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Abstract—The idea of combining multiple CPU and CGRA
cores is not in itself original but detailed characterizations of
such architectures and measurements on compelling applications
are difficult to find in the literature. Although commercial CPUs,
GPUs and FPGAs are widely available, there are no commercial
CGRAs, which may be attributed to the lack of metrics on
performance, energy and cost. In this paper, we introduce a
heterogeneous computing platform consisting of several RISC-V
CPU and Versat CGRA cores. Implementation results for several
instances of the architecture are presented. The CPU of choice
is the promising open source RISC-V architecture, which has
never been featured in CPU/CGRA architectures. This paper
presents independent implementations of two RISC-V cores: a
minimal one, useful as a simple controller, and a more performant
5-stage pipeline implementation. The RISC-V cores have been
designed using the recent Chisel HDL, useful for automating
tasks pertaining to the writing of RTL. The selected CGRA is
the published Versat architecture, for which 4 different instances
have been created. Implementation results for 2 FPGA families
and ASIC technology nodes are presented: area, frequency and
power. Applications cover digital audio and machine learning,
demonstrating the versatility of the proposed platform at com-
petitive area, frequency and energy footprints.

Index Terms—Low power architectures, RISC-V, CGRAs,
Heterogeneous computing

I. INTRODUCTION

W ITH the advent of the Internet of Things (IoT) and
Artificial Intelligence (AI) algorithms based on neural

networks, it is becoming more and more important to reduce
the cost and energy consumption of silicon devices. Systems
using high performance CPUs, GPUs, FPGAs or combinations
of these [1], [2] are interesting but can hardly fit the bill
in applications requiring ubiquitous low cost and low power
devices.

A high performance CPU can do a few operations in
parallel but most of its hardware is dedicated to handling
instructions efficiently, which represents a large overhead
for the envisioned systems. FPGAs are designed to build
arbitrary digital circuits and require a formidable configuration
infrastructure which is an overkill for low energy IoT systems.
GPUs comprise large numbers of streamlined von Neumann
processors, requiring a lot more hardware than a dedicated
hardware datapath for the same purpose. Finally, a system
entirely implemented in hardware would probably have the
best performance but at the cost of a large silicon area (high
device cost) and lack of programmability.

Given the drawbacks of the above approaches, an interesting
option seems to be a system consisting of several simple CPU
cores combined with programmable hardware cores that are

simpler than FPGAs. For algorithms that require extensive
control, the use of CPUs actually represents an economy
of resources as many control structures can be scheduled
and executed by a single CPU. This corresponds to time
multiplexing of control tasks in a small piece of hardware;
for parallel tasks more CPUs can be added. Reasoning in a
similar way, the data processing tasks can be time multiplexed
using programmable hardware: large hardware circuits can be
broken down into smaller pieces and run sequenntially on the
programmable hardware.

Because FPGAs are too onerous for most applications,
a more suitable type of reconfigurable hardware for em-
bedded devices is the Coarse-Grained Reconfigurable Array
(CGRA) [3]. A CGRA is a collection of programmable func-
tional units (FUs) interconnected by programmable switches.
The FUs operate on data words of commonly used widths
such as 8, 16, 32 or 64-bit words. When the CGRA is
programmed it implements hardware datapaths that accelerate
computations.

In this work, a heterogeneous computing platform consisting
of several RISC-V CPUs [4] and several Versat CGRAs [5]
is proposed. The RISC-V cores have been developed under
a project code named Adept. A similar approach has been
proposed in [6] but here we make the case for the use of
RISC-V CPUs and Versat CGRAs.

In order to sustain the IoT revolution and unleash the cre-
ativity of millions of engineers, it is indispensable to have an
Instruction Set Architecture that is free of Intellectual Property
(IP) rights or license fees [7]. Among the few free Instruction
Set Architectures (ISAs) available, RISC-V seems to be the
most promising one, with wide backing from academia and
industry. The other available open source solutions are either
dependent on specific technologies, have no parametrization
options, or have non-robust development environments [8].

