platforms. The proposed

parallel algorithms have been developed both in the

Compute Unified Device Architecture (CUDA) for GPU

platforms, and by using the OpenMP ? SSE for the multi-

core CPU. The parallelized modules implement the full-

pixel ME, interpolation, sub-pixel motion estimation

(SME), quantization, integer transform, inverse integer

transform, dequantization and the deblocking filtering.

However, it should be noted that the achieved paralleliza-

tions of the H.264/AVC inter-loop modules on both CPU

and GPU does not only require different strategies caused

by the core granularity, but they also demand completely

different programming and parallelization approaches,

according to the existing differences in the architectures,

programming environments and applied programming

models. The scheduling scheme proposed herein addi-

tionally provides a more accurate evaluation of the

achieved performance, including an initial set of test

frames, and proposes an entirely new strategy of mode-

based parallel SME for hybrid GPU ? CPU platforms.

This manuscript is organized as follows: in Sect. 2, the

dependency issue existing in the H.264/AVC encoder is

analyzed, and the profiling of the encoder on both the CPU

and the GPU is presented. The dynamic model for parallel

video coding on CPU ? GPU platforms is proposed in

Sect. 3. Section 4 describes the conceived parallel imple-

mentation of the H.264/AVC encoding algorithm in this

hybrid platform. The evaluation of the experimental results

is presented in Sect. 5, while Sect. 6 summarizes the main

contribution of the presented research.

2 H.264/AVC data dependencies and profiling analysis

Before parallel processing and balanced load distribution

techniques can be considered to speedup the H.264/AVC

video encoder, an extensive analysis of inherent data

dependencies needs to be performed. In the H.264/AVC

encoder, two classes of dependencies can be identified,

namely, data dependencies and control dependencies.

Furthermore, data dependencies can still be classified in

three distinctive subclasses in this specific algorithm,

namely, inter-frame dependencies, intra-frame dependen-

cies and the inherent sequential dependencies between the

H.264/AVC modules.

Inter-frame data dependencies exist between different

frames in the video sequence. Due to these dependencies,

the encoding of one frame cannot be performed before the

encoding of some other frame has already finished. Such

dependencies are mainly present in inter-frame prediction

(P and B type frames), between the current and the con-

sidered RFs. In this prediction mode, motion is estimated

by finding the best matching between the pixels in the

current frame and the reconstructed pixels from already

coded and transmitted RFs. As a consequence, all RFs must

be decoded in the reconstruction loop of the encoder before

the ME procedure can be initiated.

Intra-frame data dependencies are present in the pro-

cessing of neighboring areas of the same frame. Although

such dependencies predominantly exist between adjacent

blocks in intra (I) type frames, they are also observed in

inter (P and B) frames, namely, in the prediction of the

motion vectors by considering the neighboring MBs (when

computing the median vector to determine the starting

search point), or in the deblocking filtering (when the MB

edges are filtered).

Dependencies between the H.264/AVC modules indicate

that the output data of one processing module corresponds

to the input data of another subsequent module, as depicted

in Fig. 1. For example, the motion vectors correspond to

the output of the ME module and together with the sub-

pixels values that are computed by the interpolation mod-

ule define the initial search point and the search space for

the subsequent SME module. Nevertheless, the interpola-

tion and the ME modules do not need to wait for each
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other, since both of them use the current frame and/or the

RFs.

Control dependencies are present whenever data-related

conditions may imply different processing branches for the

input data. For example, in the case of the deblocking fil-

tering, different edges (and even different distance values

from the edges) may cause different filtering procedures.

To assure the compliance of the whole set of strict

dependencies imposed by the H.264/AVC encoding algo-

rithm, it can be observed that an efficient parallel pro-

cessing implementation can only be considered at a single

frame level, since the inter prediction procedure cannot

start before the list of all considered RFs is created/upda-

ted. Moreover, due to the set of intra-frame dependencies

that has to be fulfilled in the deblocking filter, this module

cannot be divided in independent and concurrent parts.

Consequently, these two observations exclude the possi-

bility of splitting each frame in several parts to be simul-

taneously processed in a pipeline and concurrent fashion.

Hence, by considering the existing data dependencies

between the several H.264/AVC processing modules, a

dependency diagram of the encoder inter-loop can be

defined, as it is presented in Fig. 2. As it can be seen, the

interpolation and the full-pixel ME modules can be pro-

cessed in parallel. However, the SME can only start when

these two procedures are completed. Finally, since the rest

of the modules are also dependent on each other, i.e., the

output of each module is the input of the following one,

they will have to be sequentially processed.

Due to its complexity dominance in the whole encoding

procedure, the particular case of the ME module is worth

noting. As it was previously referred, the intra-frame

dependencies that are observed in this module seriously

limit the possibility of data level parallelization. Namely,

to find the best matching for the current MB in the con-

sidered RFs, the search is usually performed in an area

around the position of the current MB displaced by an

offset that is defined by the median vector. This vector is

computed as a median value of the set of motion vectors

computed for its left, up, and right-up neighbors. However,

it was already shown in [5] that when exhaustive search is

performed, the resulting penalty of using the zero motion

vector as the central search position is not significant.

Therefore, to allow a finer grained parallelization, the

adoption of the exhaustive Full-Search Block-Matching

(FSBM) algorithm is worth to be considered, by assuming

a zero motion vector candidate as the search area center. It

is also worth mentioning that the high computational load

required by this exhaustive search algorithm can be sig-

nificantly reduced by hierarchically computing the sum of

absolute differences (SAD) distortion measure, i.e., by

reusing the results obtained for smaller partitions of the

MB under consideration [14].

Finally, it can be observed from Fig. 1 that the entropy

coding module only depends on the quantization module,

since it uses the quantized coefficients as its input. On the

other hand, the output of this module represents the output

video stream and does not impose any feedback to the

remaining H.264/AVC encoding modules. Consequently,

the processing of the entropy coding module can be com-

pletely overlapped with the inter-loop modules, and

therefore it does not limit the overall performance as long

as its execution time is shorter than the execution time of

the entire inter-loop, which is generally verified.

Figure 3a presents the partitioning of the H.264/AVC

processing time in a GPU device implementation, regard-

ing to the various AVC modules. These results were

measured by considering highly optimized GPU algo-

rithms, which will be presented in more detail in Sect. 4.

The considered resolution for the test video sequences was

1280 9 720 pixels and the used GPU device was an (MSI)

NVIDIA GeForce GTX 580. Similar results were obtained

for other GPUs and using several other resolutions for the

test video sequences. As it can be seen, from the compu-

tational complexity point of view, the full-pixel ME is a

dominant module, with more than 75 % of the total pro-

cessing time.

