
WaaS: Workflow-as-a-Service for the
Cloud with Scheduling of Continuous

and Data-intensive Workflows
Sérgio Esteves and Lúıs Veiga

INESC-ID Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Email: sesteves@gsd.inesc-id.pt · luis.veiga@inesc-id.pt

Data-intensive and long-lasting applications running in the form of workflows are
being increasingly dispatched to cloud computing systems. Current scheduling
approaches for graphs of dependencies fail to deliver high resource efficiency
while keeping computation costs low, especially for continuous data processing
workflows, where the scheduler does not perform any reasoning about the impact
new input data may have in the workflow final output. To face such a challenge,
we introduce a new scheduling criterion, Quality-of-Data (QoD), which describes
the requirements about the data that are worthy of the triggering of tasks
in workflows. Based on the QoD notion, we propose a novel service-oriented
scheduler planner, for continuous data processing workflows, that is capable of
enforcing QoD constraints and guide the scheduling to attain resource efficiency,
overall controlled performance, and task prioritization. To contrast the advantages
of our scheduling model against others, we developed WaaS (Workflow-as-a-
Service), a workflow coordinator system for the Cloud where data is shared among

tasks via cloud columnar database.

Keywords: Data Processing Workflow; Data-intensive; Scheduling; Continuous Processing;
Cloud Computing; Quality-of-Service

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Data-intensive applications generally comprehend sev-
eral distinct and inter-connected processing steps that
can be expressed through a directed acyclic graph
(DAG) and viewed as a workflow applying various
transformations on the data. Such applications have
been used in a large number of fields, e.g., assess-
ing the level of pollution in a given city [1], detecting
gravitational-waves [2], weather forecasting [3], predict-
ing earthquakes [4], among others. The computation
of such applications are being increasingly more dis-
patched to the Cloud, taking advantage of the utility
computing paradigm. In this environment, scheduling
plays a crucial role on delivering high performance, re-
source utilization and efficiency, while still meeting bud-
get constraints.

Scheduling algorithms for workflows in the Cloud

usually try either to minimize the overall completion
time (or makespan) given a fixed budget, or to minimize
the cost given a deadline. In workflows for continuous
processing, resources are often wasted due to the small
impact that data given as new input might have.
This happens specially in monitoring activities, e.g.,
fire risk, air pollution, observing near-earth objects.
Moreover, Workflow Management Systems (WMSs)
typically disregard any semantics with respect to the
output data, that could be used to reason about the
amount of re-executions needed for a given data to be
processed. As data may not always have the same
impact and significance, we introduce a new scheduling
constraint, named Quality-of-Data.

Quality-of-Data (QoD)1 describes the minimum

1Quality-of-Data is akin to Quality-of-Service, and should
not be confused with issues such as internal data correctness,

The Computer Journal, Vol. ??, No. ??, ????

2 S. Esteves, L. Veiga

impact that new input data needs to have in order to
trigger re-execution of processing steps in a workflow.
This impact is measured in terms of data size,
magnitude of values, and update frequency. Having the
QoD notion, we are thus able to change the workflow
triggering semantics to be guided by the volume
and importance that data communicated between
processing steps might have on causing significant and
meaningful changes in the values of final output steps.
QoD can also be seen as a metric of triggering relaxation
or optimist reusage of previous results.

From the user (or consumer) point of view, reducing
costs while meeting a deadline is what matters most.
In turn, cloud providers are interested in having low
prices and making resource utilization as efficient as
possible. This volition on both sides gains a special
importance for long-running tasks, where intelligent
SLAs may come into place. These SLAs can be seen
as QoD constraints that allow cloud providers to give
lower costs in exchange of some relaxation.

By allowing QoD-based relaxation, cloud services
providing workflow execution (on a pay-per-execution
basis) can define different service-level agreements
(SLA) with lower prices. With cloud consumers
specifying QoD constraints for each task, a WMS would
be able to offer reduced prices due to resource savings,
and still give the best possible quality within the QoD
to normal-execution range.

Having the current outlook, we propose the use of a
novel workflow model and introduce a new scheduling
algorithm for the Cloud that is guided by QoD, budget,
and time constraints. We also present the design of
WaaS (Workflow-as-a-Service), a WMS platform that
portrays our vision of a Cloud service offered at the
PaaS level, on top of of virtualization technology and
the HBase [5] noSQL storage, bridging the gap between
traditional WMS and utility computing. Results show
that we are able to reduce costs by the use of our QoD
model.

Without a Cloud service as WaaS, users would need
not only to possess the knowledge on how to setup a
Workflow Management System (which is non-trivial),
but would also have to spend substantial amounts of
effort in making decision on provisioning the resources
(IaaS), and finding the adequate configurations for
their workloads (PaaS), probably without any dynamic
scaling out and with higher costs.

The remainder of this paper is structured as follows.

semantic coherence, data adherence to real-life sources, or data
appropriateness for managerial and business decisions.

In the next section we present our scheduling planner.
The design and implementation of our framework follow
in Section 3, and its experimental evaluation goes in
Section 4. Related work is discussed in Section 5, and
the paper concludes in Section 6.

2. SCHEDULING PLANNER

Scheduling, whether it is located at the IaaS or PaaS
level, is a core activity in cloud computing that impacts
the overall system performance and utilization. Due
to the inherent dependencies between computation
and data, scheduling workflow tasks is generally more
difficult than scheduling embarrassingly-parallel jobs.
As stated before, most Cloud scheduling approaches
for workflows aim at single-shot workflow executions
and only take into account simple constraints on time
and costs. The model we propose, which targets data-
intensive workflows for continuous and incremental
processing, also enforces constraints over the data
communicated between tasks, while still fitting the
utility paradigm. Our model implies that data must
be shared via NoSQL database, which achieves better
performance, scalability, and availability [6]. We first
describe our QoD model, and then the scheduling
planner which coordinates it.

2.1. Workflow Model with Quality-of-Data

Workflow tasks, with typical WMSs, usually communi-
cate data via intermediate files that are sent from a node
to another, or using a distributed file system. Sharing
data through a NoSQL database, like in this work, al-
lows us to place data close to the computation nodes
more easily than in a relational database.