With the emergence of RISC-V [4] and its open source
toolchain, with special emphasis on the Chisel Hardware
Description Language (HDL) [9] and the Rocket Chip SoC
Generator [10], it is likely that the success of open source
OS’s is extended to open CPU hardware descriptions.

A previous attempt to create a System on Chip (SoC)
called Blackbird, and a programming environment for build-
ing reconfigurable systems using the OpenRISC open source
processor has been made [8]. Blackbird was intended to
become an independent SoC derived from ORPSoC [11], the
OpenRISC equivalent of the Rocket Chip SoC Generator [10].
Unfortunately, this effort failed as the budget ran out, mainly
because there was always dependencies on particular FPGA
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boards or proprietary EDA tools which could not be supported
in the Blackbird project. Also, the OpenRISC initiative has
failed to create a mature enough ecosystem of its own, and
the effort revealed itself too complex, as many essential parts
of the system were either missing or still being developed by
the small existing community. In fact, in spite of the initial
enthusiasm, the same may happen to the RISC-V initiative.
However, its current impetus is far stronger than OpenRISC
has ever enjoyed, and today open source development is
facilitated by web platforms such as Github.

The effort reported in [8] has been recently continued using
RISC-V processors, with a fresh attempt to build a new SoC
called Warpbird [12]. Unfortunately, the team has run into
similar difficulties as when using the OpenRISC core, which
led to the identification of a new research problem: building
and untethred SoC [12]. The existing RISC-V open source
projects proved not modular or documented enough so that its
parts could easily be reused. In fact, it turned out to be easier
to write a RISC-V core from scratch and the Adept project
using the Chisel language was started. The system proposed
in this paper is portable to any FPGA or ASIC technology
as Chisel generates synthesizable Verilog code. The RISC-V
CPU is supported by the GNU toolchain and the Versat CGRA
has its own compiler and assembler [13].

II. ARCHITECTURE

The proposed architecture can be used to develop SoCs
containing several Adept RISC-V cores and Versat CGRAs.
An example system consisting of 4 RISC-V cores and 2 Versat
CGRAs is depicted in Fig. 1. The system uses ARM’s Ad-
vanced eXtensible Interface (AXI) to interconnect the cores,
a de facto standard for busing.

In the figure, two CPU cores share the same CGRA, which
has a 2-port AXI slave interface connected to the AXI master
interfaces of its hosts. The CGRA arbitrates between the two
hosts using a round-robin scheme. All CPU and CGRA cores
access the external memory by means of their AXI master
interfaces connected to an AXI slave multi-port memory
controller core, which is a 3rd party core. The external memory
must be loaded with programs and data for all cores. This is
done by the host CPU, which runs a boot loader program and
is able to fetch these data from an external device by means
of an AXI or SPI peripheral, not shown in the figure. The next
subsections provide details about the RISC-V CPU core and
the Versat CGRA core.
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A. Adept

Four RISC-V architectures have been studied in order to
frame this work: Taiga [14], a high performance RISC-V
soft core; Rocket Chip [10], the de facto standard used at
UC Berkeley and respective SiFive startup; PicoRV32 [15], a
size-optimized architecture; and PULPino [16], a single-core
microcontroller system. The proposed SoC in this work had a
very specific set of requirements: small size, low power, target
FPGAs and ASICs and have a high abstraction level descrip-
tion. Therefore, Rocket Chip was not selected because it had
too many features and proved too hard to manipulate; Taiga
was not selected because it targets FPGAs only; PULPino
and PicoRV32 were not selected because they are written in
conventional HDL. In this project, the abstractions present in
modern programming languages are a requirement, namely to
facilitate parametrization of the RTL. Thus, after considering
all 4 architectures, it was decided to implement a new RISC-V
core from scratch using the RV32IM ISA and the new Chisel3
HDL [9]. The new architecture was called Adept.

