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Models

• Which learning models did we already introduce?

• Nonlinear regression, number of basis functions. 
• Example polynomials. 

• Nonlinear regression, regularisation parameter

• Stochastic Gradient Descent (Perceptron), regularisation parameter 



Overfitting

Consider error of hypothesis h over
• Training data: errortrain(h)
• Entire distribution D of data: errorD(h) (or on test alone)
Hypothesis hÎ H overfits training data if there is an alternative 

hypothesis h’Î H such that
errortrain(h) < errortrain(h’)

and
errorD(h) > errorD(h’)



Overfitting



Avoid Overfitting

• How can we avoid overfitting?
• Stop growing when data split not statistically significant
• Grow full tree then post-prune

• How to select ``best’’ model:
• Measure performance over training data
• Measure performance over separate validation data set



Evaluation: The confusion matrix

a        b   ß classified as
7        2   | a = yes
4        1   | b = no

Instances classified as a

Instances classified as b
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Evaluation: The confusion matrix

a        b   ß classified as
7        2   | a = yes
4        1   | b = no

Correctly classified instances

Incorrectly classified instances



• Using a confusion matrix for a binary classifier we can
define precision and recall with the renaming of the two
classes as C1=positive and not C1=negative 





• A high recall value without a high precision does not give us any con-
fidence about the quality of the binary classifier.

• We can obtain a high recall value by classifying all patterns as positive 
(the recall value will be one); however, the precision value will be very
low.

• Conversely, by classifying only one pattern correctly as positive, we
obtain the maximal precision value of one but a low recall value. Both
values have to be simultaneously interpreted. 



• To that end, we can combine both values with the harmonic mean

in which both values are evenly weighted. This measure is also called
the
• balanced measure. 





Error/Confusion Matrix for 10 Classes



Minimum Misclassification Rate



Cross-Validation 
• Estimate the accuracy of a hypothesis induced by a 

supervised learning algorithm
• Predict the accuracy of a hypothesis over future unseen 

instances
• Select the optimal hypothesis from a given set of alternative 

hypotheses
• Model selection
• Feature selection

• Combining multiple classifiers (boosting) 



Holdout Method

• Partition data set D = {(v1,y1),…,(vn,yn)} into training Dt and 
validation set Dh=D\Dt

Training Dt Validation D\Dt

Problems: 
• makes insufficient use of data
• training and validation set are correlated 



Cross-Validation

• k-fold cross-validation splits the data set D into k
mutually exclusive subsets D1,D2,…,Dk

• Train and test the learning algorithm k times, each 
time it is trained on D\Di and tested on Di

D1 D2 D3 D4

D1 D2 D3 D4 D1 D2 D3 D4

D1 D2 D3 D4 D1 D2 D3 D4



Cross-Validation
• Uses all the data for training and testing
• Complete k-fold cross-validation splits the dataset 

of size m in all (m over m/k) possible ways 
(choosing m/k instances out of m)

• Leave n-out cross-validation sets n instances aside 
for testing and uses the remaining ones for 
training (leave one-out is equivalent to n-fold 
cross-validation)

• In stratified cross-validation, the folds are stratified 
so that they contain approximately the same 
proportion of labels as the original data set 



• One major drawback of cross-validation is that the number of training 
runs that must be performed is increased by a factor of k

• Cross-validation that use separate data to assess performance is that 
we might have multiple complexity parameters for a single model 
(for instance, there might be several regularization parameters). 



Model Selection 

• Using the Bayesian approach or the regularised method of least 
squares

• The estimation is statistical, we need an appropriate measure of the 
fit between the model and the observed data 

• We refer to this problem as that of model selection 
• For example, we may want to estimate the number of degrees of 

freedom (i.e., adjustable parameters) of the model, or even the 
general structure of the model

• Nonlinear regression, number of basis functions. Example polynomials. 





Occam’s razor

• Occam Razor was first articulated by the medieval 
logician William of Occam  in 1324

• born in the village of Ockham in Surrey (England) about 1285, 
believed that he died in a convent in Munich in 1349, a victim of the 
Black Death

• It is vain do with more what can be done with less..

• We should always accept the simplest answer that 
correctly fits our data

• Occam’s razor: All other things being equal, the simplest 
model is the best

• A good principle for life as well

William of Ockham



Minimum-Description-Length (MDL)

• Minimum-Description-Length (MDL) principle

• Inspiration for the development of the MDL principle is traced back to 
Kolmogorov complexity theory 

• Find the shortest program that produces the data (uncomputable).



Minimum-Description-Length (MDL)

• The algorithmic (descriptive) complexity of a data sequence is the 
length of the shortest binary computer program that prints out the 
sequence and then halts 

• Definition of complexity that looks to the computer, the most general 
form of data compressor, rather than the notion of probability 
distribution for its basis

• The goal of which is to find regularity in a given data sequence 



Learning as Data Compression

• The idea of viewing learning as trying to find regularity provided the 
first insight that was used by Rissanen in formulating the MDL 
principle. 