Our workflow model [7] is differentiated from the
other typical models by the following: the end of
execution of a task A does not immediately trigger its
successor tasks; instead, they should only be triggered
when A has generated output with sufficient impact in
relation to the terminal task (outcome) of the workflow
(which can cause a node being executed multiple times
with the successor nodes being triggered only once). For
example, a workflow that is constantly processing data
coming from a network of temperature sensors, to detect
fires in forests, would not need to be always computing
tasks (e.g., calculating hotspots, updating the risk level)
whose output would not change significantly in the
presence of small jitters in temperature. The workflow
will only issue a displacement order to a fire department
if more than a certain number of sensors have detected

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 3

a steep increase in temperature. This way, tasks would
only need to specify the minimum impact that their
input data needs to have that is worth their execution
towards final outcomes.

The level of data changes necessary to trigger a task,
denoted by QoD bound κ, is specified through multi-
dimensional vectors that associate QoD constraints
with data containers, such as a column or group of
columns in a table of a given column-oriented database.
κ bounds the maximum level of changes through
numeric scalar vectors defined for each of the following
orthogonal dimensions: time (θ), sequence (σ), and
value (ν).

Time Specifies the maximum time a task can be
on hold (without being triggered) since its last
execution occurred. Considering θ(o) provides the
time (e.g., seconds) passed since the last execution
of a task, that is dependent on the availability of
data in the object container o, this time constraint
κθ enforces that θ(o) < κθ at any given time.

Sequence Specifies the maximum number of updates
that can be applied to an object container o
without triggering a task that depends on o.
Considering σ(o) indicates the number of applied
updates over o, this sequence constraint κσ enforces
that σ(o) < κσ at any given time.

Value Specifies the maximum relative divergence
between the updated state of an object container o
and its initial state, or against a constant (e.g., top
value), since the last execution of a task dependent
on o. Considering ν(o) provides that difference
(e.g., in percentage), this value constraint κν
enforces that ν(o) < κν at any given time. It
captures the impact or importance of updates in
the last state.

A QoD bound can be regarded as an SLA (Service-
level agreement), defining the minimum performance
required for a workflow application that is agreed
between consumers and providers.

2.2. Abstract Scheduling Planner

Generally, scheduling workflow tasks is a NP-complete
problem. Therefore, we provide here an approximation
heuristic that attempts to minimize the costs based on
local optimal solutions. The QoD bounds are involved
in this process to offer price flexibility, which is very
important for continuous processing.

We state the problem as a coordinator node
attempting to map a workflow graph G to available
worker nodes in a way that minimizes costs and yet
respects time and QoD constraints. A single execution
of each workflow graph must be completed until a
specified time limit L (e.g., in minutes). A task
T has a specification in terms of its complexity and
tolerated relaxation QoD. This complexity represents
the computational cost a task has for being executed
in relation to a standard task in a standard machine
(this section abstracts from such details, they are given
in Section 3). Tolerated relaxation consists of the QoD
constraints that are associated with the input data fed
to each task.

Worker machines have a specification in terms of their
current capability and reference price. This capability
is the power of the machine with its current load
availability (capability calculation is given in Section 3).
Reference price is a standard value that is then adjusted
for current availability and load usage of each worker.

FIGURE 1. Branches in a Workflow DAG

The scheduling planning can be divided in two
phases. First, tasks are organized into branches (e.g.,
Figure 1): connected tasks where each has exactly one
predecessor and one successor, except from the last
task which can have multiple successors (i.e., pipeline).
Branches are ordered by their summed complexity.
Tasks that do not fit in the pipeline, are still treated as
a pipeline, albeit with a single task within. This means
that such tasks will be simply allocated to workers
offering the best cost for them.

Second, inner branch scheduling is performed by
starting from the most complex branch to the least
complex one. To schedule tasks inside a branch in
an optimal manner, we decompose the problem into
a Markov Decision Process (MDP) [8], since it is a
common and proven effective technique for sequential
decision problems (e.g., [9]).

Briefly, a MDP consists of a set of possible states S, a

The Computer Journal, Vol. ??, No. ??, ????

4 S. Esteves, L. Veiga

set of possible actions A, a reward function R(S, a), and
a transition model Tr(S, a, S′) describing each action’s
effects in each state. Since R values are guaranteed
in our problem, we use deterministic actions instead
of stochastic actions, i.e., for each state and action we
specify a new state (Tr : S×A→ S′). The core problem
of MDP is to find an optimal policy π(S) that specifies
which action to take for every state S.

S0

a
1

a
2

S1

S2

S3a
n

a
x

a
y

a
z

.

.

.

.

.

.

.

.

.

...

(Task0,L)

(Task1,L-t1)
t1=...
c1=...

relax1=...

(Task1,L-tn)
tn=...
cn=...

relaxn=...

FIGURE 2. Markov Decision Process diagram

Figure 2, depicts a diagram representing the
decomposition of the problem. Each state S in the
model corresponds to a task and a time limit to the
workflow makespan. Actions represent the allocation of
tasks to VM slots in workers. When an action is taken,
an immediate reward is given, i.e., 3 variables specifying
the time taken for 1 execution, the reference cost per
hour, and the minimum relaxation of data freshness,
within specified QoD limits, that assures the lowest
price.

Finding the optimal policy π for each state S (i.e.,
choosing the right action a to take when on state
S) consists of minimizing the cumulative cost of the
rewards obtained when transitioning from S to a
terminal state. Hence, we only know the reward R(S, a)
after following all possible transitions from state S′,
such that S × a→ S′, to a final state. Nonetheless, the
processing time, retrieved from the immediate reward of
an action a, is discounted from the time limit L when
transitioning from S to S′ through a. If L is zero or
lower in a state S, all paths going through S are cut
and it is necessary to find other paths. If there is no
other path, it means that it is not possible to compute
all tasks in the specified time limit. This minimization

problem can be described by Equation 1, where n is
the number of tasks, m is the total number of available
VM slots, tc is the task complexity, c is the worker cost
for unitary task, r the tolerated relaxation due to the
QoD enforcement, wc is the worker capacity, and x is
a function that returns 1 if slot j is available and 0
otherwise.

To solve this optimization problem and optimally
allocate tasks to workers (i.e., with overall lowest
cost and yet respecting time and QoD constraints),
we developed a dynamic programming algorithm as
described in Listing 1. We elaborate in the following:

Lines 2-3 contain the stop condition, when there are
no more tasks/states to follow;

Lines 4-10 check, through the use of a cache, whether
a certain path was already explored before;

Lines 11-20 contain the transition of states, thereby
exploring all actions of a current state (which is
represented by task and totalTime);

Lines 16-17, 21-22 check for whether the time limit
was violated or not, causing the algorithm to
explore other actions at the same level;

lines 23-27 store the minimum cost found for the
current state;

lines 28-29 correspond to optimization code that
caches already explored paths and respective
minimum costs and times. Additionally, when a
slot is locked (line 18) it can no longer be used by
successor tasks.