Contrasting with the interpolation module, which partic-

ipates similarly (about 4 %) to the total processing time at

both devices, the deblocking filtering is relatively more

demanding in the case of the GPU implementation. This is

mainly due to the limited parallelization potential of this

module, caused by strict intra-frame and control dependen-

cies, as it was mentioned above. Finally, it is also observed

that the remaining modules, namely, motion compensation,

integer transform, quantization, dequantization and inverse
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Fig. 2 Dependencies between the several processing modules in a H.264/AVC video encoder
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transform, only represents about 1–2 % of the total pro-

cessing time.

The processing time of the SME module is presented

with a greater detail on the right side of Fig. 3a, by con-

sidering seven different kernels corresponding to the dif-

ferent MB partitioning modes (see further details in

Sect. 3.3). It can be seen that the most of the computation

time devoted to this module is spent in the processing of

the 16 9 16 mode, i.e. when the MB is not divided and the

refinement is performed for only one single partition. This

is mainly due to the fact that in this MB partitioning mode

the number of concurrently processed partitions is smaller,

leading to less efficient implementations in the GPUs,

primarily designed for massive exploitation of fine-grain

parallelism.

Figure 3b represents the partitioning of the processing

time of the inter prediction loop in a general purpose CPU,

regarding to the same video coding modules. These results

were obtained for highly optimized code in a Intel Core i7

950 processor Int (2008). Both core level parallelization

(using OpenMP API) and vectorization (using SSE ISA

extensions) were extensively performed. By comparing

with the GPU implementation, it is possible to observe that

ME has a slightly lower weight in the processing time. On

the other hand, the SME module takes a significantly larger

part in the overall time. However, and contrasting to what

happens in the GPU, it is the set of SME modes with finer

MB partitioning that requires more computation time.

Finally, it is also observed that the percentage of the pro-

cessing time devoted to the deblocking filter is significantly

smaller, when compared with the equivalent GPU

implementation.

3 Performance model and task distribution for parallel

coding on a hybrid CPU 1 GPU system

Considering the dependency analyzes conducted in Sect. 2,

it is observed that the heterogeneous structure of the H.264/

AVC encoder includes several modules without any data-

dependency when processing neighboring pixels (e.g.,

quantization), but also highly data-dependent modules

(e.g., deblocking filtering). The suitability of all these

algorithms for fine-grained or coarse-grained paralleliza-

tion is also highly variable and some of them are more

efficiently implemented on one or another processing

device. In this section, it is analyzed the possibility of

minimizing the video encoding time by efficiently dis-

tributing the encoding tasks on the CPU and the GPU

devices. For such purpose, it will be proposed a new

dynamic performance model for parallel video encoding by

considering a hybrid co-design parallelization approach,

where the CPU and the GPU are simultaneously and

asynchronously scheduled, to speedup the execution of the

whole encoding structure.

3.1 Load distribution and scheduling strategy

From the profiling analysis presented in Sect. 2, it is clear

the potential advantage of distributing the most computa-

tionally demanding modules, namely ME and SME, among

the CPU and the GPU devices. In particular, the ME

module can be simultaneously implemented by both devi-

ces on different parts of the frame, by considering a frame

division at the level of rows/columns of MBs. This distri-

bution should be performed in a rather dynamic way, by

taking into account the performance level that is offered by

each device, evaluated during the processing of the previ-

ous encoded frame. Since the interpolation can be simul-

taneously executed with the ME, this module is also

considered when distributing the ME operation. Never-

theless, a different processing scheme is adopted for the

SME module, due to the fact that each MB partitioning

mode offers different paralellization potential and is rather

implemented by a separate CUDA kernel. As a

(a)

(b)

Fig. 3 Partitioning of the H.264/AVC inter prediction loop process-

ing time (ME full-pixel motion estimation, SME sub-pixel motion

estimation, INT interpolation, DBL deblocking filter, Others direct

integer transform, quantization, dequantization and inverse integer

transform)
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consequence, the load balance is performed by distributing

the processing of the several prediction modes to the CPU

and the GPU devices.

As soon as the most computationally intensive modules

are assigned, the distribution of the remaining encoding

modules is defined. For such purpose, a module-level

scheduling is applied to the rest of the modules, in such a

way that the overall processing time is minimized. Since all

the other modules that can be concurrently processed (i.e.,

except the deblocking filter) only take about 1 % of the

total time, their distribution among the CPU and GPU

would not offer any significant advantage. Nevertheless,

their execution is still evaluated in both processing devices

(by using a predefined set of test frames), to predict further

performance gains and to achieve an optimal module-level

scheduling.

Algorithm 1 presents the implementation of the pro-

posed method. A detailed formalization of the most com-

plex steps will be presented in the following subsections.

Along the encoding procedure, the video sequence under

processing is divided in batches, comprising a pre-defined

amount of frames. Within each batch, the proposed load

balancing algorithm defines a restricted set of frames that

will be used for profiling and dynamic adjustment of the

load distribution and tasks assignment. Within this profil-

ing stage, a restricted set of test frames (e.g., 3 frames) is

encoded both on the CPU and on the GPU, by adopting an

even distribution of the frame area among the several

devices (lines 1–5). With the performance data that are

collected at this stage, the load distribution algorithm will

start assigning the several encoding modules and frame

data in a balanced way, to minimize the resulting encoding

time (lines 10–17).

Initially, the ME and the interpolation modules are

jointly distributed, since these modules can be simulta-

neously processed (see Sect. 3.2). For such purpose, a

given number of MB-columns is loaded to each of the

devices. Such amount of MB-columns to be processed by

each device will be updated over the time. As soon as both

procedures are finished on both the CPU and the GPU, the

resulting output values are exchanged, to allow the

encoding algorithm to continue with the subsequent mod-

ules. Only then will the distribution of SME module be

considered (see Sect. 3.3), to divide the several prediction

modes among the available devices (line 15). At the end,

the remaining modules are serially processed and assigned

to a single device (line 18), as will be described in

Sect. 3.4.

Throughout this dynamic load balancing method, the

processing time of each of the encoding modules is con-

stantly measured to evaluate their performance. The mea-

sured times are updated after processing each frame (line

19). This is particularly important for the most computa-

tionally intensive modules, due to the fact that any eventual

change of the performance level on some of the devices

(for example, the CPU, which will be also running the

operating system) have a negative effect on the load bal-

ance, with a consequent increase of the processing time.

For this distribution, both the processing time and any

eventual data transfer time are considered (see Sect. 3.4).

Therefore, this distribution is performed dynamically and

permanently using these updated times.

In Fig. 4, it is represented as an example of a complete

distribution of the H.264/AVC modules in a hybrid

CPU ? GPU system, by applying the proposed model. In

this case, the ME and the SME modules are distributed to

both processing devices, while the interpolation is

assigned to the GPU. The rest of the modules are serially

processed in these devices, to minimize the overall pro-

cessing time. A typical situation is the one where the

deblocking filtering is performed in the CPU side, due to

the presence of numerous intra-frame and control

dependencies, which eventually limit the efficiency of the

GPU algorithm.