• The second insight used by Rissanen is that regularity itself may be 
identified with the ability to compress

• View the process of learning as data compression



• Jorma J. Rissanen (born 20 October 1932) is an information theorist, 
known for inventing the minimum description length principle and 
practical approaches to arithmetic coding for lossless data 
compression



MDL and Machine Learning

• Why does the shorter encoding make sense?

• Shorter encoding implies regularities in the data
• Regularities in the data imply patterns
• Patterns are interesting



• Inspiration for the development of the Minimum-Description-Length
(MDL) principle is traced back to Kolmogorov complexity theory

• The basic idea is to try to find the shortest program that produces
some data. 



• The algorithmic (descriptive) complexity of a data sequence is the
length of the shortest binary computer program that prints out the
sequence and then halts. 

• This definition of complexity uses the computer that is the most
general form of data compressor, rather than being based on the
notion of probability distribution. 

• When there are regularities in the data sequence it can be produced
by a simpler program. 



Example: Regularity

00001000010000100001000010000100001000010001000010000100001

Short description length, just repeat 12 times 00001

0100111001010011011010100001110101111011011010101110010011100

Random sequence, no patterns, no compression



• Shorter encoding implies regularities in the data. 
• Regularities in the data imply patterns.
• Patterns are interesting. 

0100111001010011011010100001110101111011011010101110010011100.

• This string is basically a random sequence and since no patterns can
be found no compression can be achieved. 



• We claimed that any regularity detected in the data can be used to 
compress the data
• Describe it in a short manner 

• Example:
• Pi, e,..
• The Mandelbrot set is the set of complex numbers for which the function 

does not diverge when iterated from z=0



Mandelbrot set



Two-part code MDL principle

• The simplistic two-part code MDL principle for probabilistic modelling 
is simplistic: the codelengths under consideration are not determined 
in an optimal fashion

• Suppose that we are given a candidate model or model class M
• With all the elements of M being probabilistic sources, we henceforth 

refer to a point hypothesis as p rather than H
• In particular, we look for the probability density function p ∈ M that 

best explains a given data sequence d



Two-part code MDL principle

• The two-part code MDL principle then tells us to look for the (point) 
hypothesis p ∈ M that minimizes the description length of p, which 
we denote by L1(p), and the description length of the data sequence d
when it is encoded with the help of p, which we denote as L2(d|p). 



• In finding the hypothesis that compresses the data sequence d the 
most, we must encode (describe or compress) the data in such a way 
that a decoder can retrieve the data even without knowing the 
hypothesis in advance 



The model-order selection problem









Example

• Regression: find the polynomial for describing the data
• Complexity of the model vs. Goodness of fit

Low model cost
High data cost

High model cost
Low data cost

Low model cost
Low data cost



Attributes of the MDL Principle 

• When we have two models that fit a given data sequence equally 
well, the MDL principle will pick the one that is the simplest in the 
sense that it allows the use of a shorter description of the data

• MDL principle implements a precise form of Occam’s razor, which states a 
preference for simple theories 

• The MDL principle is a consistent model selection estimator in the 
sense that it converges to the true model order as the sample size 
increases 



MDL and Regularization 



• Two polynomials with the same number of weights can be described 
by the code having different length 

• Smooth functions are more easy to predict, which suggests adapting 
description lengths reflecting this property 







Bayesian Model Comparison 

• Matching data and model complexity



• The horizontal axis is a one-dimensional representation of the space 
of possible data sets, so that each point on this axis corresponds to a 
specific data set 

• A simple model preforms better on simple task then a complex model
• By contrast, a complex model (such as a ninth order polynomial) can 

generate a great variety of different data sets but preforms worse on 
simple task

• We now consider three models M1, M2 and M3 of successively 
increasing complexity



Bayesian Model Comparison 

• Matching data and model complexity



Did we learn something new?

• In ancient Greek philosophy, especially that of Aristotle, the golden mean 
or golden middle way is the desirable middle between two extremes, one 
of excess and the other of deficiency
• Socrates teaches that a man must know how to choose the mean and 

avoid the extremes on either side, as far as possible



Example

• Regression: find the polynomial for describing the data
• Complexity of the model vs. Goodness of fit

Low model cost
High data cost

High model cost
Low data cost

Low model cost
Low data cost



Paradox of Deep Learning Complexity

• As we have stated before and will see in the next chapters, in deep
learning we increase the complexity of the model by using many
hidden layers with thousands (or even millions) of parameters

• However, it would seem that by using so many parameters, we would
be increasing a lot the model complexity because we need to code all 
of these parameter values. 

• If that is the case we are in direct contradiction of the principle of
Parsimony



• Assuming that the size of the numbers contained in parameter wj is
correlated to the coding costs

wj ≈ wj bits, 
• w = 0 would require zero bits and a small number would be coded

with less bits than a big number. 
• Then, the hypothesis complexity term corresponds to the l1 

regularization



• Similarly, for l2 regularization we assume

• According to this reasoning, the relation between the hypothesis
complexity before learning and after learning changes. 

• The complexity of a deep learning model before learning is
tremendous, yet, after learning it is reduced considerably due to the
use of regularization.

• Depending on the type of regularization (l2 or l1) most weights will 
have small values or become zero. 
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