This algorithm runs in O(wt), where w is the
number of workers and t the number of tasks. Some
optimizations were performed, namely caching the
rewards of states, obtained by traversing the sub-graphs
until the terminal state in the MDP model. The whole
process of planning and scheduling is synthesized in the
following:

1. Discover available workers and request cost and
expected completion time for every task. These
values should be guaranteed for a certain time
frame, which should be longer than the time taken
to perform the planning and allocate tasks.

2. Divide the workflow in pipelines.
3. Divide the overall time limit L per each pipeline

and weighted by their summed complexity.

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 5

Minimize

n∑
i=1

m∑
j=1

tcicj(1− r)︸ ︷︷ ︸
cost

xj subject to

n∑
i=1

m∑
j=1

tci
wcj︸︷︷︸
time

xj <= L, xj ∈ {0, 1} (1)

1 def min cost (tasks , workers , totalTime , t imeLimit) :
2 i f not ta sk s :
3 return 0 , 0 , []
4 t = tasks [0]
5 s t r 0 = ’ ’
6 for ww in workers :
7 s t r 0 += s t r (ww. s l o t s)
8 key = t . name + s t r 0
9 i f key in cache :

10 return cache [key]
11 minCost , minCostTime , minCostPath = f l o a t (’ i n f ’) , None , []
12 for w in workers :
13 i f not w. s l o t s :
14 continue
15 time = c a l c u l a t e t i m e (t , w)
16 i f (totalTime + time > t imeLimit) :
17 continue
18 w. s l o t s −= 1
19 v1 , v2 , v3 = min cost (ta sk s [1 :] , workers , totalTime + time , t imeLimit)
20 w. s l o t s += 1
21 i f v2 == None | totalTime + time + v2 > t imeLimit :
22 continue
23 to ta lCos t = c a l c u l a t e c o s t (t , w) + v1
24 i f t o ta lCos t < minCost :
25 minCost = to ta lCos t
26 minCostTime = time + v2
27 minCostPath = [w. name] + v3
28 i f minCostPath :
29 cache [key] = minCost , minCostTime , minCostPath
30 return minCost , minCostTime , minCostPath

Listing 1. Scheduling Algorithm

4. Generate scheduling plans for each pipeline,
starting from the most complex and ending with
the least complex.

5. Allocate tasks to workers according to the
generated plans.

6. Start workflow execution and repeat steps 1, 4, and
5 if any worker fails or periodically according to
user configurations.

2.3. Prototypical Scenario

As a motivational example we describe a data
processing workflow, for continuous and incremental
processing, that expresses a simulation of a prototypical
scenario inspired by the calculation of the Air Quality
Health Index (AQHI),2 used in Canada. It captures
the potential human health risk from air pollution in a
certain geographic area, typically a city, while allowing
for more localized information. The incoming data fed

2www.ec.gc.ca/cas-aqhi/

The Computer Journal, Vol. ??, No. ??, ????

www.ec.gc.ca/cas-aqhi/

6 S. Esteves, L. Veiga

to this workflow is obtained through several detectors
comprising three sensors to gauge the amount of Ozone
(O3), Particulate Matter (PM2.5) and Nitrogen Dioxide
(NO2).

Figure 3 illustrates the workflow with the associated
QoD vectors and the main columns (some columns were
omitted for readability purposes) that comprise the
data containers in which the processing steps’ triggering
depends on. k specifies:

1. the maximum time, in hours, the step can be on
hold;

2. the minimum amount, in percentage, of changes
necessary to the triggering (e.g., 20% associated to
step C means that this will be triggered when at
least 20% of the detectors have been changed by
step B);

3. the maximum accepted divergence, in units.

We describe each processing step in the following:

Step A This step continuously feeds data to the
workflow by reading sensors from detectors that
perceive changes in the atmosphere to simulate
asynchronous and deferred arrival of update
sensory data. The values from each sensor are
written in three columns (each row is a different
detector) which are grouped as a single data
container with one associated k.

Step B Calculates the combined concentration (of
pollution) of the three sensors for each detector
whose values were changed in the previous step.
Every single calculated value is written on column
concentration.

Step C Processes the concentrations of small areas,
called zones, encircled by the previously changed
detectors. These zones can be regarded as small
squares within the overall considered area and
comprise the adjacent detectors (until a distance
of two in every direction). The concentration of a
zone is given by a simple multiplicative model of
the concentration of each comprising detector.

Step D Calculates the concentration of points of the
city between detectors, thereby averaging the
concentration perceived by surrounding detectors;
and plots a chart containing a representation of
the concentrations throughout the whole probed
area, for displaying purposes, and reference of
concentration and air quality risk indicator in
localized areas of a city.

Step E Analyzes the previous stored zones and respec-
tive concentrations in order to detect hotspots; i.e.,
zones where the overall concentration is above a
certain reference. Zones deemed as hotspots are
stored in column hotspots for further analysis.

Step F Performs final reasoning about the hotspots
detected, thereby combining, through a simple
additive model, the amount (in percentage) of
hotspots identified with the average concentration
of pollution on all hotspots. Then, the AQHI index
is produced and stored for each wave of incoming
data.

3. WAAS DESIGN AND IMPLEMENTA-
TION

In this section, we describe our proposed prototypical
middleware framework that embodies the vision of a
WMS at the PaaS level, that we call Workflow-as-a-
Service (or WaaS). We approach its main design choices
and the more relevant implementation details. We
address: i) workflow description and WMS integration,
ii) the cost model, and iii) how resource allocation is
enforced.

Figure 4 depicts the WaaS distributed network
architecture in the Cloud, where workflows are set
up to be executed upon a cluster of worker machines
connected through a local, typically high-speed,
network. A designated coordinator machine, running
the WaaS server VM instance, is in charge of allocating
workflow tasks to available worker nodes (according
to a scheduling algorithm), and collect monitoring
information regarding node load and capacity.