The computationally lightweight and not time consum-

ing scheduling that is now proposed, as well as its corre-

sponding load balancing strategy, are performed on a single

CPU core. The frame data is distributed in the following

way. The current frame is initially divided according to the

predicted performance of the ME module on both the CPU
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and the GPU (see Sect. 3.2), and the fraction of the frame

that is assigned for execution on the GPU is immediately

transferred. On the other hand, the data transfers corre-

sponding to the remaining parts of the current frame, as

well as of the interpolated frame are overlapped with the

processing of the ME module, which is allowed by the

ability of the GPU to overlap the computation with the data

transfers. Finally, at the end of the inter-loop, the newest

RF is transferred to the device that did not perform the

deblocking filtering, which allows the model to keep the

lists of the RFs updated on both devices.

Finally, although this model was specifically designed

for video encoding, it is worth noting that it can equally be

applied to any other data processing algorithm composed

of several distinct tasks. Instead of frames to be encoded,

any other data units can be considered and entirely similar

optimizations steps should be applied to find the best dis-

tribution. Naturally, it is only worth to apply this distri-

bution model if the CPU and the GPU implementations of

the algorithm are competitive in the implementation of

some of the tasks or sub-tasks that integrate the considered

processing system, to efficiently exploit the computational

and parallelization capabilities that are offered by these

platforms.

3.2 Dynamic load balancing of the motion estimation

and interpolation modules

Considering the availability of several processing devices

for concurrent computing, the large computational load of

the Full-Search Block-Matching (FSBM) motion estima-

tion module is particularly fitted to be divided and dis-

tributed over the existing processing devices. The

distribution is performed at the level of MB-columns, by

sending ngpu MB-columns to the GPU, and (n - ngpu) MB-

columns to the CPU, where n is a total number of MBs

columns within a single frame (or slice). It is also assumed

that the attained performance (s), expressed as the number

of processed MB-columns per second, does not depend on

the considered distribution, i.e. sgpu = cte and scpu = cte

within a single frame. Hence, the ME processing time in

the two platforms can be expressed as:

tgpu me ¼
ngpu

sgpu
; tcpu me ¼

n� ngpu

scpu
: ð1Þ

The constant performance assumption that is considered

here is mainly supported by the following two reasons.

First, the relation between the required computation and

the inherent data-transfer times is very high (up to two

orders of magnitude), as it will be confirmed in the

experimental results section (see Table 4). The second

reason is allied to the fact that this model allows very

simple and efficient distribution mechanisms that do not

involve a significant computational burden.

Hence, the main aim of the proposed dynamic load

balancing scheme is to find the optimal distribution of MB-

columns that will provide the most balanced execution time

in the two processing devices. Equation 2 defines such

balanced distribution, where tgpu me and tcpu me represent

the processing time of the ME module on the CPU and on

the GPU, respectively. Conversely, tgpu0 and tcpu0 represent

the processing time of the modules that are supposed to be

executed in the CPU and in the GPU, together with the ME.

As an example, such set of modules may include the

interpolation operation, which does not have any data

dependency with ME, and is required to be executed on

one of these devices.

tcpu me þ tcpu0 � tgpu me þ tgpu0; ð2Þ

By combining Eqs. 1 and 2 it is obtained:

n� ngpu

scpu
þ tcpu0 �

ngpu

sgpu
þ tgpu0; ð3Þ

The processing workload on the GPU device will be given

as:

ngpu �
nþ scpuðtcpu0 � tgpu0Þ

1þ scpu
sgpu

: ð4Þ

The assignment of the interpolation module is done

according to the ratio of the performances on the two

devices (i.e. speedup). In particular, if the interpolation is

predicted to have a larger speedup than the ME module

when sending it from the CPU to the GPU, it is assigned a

greater offloading priority. Otherwise, it remains in the

CPU, while the ME is simultaneously performed on the
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GPU. As soon as the interpolation is finished, the ME starts

to be simultaneously executed on both devices.

However, the measured performance in any real system

varies along the time, mainly due to inherent changes of the

conditions it operates on (e.g., operation system). More-

over, in real situations it is often needed to re-evaluate

performance to have more accurate distribution of the

computational load among the devices. Therefore, if the

number of MB-columns that is assigned to each device is

determined by only considering the encoding time of a

single frame, the obtained distribution will hardly be

accurate along the time. As a consequence, the number of

MB-columns that is submitted to the GPU should be

updated in every iteration:

nigpu �
n� si�1

cpuDt0

1þ si�1
cpu

si�1
gpu

; nicpu ¼ n� nigpu ð5Þ

where Dt0 ¼ tcpu0 � tgpu0 is the signed sum of distribution-

independent task portions on the CPU (positive sign) and

on the GPU (negative sign). The measured performance

values (scpu
i-1 and sgpu

i-1 ) are updated upon the encoding of

each frame, according to the measured ME processing time

on both devices. Hence, this iterative procedure starts with

a predicted value (e.g., n0gpu ¼ #MBcolumns=2) and is

updated until it converges to the ideal distribution, based

on the measured performance on both processing devices.

3.3 Dynamic load balancing of the sub-pixel

refinement module

In contrast with the ME module, where the considered

search strategy adopts the same initial search point for all

the MB partitions [5], in the SME module the initial search

point is defined by the best matching predictors that were

found during the ME process for each partition. Due to the

fact that all these partitions consider different search areas,

a hierarchical distortion computation (by using re-usage

schemes) is not viable. Therefore, there is no any signifi-

cant advantage of using a single kernel on the GPU, and it

is much more efficient to implement the SME module in

seven different kernels, corresponding to the different MB

partition modes [5]. The individual parallelization of each

of these modes should be done according to their distinct

parallelization potential in what concerns to the adopted

processing granularity. In particular, finer granularity

allows multiple partitions to be simultaneously processed,

while less work will be performed within a single pro-

cessing partitioning.

Hence, the existence of several independent functions

that can be simultaneously processed opens the possibility

to exploit function-level parallelism. As in the case of the

interpolation and ME modules, the predicted speedup (see

Sect. 3.2) that is evaluated for the SME module during the

initial test frames is used as a preliminary parameter.

Algorithm 2 presents the sub-pixel ME load balancing

procedure, which contains the sub-steps corresponding to

line 8 of Algorithm 1. Csme and Gsme represent the set of

SME modes running on the CPU and on the GPU,

respectively, while smem 9 n represents the corresponding

mode of the m 9 n partition size. sc(p 9 q) and

sg(p 9 q) refer to the performance values (in MB-columns

per second) of the p 9 q mode, while tCsme and tGsme
correspond to the processing times needed to perform the

partitioning modes of Csme and Gsme sets, respectively, on

the related devices. The [ and the n are the set union and

the set difference operations, respectively.