There are two Adept configurations: Adept-3, a 3-stage
pipeline low performance configuration which implements
the Base Integer (I) instruction set; and Adept-5, a 5-stage
pipeline medium performance configuration which implements
the Integer Multiplication and Division (IM) instruction sets.
Both configurations are optimized for silicon area and only
support bare metal applications. Both use instruction and data
caches of sizes 8 and 16kB, respectively.

B. Versat

The Versat architecture [5] is shown in Fig. 2. Versat
uses the Controller to run programs and the Data Engine
(DE) to carry out data intensive computations. The Controller
programs are stored in the Program Memory (PM), which
has a 1kB boot ROM and an 8kB user RAM. The Controller
accesses the various modules in the system using the Control
Bus. The boot ROM program can load user programs into the
PM from the external memory or other device using the DMA
or a special peripheral such as an SPI core. The user program
can generate DE configurations for the various acceleration
datapaths and store them in the Configuration Module (CM). It
can also move configurations between the CM and the external
memory using the DMA engine.

The Versat core has a host interface and a memory interface.
The host interface (AXI slave) is used by a host system
to instruct Versat to load and execute programs. Host and
Versat communicate using the shared Control Register File
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Fig. 3. Data engine datapaths.

(CRF). The CRF is also used by Versat programs as a general
purpose (1-cycle access) register file. The memory interface
(AXI master) is used by the DMA to access external memory.

Different Versat instances can be generated containing dif-
ferent DE modules. The DE consists of several Functional
Units (FUs) interconnected in a full mesh. The current FU
types are: dual-port embedded memory, ALU (with and with-
out internal feedback to accumulate results), multiplier and
barrel shifter.

The interconnect mesh has 1 clock cycle of delay and the
FUs themselves are pipelined for better performance. The FUs
are used to build hardware datapaths that work on data streams.
Example datapaths are illustrated in Fig. 3. Datapath (a) in the
figure is a simple pipeline exploiting Instruction-Level Paral-
lelism (ILP) by performing load, add and store instructions
in parallel; datapath (b) demonstrates ILP plus Data-Level
Parallelism (DLP), or Thread-Level Parallelism (TLP) if the
two additions are operated as independent threads; datapath
(c) involves more FUs thus achieving more parallelism.

The full mesh structure may seem an overkill but it greatly
facilitates the programming of Versat, dispensing with com-
plex place and route algorithms. As such, Versat can even
be programmed in its assembly language, which is a rare
feature among CGRAs. Due to the relatively small number
of FUs used, the full mesh interconnect becomes affordable,
occupying only 5% of the chip area [5].

When implemented in FPGAs, Versat is an overlay architec-
ture, that is, the reconfigurable FPGA fabric is used to support
different Versat instances but the instances themselves are also
reconfigurable using their own and much faster reconfiguration
infrastructure. When in implemented in ASICs, Versat is a
piece of programmable logic that reduces silicon area, lowers
the risk of design errors and saves energy while offering
hardware-like performance.

III. TOOLCHAIN

A. Adept

The Adept RISC-V system has a fully operational GNU
toolchain for compilation, debugging and profiling. These are
mature tools and most have been merged upstream and their
status can be checked in [17] as of version 7.1. There are
options to make compilation aware a the floating-point unit,
clock frequency for a specific board, etc.

Debug support using GDB is already available for RISC-V
but Adept does not yet have hardware support for it. A debug
module and corresponding JTAG interface have not yet been
incorporated.

When working with the Rocket Chip SoC Generator, the
debug module and its software support via OpenOCD [18]
were not inter-operable in the Warpbird setup [12], and there-
fore could not be integrated in Adept. The Rocket Chip debug
module and JTAG interface needed to be made usable in a
different environment or new ones developed from scratch.

The Adept system is described in Chisel3, a novel hardware
description language [9]. Additionally, users can add compo-
nents to the system using their preferred HDL. However, the
authors recommend using Chisel as it automates and eases
tasks, such as debugging, connections and interface generation.