The input/output data is shared among tasks via a
shared columnar noSQL data store. Each worker node
executes the workflow tasks scheduled to it as guest VM
instances, using Xen or QEMU/KVM[10] images, and
in particular, a Xen (or QEMU/KBM) virtual appliance
with Linux OS, a JVM and a QoD-enabled middleware
for cloud noSQL storage.

The WaaS middleware carries out three major steps
in its operation. First, according to the workflow
descriptions, WaaS performs the planning by exploring
the scheduling alternatives for the workflow tasks and
branches, carrying out the algorithm described in
Section 2. Then, according to the schedule calculated,
it performs the allocation of resources at nodes, by
assigning the corresponding VMs for tasks at nodes,
according to their cost and available capacity. The
workflow is then started, and tasks continually re-

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 7

A B C F

PM2.5 NO2O3

D

E

CONCENTRATION

ZONES

HOTSPOTS

QUALITY

INDEX

 (AQHI)

k=(θ:12,σ:20,ν:20) k=(θ:12,σ:20,ν:20) k=(θ:12,σ:20,ν:20)

k=(θ:12,σ:20,ν:20)

FIGURE 3. Workflow example

Distributed Storage

...

WaaS

VM/OS

C
o

o
rd

in
at

o
r

W
o

rk
er

1

W
o

rk
er

2

W
o

rk
er

N

...

I/O

FIGURE 4. WaaS Network Architecture

executed according the QoD parameters defined as new
input becomes available and considered.

Additionally, all nodes inform the coordinator only
of relevant changes in their available capacity, so that
the coordinator can adjust and fine-tune scheduling and
allocation decisions, since the coordinator makes use of
declarative information stating resource requirements
for tasks. When new nodes are added to the cluster
or become unavailable, the scheduling must also be
recalculated.

Regarding the state of the QoD control variables, it
is stored in memory for efficiency. If a worker machine
goes down, another node taking its place should execute
as soon as possible (without postponing) to reset the

QoD state. This way, we ensure QoD constraints
are never violated, albeit there is a small performance
penalty (which is of lesser importance when compared
to the overhead of persisting state in the database or
filesystem).

3.1. Workflow Description and WMS Integra-
tion

Workflow specification files need to be enhanced
to include declarative information required for the
scheduling. This is currently defined with special key-
words in the workflow descriptions of DAGMan [11]
files, that are parsed by the WaaS framework. They
must contain the description of the workflow graph
where each processing step (to be executed as a task)
is annotated specifying explicitly the underlying data
containers in the noSQL storage (e.g., tables, columns,
rows by ID or predicate, or combinations of any of
these) it depends on for its input. More precisely, we in-
troduced the following new keyword in a DAG input file:

QOD JobName DataContainer Time Sequence Value

where: JobName is the name of the processing step
that we want to make asynchronous; DataContainer
is the table, column or row in the underlying data
store on which the previously described processing
step depends; Time (seconds), Sequence, and Value
(percentage, e.g., 0.2 or 20%) are the QoD constraints
defined in Section 2.1. A simple usage example is
shown in Listing 2. Note that job D is only triggered
when both data containers column1 and column2 com-
ply with the specified QoD contraints. This approach
is used throughout as it preserves transparency and
compatibility when workflows are deployed in other,
non-enhanced WMS.

The Computer Journal, Vol. ??, No. ??, ????

8 S. Esteves, L. Veiga

JOB A A. condor
JOB B B. condor
JOB C C. condor
JOB D D. condor
PARENT A CHILD B C
PARENT B C CHILD D
QOD B column0 3600 30 0 .15
QOD C column0 3600 30 0 .15
QOD D column1 3600 20 0 .1
QOD D column2 3600 20 0 .1

Listing 2. DAG Description

Regarding failure handling and cluster membership,
if a node fails or any time a node enters or parts,
the scheduling is recalculated. Like with any other
mainstream WMS, exceptions and unexpected task
termination, whether gracefully or not, can be easily
detected by the task container (e.g., YARN3). Thus,
we are able to quickly detect the interrupted task and
reschedule it on available resources. This is carried
out with 2 alternatives: either simply following a best-
effort approach (i.e., only rescheduling failing tasks to
other available worker machines), or by making a new
scheduling plan (as described in Section 3.1).

As for byzantine behavior, incorrect processing or
corruption of data, this is obviously a very relevant and
difficult problem (not addressed by popular WMSs),
but it is outside of the scope of this particular work.
A possible avenue to explore in the future could
be to incorporate transactional support in the cloud
storage, as well as redundant executions with quorum
verification.

With respect to tasks that do not make any progress
or get stuck, the only mechanism that we have against
that, also followed by other WMSs, is having user-
defined timeouts for each different task. In any case,
note that data loss is unlikely, since we separate the
application logic from the database and we assume
storage replication is enabled, as it is default in HBase.

3.2. Cost Model

The cost model of WaaS is based on considering task
complexity and dynamic price definition. Assessing
task complexity regarding processing and memory
requirements has been explored in previous works [12,
13, 14]. Regarding CPU and memory requirements, the

3http://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/YARN.html

base approach is inspired in CloudSim [15] and uses
declarative definitions of MIs (millions of instructions)
and MBs of memory required. Additionally, we leverage
previous executions of tasks in a machine (e.g., one of
the nodes) against the requirements from a reference
workload, a unitary cost task (that serves as reference
of a task with unitary cost); e.g., Linpack benchmark
(as used in [12]), that can also be used to rank the
relative capacity of different worker nodes among them
and against a reference one.

Regardless of the approach employed, we can
determine an estimate on how long each task will
take to complete with a given capacity awarded in the
node (i.e., time = task complexity/worker capacity).
More than one task may share a node’s resources for
execution, but while ensuring resource and performance
isolation, as described in the next subsection.

In the general case where the infrastructure is shared
by many users and workflows, the price of executing
each task is calculated depending on the resources
required pondered with the overall system load.

There is price elasticity: when resources are scarce or
there are many users, unitary prices increase, otherwise,
when resources are overabundant, prices decrease, with
a reference price, as previously addressed in P2P
Grids [16].

Usually, the cost of executing a workflow for the first
time, will be the sum of the cost of executing its tasks.
In the continuous execution model of WaaS, although
input is being updated or new input being provided
(e.g., sensory data), tasks are only re-executed when
QoD parameters are reached. Therefore, the saved
executions (i.e. task executions that are avoided until
QoD is reached) will imply a lower total cost for a given
number of workflow executions.