Initially, all the kernels/modes are assigned to one of the

devices (line 8.1). After that, the functions related to the

different MB partitioning modes are offloaded one by one,

giving priority to those that achieve the highest speedup on

the related device (lines 8.3 and 8.5). As soon as the

encoding time on the device that accepts the offloaded

function is larger than the time on the originating device

(line 8.4), the offloading process will stop and the final load

balancing is achieved upon the distribution of this last

offloaded function (line 8.7), as it was explained in

Sect. 3.2. Just as before, Eq. 3 is applied along this opti-

mization process, where tcpu0 represents the processing

time of the remaining modules that are implemented in the

CPU, while tgpu0 represents the processing time of all other

modules that are processed in the GPU. At this respect, an

additional and rather useful feature that is offered by the

most recent NVIDIA GPU devices is the ability to adopt

streaming processing schemes [16, 17]. In particular,

whenever data independent functions of a given module are

implemented in different CUDA kernels, this streaming

processing model can be efficiently exploited by putting

them in different CUDA streams. In such a way, the several

modules under processing can pipeline the data transfers
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and the execution stages with each other. Moreover,

whenever a given kernel does not occupy all the available

streaming multiprocessors, two kernels can compete for the

existing resources, which can further decrease the overall

encoding time. In Fig. 5, it is represented a possible dis-

tribution of the SME modes on the CPU ? GPU platform.

The overlapping of the modules in the GPU side (in the

horizontal direction) symbolically represents the overlap-

ping of the computation and of the data-transfers in dif-

ferent GPU kernels. As in the case of ME, the performance

of the data-transfers are also considered when computing

the performance of the kernels/modes.

3.4 Scheduling of the remaining modules

As it was described in Sect. 3.1, the least computationally

intensive modules of the encoder are scheduled to be

completely executed on one of the processing devices. The

same happens with the deblocking filter, whose imple-

mentation cannot be efficiently split by multiple devices.

The proposed scheduling scheme is then applied, to mini-

mize the overall processing time. For such purpose, all

these modules are implemented and evaluated on both the

CPU and GPU, and the measured processing times are then

used as input parameters for the distribution algorithm,

altogether with the data transfer times, required for any

module transition between the devices.

The proposed distribution procedure is illustrated in

Fig. 6. A data-flow diagram for all the encoding modules,

considering both the CPU and GPU, is initially constructed.

The transform and quantization tasks, as well as the

dequantization and inverse transform, are presented toge-

ther, due to the low computational requirements and simpler

parallelization model. When the measured execution time of

each module is considered its distribution parameter, a

weighted Directed Acyclic Graph (DAG) is obtained. The

several nodes of such a graph (A, B,..., H) are the decision

points, where each task can be submitted to any of the two

processing devices. The edges represent the individual task

transitions, weighted by the respective computing and data

transfer times. The shortest path between the starting and

ending nodes of this graph represents theminimum encoding

time. Dijkstra’s algorithm [18] is typically used to find such a

path, by defining, for each encoding module of the inter-

loop, the processing device on which it will be executed

when encoding the subsequent frames. Due to the reduced

number of nodes and edges, the application of this algorithm

does not add a significant delay to the encoding procedure.

4 Parallel video coding algorithms for GPU and CPU

platforms

Even though the proposed task distribution and computa-

tional load balancing scheme can significantly shorten the

processing time, the encoder overall performance still

heavily depends on the parallel algorithms that are used for

each task on the CPU and on the GPU. The fine-grained

parallelization approach that is adopted in the GPU

demands the development of highly efficient parallel
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SME 16x16 SME 16x8
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Fig. 5 Application of the proposed dynamic load balancing scheme

to the sub-pixel motion estimation (SME) module
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algorithms, able to concurrently process a large number of

data independent thread blocks, and provide highly opti-

mized parallelization on thread-level [16, 17]. On the other

hand, the CPU parallelization comprises not only extensive

core-level parallelization (e.g., by using the OpenMP API

[19]), but also rather optimized Single Instruction Multiple

Data (SIMD) vectorization (e.g., based on the SSE [20]

instruction set). More detailed explanation of these algo-

rithms can be found in [21].

4.1 GPU parallel algorithms

In most of the parallel algorithms developed for the GPU,

each thread-block performs the computations related to a

MB, and the set of MBs of a entire frame under processing

are examined (at once) in a grid. The ME, interpolation and

SME parallel algorithms for the GPU are based on the

algorithms proposed in [5]. The full-pixel ME algorithm

consists of three sub-steps, namely: i) caching of the MB

and the search area pixels; ii) the analysis of the prediction

candidates; and iii) finding of the best matching candidates.

While the MB caching is performed only once, in such a

way that each thread loads a single pixel, the search area

needs to be cached for each RF. In the case of very large

search areas, the corresponding pixels are cached and

examined in several sub-areas, chosen in such a way that

they individually fit to the local caches. An exhaustive

Full-Search Block-Matching (FSBM) algorithm with a re-

usage optimization of the partial SAD values (FSBMr) is

adopted for the ME module, to eliminate data-dependen-

cies between the thread-blocks and to exploit a hierarchical

SAD computation scheme. The motion vector costs are

added to the SAD values to obtain the distortion values [1].

Each thread within a 16 9 16 thread-block examines a

subset of the best-matching candidates, keeping those with

minimum distortion for all the sub-blocks in local registers.

In order to obtain, in a single instruction, the minimum of

two distortion values together with the related motion

vectors (MVs), their values were concatenated in pairs

(distortionjMV). In practice, the distortion value is shifted

left 16 (bits) positions, and the motion vector is added to

the same register. Those candidates are afterward com-

pared with each other, to obtain the final predictor. An

optimized reduction process for finding the minimum dis-

tortion candidates for all the sub-blocks [5] was adopted.

The interpolation module is implemented in such a way

that each thread-block interpolates the pixels correspond-

ing to a single MB, where each thread computes the set of

sub-pixels around a pixel. Considering the fact that a dif-

ferent granularity of the MB-partitions (sub-blocks) implies

a different number of examined candidates (implying a

different parallelization potential of the related algorithms),

the sub-pixel ME module is implemented by using 7

distinct kernels, each one for a single partitioning mode.

These kernels are data-independent and can run in con-

current CUDA-threads. Due to the fact that for each sub-

block the search algorithm starts from a different position

(found with the full-pixel ME procedure) and considers a

different search area, the search area pixels cannot be

reused in the general case. Consequently, they have to be

accessed directly from the GPU DRAM. In the sub-pixel

refinement process, 25 best matching candidates are

examined for each MB partition. In the proposed approach,

the size of the thread block is 25 9 n, where n is the

number of the MB partitions in each mode. As an example,

for the 4 9 4 mode there will be 25 9 16 threads in a

thread block.