Additionally, since the interval between consecutive
executions of a given task can be significant, there is
no point in paying (regardless of it being real money or
some form of credits) according to the common cloud
cost model of VM hours of execution, as these may be
idle the majority of time. Therefore, we implement a
service where task executions are incurred only for the
time of execution, plus a tax of 10% to account for the
overhead of reusing resources by switching among guest
VM instances that execute different tasks, possibly from
different workflows.

The Computer Journal, Vol. ??, No. ??, ????

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 9

3.3. Resource Allocation and Isolation

As already said, resources at nodes are engaged as
virtual machine instances, in particular with images
derived from virtual appliances described above. Thus,
when the scheduler decides to allocate a virtual machine
based on a task’s requirements and price constrains,
it essentially aims at two things: i) allocate enough
resources for the task, and ii) ensure that those
resources and their availability are not hindered by the
scheduling of other tasks in the same node. Note that no
more than one task is permitted to be executed inside
the same VM. We make extensive use of virtualization
technology to allow such fine-grained allocation and
acceptable performance isolation guarantees.

The VM instances can be preconfigured and
prelaunched, ready to execute a given workload, and
by means of the WaaS component installed, can later
execute the workload of another task, without the
need of being shutdown and rebooted, easing resource
sharing and reducing the amount of wasted resources.
Therefore, we configure the hypervisor in Xen to cap
the percentage of physical CPU(s) and physical memory
awarded to a given VM according to the scheduling
decided. This can be repeated until the node capacity is
fully allocated, with a 10% safety quota for middleware
own operation. This can also be achieved, albeit with
less flexibility by parameterizing QEMU/KVM. This
ensures that when a task is scheduled to a node, the
resources it is expected to make use of, are not in
contention with the resources required by other tasks
executing at the same time. Any degradation will be
graceful and only when contention is very high.

Recall that worker top capacity is established
assessing the performance of a reference workload
against the performance of the same workload against
a reference machine. Regarding instantaneous available
capacity at a node, in order to fine-tune the information
driving the scheduling (that is aware of VM allocations
at each node) we resort to the SIGAR4 library that has
enough precision and is actually platform-independent.

4. EVALUATION

This section presents experimental evaluation that was
carried out to show the benefits of our approach, in
simulated environment as well in a realistic scenario
using the prototypical workflow described in Section
2.3. In particular, to assess whether our model can

4http://support.hyperic.com/display/SIGAR/Home

effectively reduce costs, while complying with deadlines,
and use relaxation (corresponding to the percentage
of saved executions with the enforcement of QoD
constraints).

All tests were conducted using 6 machines with an
Intel Core i7-2600K CPU at 3.40GHz, 11926MB of
available RAM memory, and HDD 7200RPM SATA
6Gb/s 32MB cache, connected by 1 Gigabit LAN.

We compared three different approaches with our
algorithm: Greedy-time, Greedy-cost, and Random.
Greedy-time selects for each task the worker that
offers the minimum processing time at that moment.
Similarly, Greedy-cost selects at each step the worker
that offers the minimum processing cost. And Random
selects a random worker for each task.

We conducted a simulation, built in Python, to
compare our model with different approaches. Note
that this simulation corresponds to the isolation of
the coordinator machine, so that it can be properly
evaluated without the interference (delays) of worker
machines (i.e., tasks complexity and workers capacity
are synthetic). We generated hundreds of pipelines
with 5, 10, and 15 tasks, corresponding to workloads
A, B, and C respectively. Note that the payload
of the intrinsic tasks was dummy content (i.e., we
were only interested in the task meta-data for the
coordinator scheduling). Inside each workload, results
were averaged to reduce noise.

A B C

greedy−time
greedy−cost
random
WaaS

Workload

C
os

t

0
50

0
15

00

FIGURE 5. Cost per hour taken for pipeline execution

Figure 5 shows that our model, WaaS, can effectively
reduce costs. The gains are higher when there is more
variance in the worker’s cost. The costs achieved by
our model, represent the critical path of the MDP
model, and, since no time limit was imposed, they
are undoubtedly the minimum possible costs for the
considered workloads.

Figure 6 shows that the time obtained with WaaS for

The Computer Journal, Vol. ??, No. ??, ????

http://support.hyperic.com/display/SIGAR/Home

10 S. Esteves, L. Veiga

A B C

greedy−time
greedy−cost
random
WaaS

Workload

T
im

e
(m

in
ut

es
)

0
20

40

FIGURE 6. Time taken for a single pipeline execution

a single pipeline execution is not much different from
the remaining approaches. Lower costs often mean that
workers with lower capabilities were used, and therefore
the makespan was higher.

20 30 40 50

50
0

10
00

15
00

Time (minutes)

C
os

t

WaaS

greedy−time

greedy−cost

random

FIGURE 7. Time cost correlation for 1000 samples

Figure 7 illustrates the correlation observed between
time (makespan) and cost for 1000 samples of different
pipelines with 10 tasks and in diverse worker settings.
Each sample, consisting of a different set of tasks and
workers, was executed for the 4 different algorithms,
and we can observe that the cost increases with the
time. Unsurprisingly, this happens due to the cost and
time functions being directly proportional with the task
complexity. WaaS appears always at the bottom (blue
points) with the lower costs, as expected.

Through Figure 8 we may observe that our algorithm
with WaaS exhibits the highest task completion rate
within the time limit, while others fail to process the
complete workflow inside specified time frames (i.e.,
roughly the last 20% of tasks are processed outside of
the deadline). However, there is a price to pay when
such time frames are shrunk, as shown in the next

Time (minutes)

Ta
sk

 C
om

pl
et

io
n

(%
)

0

20

40

60

80

100

0 10 20 30

Time Limit

greedy−cost
greedy−time
random
WaaS

FIGURE 8. Task completion over time

figure.

Time Limit (minutes)

C
os

t

800

820

840

860

28 29 30 31

L1 L2 L3

FIGURE 9. Cost variation for different time limits

Figure 9 depicts how costs vary with the imposed
time limits L1, L2, and L3. We can see that costs
decrease with the expansion of time limits. There is a
point beyond which extending more the deadline does
not reduce the costs, which corresponds to the time
taken to go through the critical path, the one that
provides the lowest cost, in the MDP graph. Also, when
the time limit is lower than the MDP path with the
minimum time, it is not possible to complete the whole
pipeline tasks inside the limit. Thus, there is an interval
of time within which users can adjust the limits.

Figure 10 shows the time evolution for planning with
pipelines with different number of tasks and workers
(for simplicity, the number of workers is the same
as the number of tasks). Although we performed
optimizations with the MDP-based algorithm, we may
see that time follows an exponential tendency with
the number of tasks, like stated in Section 2.2. For
less than 15 pipeline tasks the times obtained are

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 11

Number of Tasks

T
im

e
(s

ec
on

ds
)

0
5

10
15
20
25
30
35
40
45
50
55

5 10 15 20

FIGURE 10. Time taken for planning

negligible, and for more than 17 tasks the times start
to increase drastically (above 10 seconds). However,
workflows containing more than 10 tasks in pipeline
are not common.5 Furthermore, there is still space
for optimization and parallelization on our MDP-based
algorithm.

No relaxation
15%
30%
45%

Relaxation Level

C
os

t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

FIGURE 11. Cost versus relaxation

We can see in Figure 11 how the cost varies with
the level of relaxation for a pipeline with 10 tasks
where each was set to have levels of relaxation of 0 (no
relaxation), 15, 30, and 45%. The cost decreased down
to 233 units with 45% of relaxation.

Using our simple WMS, we ran the prototypical
workflow presented in Section 2.3 where tasks consisted
of Java applications that read and modify data in
the NoSQL database. Next, we show how relaxation,

5https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowGenerator

which corresponds to avoided executions and saved
resources, is obtained from a workflow model with QoD
enforcement.

Changed Detectors (%)

E
xe

cu
tio

ns
 (

%
)

50

60

70

80

20 30 40 50 60 70 80

FIGURE 12. Saved executions in Processing Step that
Calculates Zones

Figure 12 shows that the number of executions
decreases in an almost linear way as the allowed
percentage of changed detectors (σ) increases. When
σ was 25% we saved about 20% of 168 executions (i.e.,
fewer 33 executions than using regular DAG semantics);
and for 80% of detected changes we only performed
80 executions (48%). The machine loads and resource
utilization were naturally proportional to the savings
presented here.

100

75

50

25

No QoD

0

20

40

60

80

100

No QoD
25

50
75

100

Ex
e

cu
ti

o
n

s
(%

)

Changed Zones (%)

80-100

60-80

40-60

20-40

0-20

FIGURE 13. Saved executions

We can observe the resulting impact in the percentage
of number of executions, when combining the QoD of
steps C and E (i.e., minimum percentage of changes in
zones and detectors), as illustrated in Figure 13. For the
particular trial of step E (which calculates and identifies
hotspots): i) presents an improvement, almost linear, in
the number of executions when no QoD is enforced on

The Computer Journal, Vol. ??, No. ??, ????

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

12 S. Esteves, L. Veiga

step C; and ii) only improves starting from 75% when
QoD is enforced for the detectors. In a workflow with
pipeline processing, like the one considered, it is natural
that the QoD of previous or upstream steps influence
the executions of current and downstream steps in
the pipeline, since the inputted data is derived from
upstream, i.e., from the beginning of the processing.

Changed Hotspots (%)

E
xe

cu
tio

ns
 (

%
)

70

75

80

85

90

20 30 40 50 60 70 80

FIGURE 14. Saved executions in Processing Step that
Calculates AQHI

Later, we predetermined the value of the QoD for
the former steps in the workflow, and studied the gains
obtained, regarding the number of times that step F
is executed (Figure 14). A great amount of executions
were saved, even for 20% of changed hotspots where
about 70% of the total executions without any QoD
(i.e., 168 executions) were spared. At 80% of changed
hotspots, only about 5% of the total executions were
performed with an error not greater than 0.3 (in relation
to the regular DAG model). It is natural that, as we
go through the actions of the pipeline, the number of
executions with QoD is reduced, since the noise from the
raw data injected in the workflow is funneled through
the processing chain into more refined and structured
data.

5. RELATED WORK

Much work has been done regarding scheduling of tasks
in grid and cloud settings. A subset of this work targets
the scheduling of workflows in particular. For example,
[17, 18, 19] for Grid computing. Our model inherits
from and extends the traditional workflow model [20].
Next, we describe some solutions that are closer and
more related with our Quality-of-Data model.

In [21], the authors propose a cost-based workflow

scheduling algorithm that is capable of minimizing costs
and meeting deadlines for result delivery. Scheduling
plans are generated so that tasks are mapped to
resource providers according to the services requested
(thus following a service-oriented paradigm). It
can perform rescheduling if planning conditions are
violated. The tasks are grouped into branches,
forming pipelines, but they assume synchronization
tasks. These branches are then also processed by a
MDP, but over different variables. The impact of data
in the results and workflow execution relaxation is not
taken into account, unlike in our model. Nonetheless, it
has been a common approach to impose time limits and
deadline constraints, instead of minimizing execution
times [22].

In [23], authors claim that proposed heuristics
for scheduling on heterogeneous systems fail by not
considering processors with different capabilities. To
amend this, authors propose a list-based scheduling
algorithm with two distinctive features: the Percentage
of Capable Processors effect is taken into account when
assigning task node weights; and the adjustment of the
effective Earliest Finish Time strategy, by incorporating
the average communication cost between the current
scheduling node and its children, during the processor
selection phase. Our model also takes into account
processors with different capabilities for scheduling,
since the times and relaxation are calculated based
on that within the WaaS environment; however, data
impact is also not taken into account on their solution.
Also, in [19] authors presented a novel binding scheme
to deal with heterogeneity presented in grid and cloud
environments, and improve performance by attending
to such different characteristics.

In [24], authors have proposed a unified solution that
supports multiple scheduling algorithms based on best-
effort and advance-reservation approaches, supported
by lease scheduling principles and price-based policies.
They offer an open source implementation of proposed
algorithms, Haizea, but it lacks on efficiency, since
their effort was more theoretical. Some proposals
were made to overcome some of Heizea’s limitations
like introducing new resource leases and market theory
concepts in scheduling decisions [25, 26]. In our
approach we offer flexibility in negotiations by using
QoD levels that allow price relaxation.

In [27], an algorithm based on the meta-heuristic
optimization technique, particle swarm optimization
(PSO), is proposed to minimize the workflow execution
cost while meeting deadline constraints. Like WaaS,

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 13

this work is tailored for cloud environments, addressing
issues like heterogeneity and elasticity of the resources.
However, unlike WaaS, it does not perform any data
reasoning with the aim of saving resources and lowering
costs. Besides PSO, other meta-heuristic methods have
been proposed, such as genetic algorithms [28] and
ant colony optimization [18], which offer satisfactory
performance; however, the QoS constraints those
algorithms rely on disregard resource efficiency for
continuous workflow processing.