For the direct and inverse integer transform modules,

each thread-block processes a single MB by using 16 9 4

threads. When the transform is performed in the vertical

direction, each thread computes four coefficients in a single

column, while in the horizontal direction each individual

thread computes one coefficient within each of four adja-

cent columns. The quantization and dequantization mod-

ules are also performed within the same kernel, to reuse the

already computed offset addresses for the pixel memory.

However, all these threads must be synchronized and their

outputs are written in different output buffers.

In the deblocking filtering module, each MB cannot be

filtered until its left and upper neighbors have been pro-

cessed. Consequently, the maximum number of MBs that

are filtered in parallel is equal to the number of MBs within

each anti-diagonal of the frame/slice under processing.

This pattern seriously limits the attained performance,

since the number of thread-blocks should not be less than

the number of multi-processors in the GPU, to achieve the

maximum efficiency. Within each thread-block, it was

applied the same processing strategy that was adopted for

the integer transform module (16 9 4 thread block size). In

the presented optimized implementation, each thread filters

one pixel of the vertical edge. Considering four 16 pixels

vertical edges in each MB, only 64 threads operate in a

single thread block. Since the filtered vertical edges are

subsequently used for the processing of the horizontal

edges, they are written back to the GPU cache in a trans-

posed order, to minimize the bank conflicts. The algorithm

is repeated as many times as the number of MBs within a

column (wavefront model [22]). Despite all the considered

optimizations, this algorithm cannot avoid branch diver-

gence, but it takes advantage of adaptivity to reduce the

computation.

4.2 CPU parallel algorithms

The implementation of the several encoder modules on the

CPU also exploits the thread-level parallelism, where each
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core runs a single thread and processes a subset of the MB-

rows. Besides this thread-level parallelization approach,

the implemented algorithms also exploited Single Instruc-

tion Multiple Data (SIMD) vectorization, by using the

SSE4 extension of the instruction set, where multiple pixels

are loaded into vector registers and the same operation is

simultaneously applied on all of them [20].

For CPU full-pixel ME, the parallelization at the thread

level is applied regarding different MBs rows. The vec-

torization, however, is a major challenge. The main aspects

that need to be taken into account are the pixel transfers

into the XMM vector registers and the SAD computation.

While the MB needs to be loaded once into XMM registers,

the pixels of the best matching candidates need to be

exchanged. Hence, to prevent an eventual performance

drop, the candidates are examined in a column major order,

instead of the usual row major. In such a way, for every

next candidate in the same column, only one vector needs

to be updated, while the rest of them are reused.

The SAD computation is based on the SSE4

MPSADBW instruction, which operates on 4-byte wide

chunks and produces eight 16-bit SAD results. Each 16-bit

SAD result is formed from overlapping pairs of 4-byte

fields in the destination with the 4-byte field from the

source operand. These destination fields start from 8 con-

secutive positions. In such a way, it is possible to compute

eight 4 9 4 SAD with only 4 instructions, giving an

average of 0.5 instructions per 4 9 4 SAD. The hierar-

chical computation of the SAD values is performed by

applying the vector addition operation, as well as compu-

tation of the distortion values (by adding the motion vector

cost to the SAD value). The obtained distortionjMV pairs

are packed in the same way as in the case of GPU imple-

mentation. This approach significantly decrease the number

of clock cycles to obtain the minimum distortion motion

vector, due to the fact that only the vector instructions are

used for the comparison of the distortion values and the

updating of the minimum distortion value and the motion

vector, and no conditional branches are required.

Just as for the ME, the interpolation and the SME on

the CPU side is computed using both thread-level paral-

lelism at the level of MB-rows and logical and

Table 1 Hybrid (CPU ? GPU) platforms adopted in the considered evaluation

Platform 1 Platform 2 Platform 3

CPU GPU CPU GPU CPU GPU

Model Intel Core i7 GeForce 580GTX Intel Core i7 GeForce 285GTX Intel Core 2 Quad GeForce 580GTX

# Cores 4 512 4 240 4 512

Frequency 3 GHz 1.54 GHz 3 GHz 1.48 GHz 2 GHz 1.59 GHz

Memory 4 GB 1.5 GB 4 GB 1 GB 4 GB 1.5 GB

Table 2 Motion estimation time per frame (ms) before and after load balancing, when considering 3 RFs

720 9 576 1280 9 720 1920 9 1080

CPU GPU CPU GPU CPU GPU

CASE 0: independent execution in both platforms—no distribution:

ME 24.67 8.1 56.28 27.16 113.28 61.03

Interpolation 1.06 0.7 2.54 1.5 5.71 3.65

Task (total) 25.73 8.8 58.82 28.66 118.7 64.68

CASE 1: hybrid—half–half distribution:

nCPU/nGPU 22 23 40 40 60 60

ME 12.3 4.1 27.79 13.58 56.2 30.4

Interpolation – 0.7 – 1.51 – 3.65

Task (total) 12.3 4.8 27.79 15.09 56.2 34.05

CASE 2: hybrid—balanced distribution:

sCPU/sGPU 1.82 5.55 1.42 2.95 1.05 1.96

nCPU/nGPU 12 33 27 53 45 75

ME 6.58 5.94 19.1 17.9 42.08 38.14

Interpolation – 0.7 – 1.51 – 3.65

Task (total) 6.58 6.64 19.1 19.41 42.08 41.79
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arithmetical vector instructions. However, in the particular

case of the interpolation process, due to the fact that

1-byte pixels are used, the 6-tap filtering cannot be

directly applied due to overflow of the addition and shift-

left operations. Therefore, the PMOVZXBW vector

instruction is initially applied, to extend the pixels to

2-bytes. The interpolated frame must be also conveniently

prepared for vectorized SME. Namely, the best matching

candidate pixels used for the SAD calculation with sub-

pixel resolution are separated by 1 full-pixel from each

other, which means 4 quarter-pixels apart. However, the

SAD vector instruction can be only applied on the pixels

placed in successive memory positions. Therefore, instead

of storing each interpolated frame in a single 2D array, it

is stored in 4 interpolated subframes, where the sub-pixels

with the same distance from the full-pixel position are

stored in the same sub-frame.

Contrary to what happens with the full-pixel ME, in the

case of the sub-pixel ME the MPSADBW instruction is not

perfectly suited for SAD calculation, since the consecutive

candidates are not adjacent in memory. The PSADBW is

used instead. The PSADBW is an SSE2 instruction which

works on eight 2-byte chunks, being capable of processing

4 pixels wide chunks. However, since the XMM registers

are 16 bytes wide, it is possible to examine two neigh-

boring MB partitions in parallel, giving an average of 2

instructions per 4 9 4 SAD. The rest of the algorithm is the

same as for the case of the full-pixel ME.

The direct and inverse integer transform modules are

performed in separate vertical and horizontal steps. After

the completion of each of them, the transpose operation

over the 4 9 4 sub-blocks has to be performed. Both the

transform and the transpose operate on two 4 9 4 sub-

blocks at once. In the case of the (de)quantization modules,

the 16 consequent pixels are concurrently (de)quantized, by

mainly applying the vector shift operations.

Due to the high adaptivity of the deblocking filtering, the

vectorization of this module represents the most difficult

challenge on the CPU side. Just as in the GPU, the

deblocking is performed in two steps, by filtering the ver-

tical and the horizontal edges. In the first step, the loaded

vectors need to be transposed, to apply the vector

instructions. Apart from transposing the MB, the three

transposed vectors from the left neighbor also need to be

computed, to filter the left-most edge. Due to the 16 byte

size of the XMM registers and the 2-byte pixels’ format,

the vertical filtering is done in 4 sub-steps, one for each

8 9 8 MB partition. Prior to each edge filtering step, the

boundary strength is checked to verify if any filtering needs

to be done. The procedure for the horizontal filtering is

entirely similar, with the difference that the transpose

operations are not needed.

Although the edge filtering is the same for both cases, its

high adaptivity causes that different operations need to be

applied for different edge pixel values. Consequently, the

vectorization can only be done if all the possible branches

Table 3 Fine tuning of task distribution for the sub-pixel refinement module: execution time (ms) per frame for different configurations

Task/

platform

720 9 576 1280 9 720 1920 9 1080

GPU CPU GPU CPU GPU CPU

Profiling phase

Iteration 0: sub_4 9 4 0.45 3.31 0.99 8.10 1.44 18.45

sub_8 9 4 0.53 1.53 0.91 3.81 1.35 8.57

sub_4 9 8 0.38 2.86 0.80 6.96 1.38 15.66

sub_8 9 8 0.48 1.20 1.03 3.16 1.51 7.11

sub_16 9 8 0.50 0.84 1.07 2.17 1.59 4.81

sub_8 9 16 0.44 0.93 0.94 2.36 1.57 5.31

sub_16 9 16 0.60 0.73 1.32 0.86 2.04 1.89

Subtask on CPU GPU CPU?Data Transf. Total GPU CPU?Data Transf. Total GPU CPU?Data Transf. Total

Distribution phase

Iteration 1: none 3.09 – 3.09 6.87 – 6.87 10.88 – 10.88

Iteration 2: 16 9 16 2.52 0.73 ? 0.01 2.52 5.55 0.86 ? 0.01 5.55 8.84 0.02 ? 1.89 8.84

Iteration 3: prev. ? 16 9 8 2.05 1.58 ? 0.01 2.05 4.53 3.01 ? 0.02 4.53 7.25 6.71 ? 0.02 7.25

Iteration 4: prev?8 9 16 1.64 2.51 1 0.02 2.53 3.63 5.39 1 0.03 5.42 5.68 12.04 1 0.03 12.07

Steady-state load

balancing

1.92 1.91 1.92 4.11 4.12 4.12 7.13 7.1 7.13
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are executed first and the correct ones are selected after-

wards, according to the observed branch conditions. For

that purpose, the PBLENDVB vector instruction is used;

this instruction selects the elements from one of two input

vectors, according to a predefined pattern generated by the

comparison instructions.

5 Experimental results and evaluation

The validation of the proposed task and load distribution

model was conducted with a H.264/MPEG-4 AVC enco-

der, based on JM 18.4 reference software [23]. The con-

sidered test video sequences were crowd_run, park_joy,

blue_sky, and rush_hour, with resolutions of 720 9 576,

1280 9 720 and 1920 9 1080 pixels, using a search range

of 32 9 32 pixels for the ME module. The IPPP prediction

structure was considered, together with the baseline H.264/

AVC profile. The video coding parameters were chosen

according to recommendation [24].

The used platforms to test and evaluate the proposed

methods and parallelization algorithms are presented in

Table 1. Moreover, all these platforms used Linux oper-

ating system, CUDA 4.1 framework, icc 12.0 compiler, and

OpenMP 3.0 API. As it can be seen, Platform 2 has a

computationally less powerful GPU and the same CPU as

Platform 1, while Platform 3 has a slightly faster GPU and

a significantly less powerful CPU. In the following sec-

tions, Platform 1 will be adopted for the main experimental

procedures, unless otherwise stated.

5.1 Load balancing of the full-pixel motion estimation

and interpolation modules

Due to the involved computational cost, an efficient load

balancing of the ME task is fundamental for the overall

performance of the encoder. The obtained results for the

full-pixel ME module with load balancing (CASE 2) are

presented in Table 2 and compared with the two simpler

approaches: without any distribution (CASE 0) and when a

straightforward distribution is used, considering that one

half of the frame is sent to each of the two processing

devices (CASE 1). The processing time for the completion

of the ME module (corresponding to the last finished

device) for each resolution is represented in bold in the

Task (Total) rows of this table. The experimental results

were obtained using Platform 1.

From the obtained results, it can be observed that the

processing time is significantly reduced even with a simple

offloading of the ME task for half of the frame (see exe-

cution times corresponding to CASE 0 and CASE 1).

However, the observed execution times in the two devices

still significantly differ. In fact, only with the application of

the proposed method (CASE 2) it was possible to achieve a

balanced execution time in the CPU and in the GPU,

corresponding to the fastest processing time and to a sig-

nificant speedup, when compared to CASE 1. Although not

significant, the difference of the observed processing times

in the CPU and in the GPU is mainly due to the considered

chunk granularity, corresponding to a division by MB-

columns. In fact, this balance could still be improved, by

further refining this granulation.

In fact, according to the load balancing method pre-

sented in Sect. 3.2, the frame was divided considering not

only the predicted performance of the ME and the inter-

polation modules, but also the related data transfers.

However, while the transfer time of the current frame is

included in the evaluation of the ME performance on the

GPU, the transfer of the interpolated frame is completely

overlapped with the computational part of the ME module.