In [29], different task scheduling strategies for
workflow-based applications are explored. Authors
claim that many existing systems for the Grid use
matchmaking strategies that do not consider overall
efficiency for the set of (dependent) tasks to be run.
They compare typical task-based greedy algorithms
with workflow-based algorithms, that search through
the entire workflow. Results show that workflow-
based approaches have a potential to work better on
data-intensive scenarios, even when task estimates are
inaccurate. This comes to strengthen our work, as most
scheduling done, which is task-based, does not work well
for workflows due to the intrinsic dependencies.

In [30], authors claim that most auto-scaling schedul-
ing mechanisms only consider simple resource utiliza-
tion indicators and do not consider both user perfor-
mance requirements and budgets constraints. They
present an approach where the basic computing ele-
ments are virtual machines (VMs) of various sizes/costs,
and, by dynamically allocating/deallocating VMs and
scheduling tasks on the most cost-efficient instances,
they are able to reduce costs. Task-to-VM optimization
was also tasked in [31], where a hierarchical schedul-
ing strategy was proposed. Furthermore, advantages of
running in a virtual environment, even remotely, over
local environments are highlighted here [32]. We also
provide a resource utilization metric representing not
only the capacity of a worker machine, but also its cur-
rent load and usage. In addition to this mechanism,
we also combined data relaxation which results in good
cost savings.

Some solutions attempt to save computing resources,
thereby introducing scheduling constraints on energy
consumption [33], implementing efficient load balanc-
ing techniques [34], or focusing on workload/VM con-
solidation [35]. While such solutions are complemen-
tary to ours, the resource savings are far from the ones
achieved with WaaS, since we are capable of avoiding
unnecessary task executions.

Other algorithms take into account data, but only

for the cost of transmission (e.g., Particle Swarm
Optimization [36]). Since we use a Cloud distributed
database where all nodes are interconnected through
the same LAN, we do not need to send data directly
from a node to another, and therefore this issue is
immaterial here.

Furthermore, an example of a currently available
related service is the amazon SWF6 that is growing in
popularity. It could also be a target of our work, since
it currently includes no reasoning about the impact of
computation in data (input and output), as WaaS does,
in order to optimize resource usage. However, it deals
exclusively with the deployment and scheduling of the
tasks in virtualized resources to be run in the cloud.

6. CONCLUSION

This paper makes use of a novel workflow model for
continuous data-intensive computing proposing a new
Cloud scheduling planner, capable of relaxing prices
and respecting time constraints. Our platform gains
a special importance in e-science where long-lasting
workflows are executed many times often without any
new significant or meaningful results (many times only
getting noise), wasting monetary funds.

Evaluation results show that our approach is able to
reduce costs while respecting time constraints. This
cost reduction is higher for larger QoD contraints
(which result in larger relaxation). However, larger
QoD values can cause higher result deviations, but
optimizing that trade-off is out of the scope of this
paper.

To the best of our knowledge, no work in the cloud
scheduling literature has ever before tried to reason
about the data impact on processing steps that cause
significant changes on the final workflow outcome for
continuous and autonomic processing. Therefore, we
believe we have a compelling advancement over the
state-of-the-art.

ACKNOWLEDGEMENTS

This work was partially supported by national funds
through FCT - Fundação para a Ciência e a Tecnologia,
under project PEst-OE/EEI/LA0021/2013.

REFERENCES

[1] Richards, M., Ghanem, M., Osmond, M., Guo, Y., and
Hassard, J. (2006) Grid-based analysis of air pollution

6http://aws.amazon.com/swf/

The Computer Journal, Vol. ??, No. ??, ????

http://aws.amazon.com/swf/

14 S. Esteves, L. Veiga

data. Ecological Modelling, 194, 274 – 286.

[2] Brown, D. A., Brady, P. R., Dietz, A., Cao, J.,
Johnson, B., and McNabb, J. (2007) A case study on
the use of workflow technologies for scientific analysis:
Gravitational wave data analysis. In Taylor, I. J.,
Deelman, E., Gannon, D. B., and Shields, M. (eds.),
Workflows for e-Science, pp. 39–59. Springer London.

[3] Li, X., Plale, B., Vijayakumar, N., Ramachandran, R.,
Graves, S., and Conover, H. (2008) Real-time storm
detection and weather forecast activation through
data mining and events processing. Earth Science
Informatics, 1, 49–57.

[4] Deelman, E. et al. (2006) Managing large-scale work-
flow execution from resource provisioning to prove-
nance tracking: The cybershake example. Proceed-
ings of the Second IEEE International Conference on
e-Science and Grid Computing, Washington, DC, USA
E-SCIENCE ’06, pp. 14–. IEEE Computer Society.

[5] George, L. (2011) HBase: The Definitive Guide, 1
edition. O’Reilly Media.

[6] Cattell, R. (2011) Scalable SQL and NoSQL data
stores. SIGMOD Rec., 39, 12–27.

[7] Esteves, S., Silva, J. N., and Veiga, L. (2013)
Fluchi: a quality-driven dataflow model for data
intensive computing. Journal of Internet Services and
Applications, 4, 12.

[8] Puterman, M. L. (1994) Markov Decision Processes:
Discrete Stochastic Dynamic Programming, 1st edition.
John Wiley & Sons, Inc., New York, NY, USA.

[9] Yih, Y. and Thesen, A. (1991) Semi-Markov Decision
Models for Real-time Scheduling Research memoran-
dum. School of Industrial Engineering, Purdue Univer-
sity.

[10] Bartholomew, D. (2006) Qemu: a multihost, multitar-
get emulator. Linux J., 2006, 3.

[11] Couvares, P., Kosar, T., Roy, A., Weber, J., and
Wenger, K. (2007) Workflow management in Condor.
In Taylor, I. J., Deelman, E., Gannon, D. B., and
Shields, M. (eds.), Workflows for e-Science, pp. 357–
375. Springer London.

[12] Veiga, L., Rodrigues, R., and Ferreira, P. (2007) Gigi:
An ocean of gridlets on a ”grid-for-the-masses”. Cluster
Computing and the Grid, 2007. CCGRID 2007. Seventh
IEEE International Symposium on, pp. 783–788.