In such a way, due to the ability of the GPUs to overlap the

data transfers and the computations, the largest and the

most time demanding transfer (the interpolated frame is 16

times larger than the initial frame) of the proposed inter-

Table 4 Processing time of the least time consuming modules [ms] (with 3 RFs) for the proposed method. H2D - host (CPU) to device (GPU)

transfer; D2H—device (GPU) to host (CPU) transfer

Resolution Device Transfers MC Transfers T&Q Transfers DBL Transfers Total

H2D D2H H2D D2H H2D D2H H2D D2H

720 9 576 CPU 0.27 0.35 0.55 1.11

0.01 ; 0.02 : 0.12 ; 0.15 : 0.12 ; 0.15 : 0.12 ; 0.15 :

GPU 0.14 0.14 1.61

1280 9 720 CPU 0.33 0.4 0.95 1.97

0.03 ; 0.05 : 0.2 ; 0.27 : 0.24 ; 0.27 : 0.24 ; 0.27 :

GPU 0.34 0.44 2.61

1920 9 1080 CPU 0.63 1.09 2.45 4.46

0.05 ; 0.07 : 0.4 ; 0.43 : 0.4 ; 0.43 : 0.4 ; 0.43 :

GPU 0.56 0.57 3.48
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loop algorithm is hidden behind the processing of the most

computationally complex module. Consequently, the list of

interpolated frames is kept updated on both devices, which

allows both an efficient distribution of the SME, and the

instantiation of the motion compensation on any of the

available devices, since the interpolated frame is required

as input of these modules. Following the transfer of the

interpolated frame, the remaining part of the current frame

is subsequently transferred in the same way, due to the fact

that the processing time of the ME is significantly larger

than the time required for these transfers. On the other

hand, the transfer of the last RF is performed at the end of

the inter-loop, thus keeping the list of the RFs updated on

both devices (see Sect. 3.1).

5.2 Load balancing of the sub-pixel motion estimation

module

The application of the proposed computational load distri-

bution method to the SME module is presented in Table 3,

regarding to three different resolutions. Iteration 0 repre-

sents a profiling iteration, where all the prediction modes are

sequentially executed on both devices: GPU and CPU.

While the execution time on the GPU side is not significantly

different for the several different sub-tasks (sub-block

modes), on the CPU side it is observed that the prediction

modes with smaller sub-blocks perform significantly slower,

especially for the blocks with the smallest width (4 9 n).

This was already expected, since the finer granulation of the

MBs leads to more partitions to be analyzed. On the other

hand, for larger MB partitions, the 16 bytes wide vector

registers (XMM) make the CPU more efficiently used when

compared with the case of smaller partitions, which needed

to be serially processed due to the spatially distant search

areas (defined by the best motion vector found in the ME

process). As a consequence, the computations not only need

to be repeated as many times as the number of sub-blocks to

be processed, but they also have to be separately (i.e. seri-

ally) implemented for each MB partition.

The load distribution effectively starts solely on the GPU,

with a parallel execution of the kernels corresponding to all

sub-tasks in different CUDA streams (iteration 1). Then, the

16 9 16mode is the first to be offloaded to theCPU (iteration

2). Since the encoding time on the GPU is still larger, the

process is continued. After offloading the 16 9 8 and the

8 9 16 modes, the CPU becomes slower and the offloading

process is stopped (iteration 3 and iteration 4). With such

configuration, corresponding to offloading these three SME

modes to the CPU, the total encoding time is now signifi-

cantly smaller. In fact, although the GPU now finishes

slightly earlier than theCPU,both processing devices are now

busymost of the time, thus greatly improving the efficiencyof

the parallel encoder implementation. It should be mentioned

that rather small data-transfer times must be also taken into

account to perform an asynchronous transfer of the interpo-

lated frame (the largest transfer) with the execution of the

full-pixelME.Nevertheless, this transfer is hidden behind the

computation and only the transfers corresponding to the

computed motion-vectors impose some delay.

Hence, from the obtained experimental results it was

observed that the application of the proposed method to the

SME module provides a reduction of the execution time by

at least 35 %. It was also shown that this method scales

well with the frame resolution, by keeping a quite similar

improvement rate. The experimental results were obtained

using Platform 1.

5.3 Scheduling of the remaining modules

As soon as the most computationally demanding modules

are distributed over the processing devices available on the

hybrid platform, the several remaining modules of the

H.264/AVC encoder need to be distributed. This distribu-

tion is performed dynamically, according to the previously

achieved performance assessment, and without assuming

any a priori allocation of the tasks. Table 4 presents the

execution time per frame, obtained when applying the

algorithm described in Sect. 3.4. Due to the reduced

computational complexity, and to their partially synergetic

implementation, the (de)quantization and the (inverse)

integer transform algorithms were presented with a single

node in the Dijkstra’s algorithm.

The values presented in the top and in the bottom parts of

each of the three rows of Table 4 represent the average

Table 5 Comparison of the inter-loop processing time per frame [ms] achieved for different parallelization methods on various platforms

Resolution Platform 1 Platform 2 Platform 3

720 9 576 1280 9 720 1920 9 1080 720 9 576 1280 9 720 1920 9 1080 720 9 576 1280 9 720 1920 9 1080

CPU-only 38.3 87.72 184.76 38.3 87.72 184.76 50.11 117.38 264.78

GPU-only 14.07 38.72 80.17 46.25 102.43 256.01 15.76 34.1 77.73

Chen_original 22.72 50.57 105.21 52.95 119.14 298.52 22.54 50.42 123.78

Chen_optimized 13.35 37.4 79.73 49.39 106.08 268.02 17.48 44.2 104.24

Proposed 9.54 25.2 52.66 18.8 40.12 98.02 12.25 24.98 57.01
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execution time per frame (in ms) for the CPU and GPU

algorithms, respectively, considering the modules that are

assigned using the Dijkstra’s algorithm. On the other hand,

the values in the middle of each row represent the average

time per frame that is required for the data transfers between

the CPU and the GPU (and vice versa), whenever some

exchange of the processing device is required for the H.264/

AVC modules under processing. The modules and the data

transfers are represented by using their execution order, fol-

lowing the right hand direction. The bold faced values rep-

resent themodules and the data transfers chosen byDijkstra’s

algorithm to minimize the overall processing time (similar to

Fig. 6, Sect. 3.4). The initial data transfers (prior to the MC

module) are related to the data transfers of the results obtained

from theSMEmodule, regarding the distortion values and the

displacement to the best matching candidates. The transfers

before and after the T&Q module are related to the residual

signal and to the reconstructed frame, respectively. These

values are equal, since they represent the transfer of a single

frame. Finally, the data transfers after the DBL module are

related to the RF pixels that are needed on both devices prior

to the processing of the following frame. These experimental

results were obtained using Platform 1.

As it can be observed from the values represented in bold

face, a direct application of Dijkstra’s algorithm suggests

different paths for different resolutions. In particular, a CPU-

only configuration (where the data transfers between the

devices are not required) is suggested for the 1280 9 720

resolution. For the remaining two resolutions, the motion

compensation (MC) and the transform and (de)quantization

(T&Q) modules (including their inverses) are sent to the

GPU. As soon as the T&Q module finishes the processing,

the reconstructed frame is sent to the CPU (D2H), where the

deblocking filtering is performed. At the end of each of the

presented solutions, the RF is sent to the GPU, to keep the

lists of the RFs updated on both processing devices.

Even though the achieved gain (in terms of the processing

time) seems to be not particularly significant when compared

to the overall performance of the video encoder, it is rec-

ommended to perform this automated distribution instead of

a direct submission of the tasks to the devices, according to

any pre-defined path. In fact, the execution times of such

modules highly depend on various system parameters, such

as the offered computational power of the devices, the res-

olution of the video sequence, etc., which makes the optimal

path to vary widely with these parameters.

5.4 Overall performance evaluation

The overall processing time of the whole inter loop of the

video encoder is presented in Table 5 for the three hybrid

platforms presented in Table 1, considering 3 RFs. The

presented table compares the resulting performance (in

encoding time per frame, ms) of five different scheduling

strategies: CPU-only: the whole encoder is implemented in

the CPU; GPU-only: the whole encoder is implemented in

the GPU; Chen_original: method proposed by Chen [12],

where the ME, SME and interpolation modules are

implemented as in Sect. 4 and are statically offloaded to

the GPU (the rest are kept in the CPU); Chen_optimized:

Chen’s encoder [12], optimized with OpenMP and SSE4

vectorization techniques, as presented in Sect. 4; Proposed:

proposed dynamic load distribution strategy.

Contrasting to Chen’s approach [12], which considers a

static offloading to the GPU of only the ME, SME and

interpolation modules, the proposed distribution method

combines an adaptive data-level partitioning (see Eq. 5)

and a dynamic selection of the device that offers the best

performance for each of the processing modules of the

video encoder (see Fig. 6).

The ME module of all these implementations (except the

CPU-only) adopted the improved search algorithm proposed

in [5], which proved to have superior performance when

compared with the original Chen’s algorithm. Furthermore,

OpenMP parallelization techniques to exploit the available

number of CPU cores were extensively considered (except in

GPU-only and Chen_original), as well as a broad set of

CUDA optimizations to exploit, as much as possible, the

GPU computational resources (except in CPU-only).

In the case of Platform 1, the GPU-only configuration

achieves more than 2 times higher performance when

compared with the CPU-only. Nevertheless, the Proposed

model achieves a much greater performance, correspond-

ing to a speedup of up to 1.5 when compared with both

GPU-only and Chen_optimized distribution.

As it was already expected, in the case of Platform 2 the

GPU device is much slower and achieves a lower perfor-

mance level than the CPU equipping this platform. Conse-

quently, the implementation withChen_optimizedmethod is

slower than the CPU-only configuration. Even so, the Pro-

posedmethod using this slower GPU still achieves a speedup

Fig. 7 Encoding time per frame [ms] when a distinct number of RFs

is considered using the 1920 9 1080 video format. Comparison of the

proposed approach with the CPU-only, GPU-only, and the original

and optimized approaches proposed by Chen and Hang [12]
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of at least 2.5 when compared with the other implementa-

tions, due to a selective distribution of the several modules

that made it possible to efficiently exploit the CPU compu-

tational power in parallel with the GPU. The impact of the

considered OpenMP and SSE4 vectorization [20] optimi-

zations of the CPU code is emphasized in the presented

results, by comparing the encoding times obtained for the

Chen_original and Chen_optimized approaches.

Finally, Platform 3 represents a hybrid platform char-

acterized by a higher GPU performance and a lower CPU

performance. Therefore, the implementation with

Chen_optimized method is significantly slower than the

GPU-only implementation. However, the Proposed method

was still able to improve the offered performance,

achieving a speedup of about 1.4 when compared with the

GPU-only implementation.

From the obtained results, it can be observed that the

offered speedup generally grows with the adopted spatial

resolution of the processed video sequences. Furthermore,

contrasting with Chen_optimized andGPU-only approaches,

theProposed algorithm achieves a higher performance that is

less dependent on the characteristics of the adopted hybrid

platform. In particular, by simultaneously using the compu-

tational resources of the CPU and the GPU devices, in an

adaptive and dynamic load balanced fashion, both processing

devices participate towards a much better distribution of the

computational load, based on a constantly updated prediction

of the offered performance by each device.

The chart illustrated in Fig. 7 presents the comparison of

the resulting encoding time (per frame) when the proposed

load distribution method is compared with the same algo-

rithms that were considered in Table 5. The chart was

obtained for distinct parameterizations in what concerns to

the number of RFs. Platform 1 was used for this evaluation.

When compared with the GPU-only implementation, a

speedup magnitude of 1.5 is achieved with the Proposed

method. However, when compared with the simplest (and

most often used) CPU-only implementation, the attained

speedup grows with the number of RFs, achieving magni-

tudes between 3 and 4. Moreover, it is worth to mention that

the optimized implementation of the technique proposed by

Chen and Hang [12] (Chen_optimized) only achieves a

slightly better performance than the GPU-only implementa-

tion, mainly due to the faster deblocking filtering in the CPU

device. However, the advantage of Chen’s model, when

compared with theGPU-only implementation, is the fact that

it does not need to implement all the algorithms in the GPU.

On the other hand, the clear improvement that is achieved

with the Proposed model is mainly obtained with sub-task

division and distribution of the most computational

demanding modules (mainly, theME and the SMEmodules)

among the two processing devices, while keeping the rest of

the modules in the fastest device (usually, the GPU).

Finally, contrasting with the other considered tech-

niques, it is worth mentioning that by applying the pro-

posed load balance and task distribution method a real-time

video encoding platform was achieved for HD video

sequences of 1920 9 1080 pixels, with a frame rate cor-

responding to almost 40 frames per second when using a

single RF. It is worth noting that the proposed lightweight

scheduling technique, together with the corresponding

load-balancing scheme, take less than 1 ms to be executed

on all the tested platforms.

6 Conclusions

A dynamic load balancing and task distribution model for

AVC implementations on hybrid CPU ? GPU platforms is

proposed in this manuscript. The presented scheme per-

forms the distribution of the computational load both on the

inter-module and the intra-module levels, by extensively

using all the resources that are offered by these devices for

data parallelism. The possibility of asynchronously pro-

cessing on the CPU and on the GPU is effectively exploited

to efficiently distribute the computational load among these

processing devices. Such load balancing is performed by a

dynamic performance prediction scheme, based on the

previously measured processing times. The highly opti-

mized implementation includes the whole inter-loop of the

encoder on both platforms.

Based on the proposed method, it was achieved a

speedup of the total inter-loop encoding time as high as 4,

when compared with the usual CPU-only approach. A

speedup of up to 2.5 was also observed when comparing

with the GPU-only and a state-of-the-art technique [12],

based on a static offloading of the most computationally

intensive modules (ME, interpolation, SME) to the GPU,

keeping the rest of the modules on the CPU.

With the described scheme, it was achieved a real-time

encoding performance (up to 40 frames per second) to

process (HD) video sequences with a resolution of

1920 9 1080 pixels on an off-the-shelf desktop system,

even when considering all the sub-block prediction modes

and an exhaustive ME algorithm.
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