[13] Simão, J. and Veiga, L. (2012) Qoe-jvm: An adaptive
and resource-aware java runtime for cloud computing.
In Meersman, R., Panetto, H., Dillon, T., Rinderle-
Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., and Cruz, I. (eds.), On the
Move to Meaningful Internet Systems: OTM 2012,
Lecture Notes in Computer Science, 7566, pp. 566–
583. Springer Berlin Heidelberg.

[14] Costa, F., Silva, J. N., Veiga, L., and Ferreira, P. (2012)
Large-scale volunteer computing over the internet. J.
Internet Services and Applications, 3, 329–346.

[15] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,
C. A. F., and Buyya, R. (2011) Cloudsim: A
toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Softw. Pract. Exper., 41, 23–50.

[16] Oliveira, P., Ferreira, P., and Veiga, L. (2011) Gridlet
economics: Resource management models and policies
for cycle-sharing systems. In Riekki, J., Ylianttila, M.,
and Guo, M. (eds.), Advances in Grid and Pervasive
Computing, Lecture Notes in Computer Science, 6646,
pp. 72–83. Springer Berlin Heidelberg.

[17] Wieczorek, M., Prodan, R., and Fahringer, T. (2005)
Scheduling of scientific workflows in the Askalon grid
environment. SIGMOD Rec., 34, 56–62.

[18] Chen, W.-N. and Zhang, J. (2009) An ant colony
optimization approach to a grid workflow scheduling
problem with various QoS requirements. Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 39, 29–43.

[19] Mandal, A., Kennedy, K., Koelbel, C., Marin, G.,
Mellor-Crummey, J., Liu, B., and Johnsson, L.
(2005) Scheduling strategies for mapping application
workflows onto the grid. High Performance Distributed
Computing, 2005. HPDC-14. Proceedings. 14th IEEE
International Symposium on, pp. 125–134.

[20] Yu, J. and Buyya, R. (2005) A taxonomy of scientific
workflow systems for grid computing. SIGMOD Rec.,
34, 44–49.

[21] Yu, J., Buyya, R., and Tham, C. K. (2005) Cost-based
scheduling of scientific workflow application on utility
grids. Proceedings of the First International Conference
on e-Science and Grid Computing, Washington, DC,
USA E-SCIENCE ’05, pp. 140–147. IEEE Computer
Society.

[22] Eder, J., Panagos, E., and Rabinovich, M. (1999) Time
constraints in workflow systems. In Jarke, M. and
Oberweis, A. (eds.), Advanced Information Systems
Engineering, Lecture Notes in Computer Science, 1626,
pp. 286–300. Springer Berlin Heidelberg.

[23] Shi, Z. and Dongarra, J. J. (2006) Scheduling workflow
applications on processors with different capabilities.
Future Gener. Comput. Syst., 22, 665–675.

[24] Sotomayor Basilio, B. (2010) Provisioning Computa-
tional Resources Using Virtual Machines and Leases.
PhD thesis Chicago, IL, USA. AAI3419776.

[25] Sotomayor, B., Montero, R. S., Llorente, I. M., and
Foster, I. (2008) Capacity Leasing in Cloud Systems
using the OpenNebula Engine. Cloud Computing and
Applications 2008 (CCA08).

[26] Yang, Z., Yin, C., and Liu, Y. (2011) A cost-based
resource scheduling paradigm in cloud computing.
Proceedings of the 2011 12th International Conference
on Parallel and Distributed Computing, Applications
and Technologies, Washington, DC, USA PDCAT ’11,
pp. 417–422. IEEE Computer Society.

The Computer Journal, Vol. ??, No. ??, ????

Workflow-as-a-Service with Scheduling of Continuous and Data-intensive Workflows 15

[27] Rodriguez, M. and Buyya, R. (2014) Deadline based
resource provisioningand scheduling algorithm for
scientific workflows on clouds. Cloud Computing, IEEE
Transactions on, 2, 222–235.

[28] Ye, Z., Zhou, X., and Bouguettaya, A. (2011) Genetic
algorithm based qos-aware service compositions in
cloud computing. In Yu, J., Kim, M., and Unland,
R. (eds.), Database Systems for Advanced Applications,
Lecture Notes in Computer Science, 6588, pp. 321–334.
Springer Berlin Heidelberg.

[29] Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K.,
Mandal, A., and Kennedy, K. (2005) Task scheduling
strategies for workflow-based applications in grids.
Proceedings of the Fifth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’05),
Washington, DC, USA CCGRID ’05, pp. 759–767.
IEEE Computer Society.

[30] Mao, M. and Humphrey, M. (2011) Auto-scaling to
minimize cost and meet application deadlines in cloud
workflows. High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Confer-
ence for, pp. 1–12.

[31] Wu, Z., Liu, X., Ni, Z., Yuan, D., and Yang,
Y. (2013) A market-oriented hierarchical scheduling
strategy in cloud workflow systems. The Journal of
Supercomputing, 63, 256–293.

[32] Hoffa, C., Mehta, G., Freeman, T., Deelman,
E., Keahey, K., Berriman, B., and Good, J.
(2008) On the use of cloud computing for scientific
workflows. eScience, 2008. eScience ’08. IEEE Fourth
International Conference on, pp. 640–645.

[33] Fard, H., Prodan, R., Barrionuevo, J., and Fahringer,
T. (2012) A multi-objective approach for workflow
scheduling in heterogeneous environments. Cluster,
Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on, May, pp.
300–309.

[34] Li, J., Peng, J., and Zhang, W. (2011) An energy-
efficient scheduling approach based on private clouds.
Journal of Information & Computational Science, 8,
716–724.

[35] Feller, E., Rilling, L., and Morin, C. (2011) Energy-
aware ant colony based workload placement in clouds.
Grid Computing (GRID), 2011 12th IEEE/ACM
International Conference on, Sept, pp. 26–33.

[36] Pandey, S., Wu, L., Guru, S., and Buyya, R. (2010)
A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing
environments. Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International
Conference on, pp. 400–407.

The Computer Journal, Vol. ??, No. ??, ????

	Introduction
	Scheduling Planner
	Workflow Model with Quality-of-Data
	Abstract Scheduling Planner
	Prototypical Scenario

	WaaS Design and Implementation
	Workflow Description and WMS Integration
	Cost Model
	Resource Allocation and Isolation

	Evaluation
	Related Work
	Conclusion