B. Versat

Being a CGRA, the Versat development tools are non-
standard. Versat can be programmed in assembly language [5]
and using a C++ dialect [13].

Since the Versat Controller manages the Data Engine (DE)
and the DMA engine via the Control Bus, these modules can
be programmed indirectly. To program the DE, datapaths are
written to the Configuration Module (CM). To operate the
other modules, the Versat Controller accesses their memory
mapped registers, as is usual when working with peripherals.

For example, to configure ALU0 to add the outputs of
multipliers MUL1 and MUL2, the program needs to store
the constant ALU ADD to the ALU0 FNS function select
configuration register, and the constants sMUL1 and sMUL2
to the configuration registers ALU0 selA and ALU0 selB.
Versat’s full mesh structure makes it possible that inputs of any
FU can be connected to the output of any FU. If a partial mesh
were used, the programmer would have to keep in mind what
can be connected to what, making assembly programming not
viable.

A debug tool for Versat has not yet been developed. Debug-
ging a failing datapath can be a difficult task and a combination
of techniques must be employed. The Versat Controller is
instrumental in this process as it can start the DE and stop it
at desired instants, and can read and write to any position of
the DE memories. In extreme cases Versat must be debugged
using RTL simulation or Integrated Logic Analyzers.

IV. RESULTS

Results have been obtained for 4 different Versat instances
described in Table I in terms of the number of ALUs (#ALU),
the number of 32x32=64-bit multipliers (#MUL), the number
of barrel shifters (#BS) and the number of embedded memories
(#MEM).

A. FPGA Implementation Results

The FPGA implementation results for Intel ARRIA V and
Xilinx KINTEX-7 devices are shown in Tables II and III,
respectively.

As shown by these results, the resource usage is very reason-
able. The Adept processors are comparable to standard FPGA
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TABLE I
VERSAT INSTANCES

Instance #ALU #MUL #BS #MEM

Versat-1 6 4 1 4

Versat-2 14 5 5 5

Versat-3 8 4 4 5

Versat-4 8 8 0 5

TABLE II
VERSAT FPGA IMPLEMENTATION RESULTS FOR ARRIA V

Instance Logic #REG RAM #DSP Fmax
(ALMs) (kbit) (MHz)

Adept-3 670 201 133 0 93

Adept-5 1675 1470 266 4 120

Versat-1 8,607 4,673 351 32 130

Versat-2 15,340 12,620 623 25 120

Versat-3 13,700 11,270 623 21 120

Versat-4 10,680 11,200 623 36 120

processors such as Microblaze (Xilinx) or NIOS (Intel), and
the Versat cores allow for compact implementations compared
to custom hardware unusable for multiple functions. Adept-3
has not been optimized for frequency; its a critical path goes
from the multiplexer in the write-back stage to the branch
execute block of the instruction fetch stage and traverses the
ALU. The critical path in Adept-5 is in the forwarding path
from the memory stage to the register fetch stage.

The results show that Versat cores can be implemented
in different sizes with minimal impact on the frequency
of operation. However, due to the full mesh structure, the
frequency is limited to the 90-130 MHz range, depending on
the complexity of the instances.

B. ASIC Implementation Results

Versat and Adept have been implemented in the UMC
130 nm and TSMC 65 nm processes. Table IV shows the
results in terms of the technology node (N), silicon area (A),
embedded memory (M), frequency of operation (F) and power
consumption (P). The frequency and power results have been
obtained using the Cadence IC design and simulation tools.
The power figure has been obtained using the same tools and
the node activity rate extracted from simulation.

The results show that the proposed heterogeneous comput-
ing platform is competitive regarding silicon area and power
consumption. A few Adept and Versat cores consumes a few
hundred milliwatt in a 65nm process, while a single ARM
Cortex A9 core can consume about the same and occupy a
larger silicon area in a 40nm process [5].

1) Applications: The present heterogenous computing plat-
form targets applications for low cost battery operated devices.
These applications can benefit from the low energy features of
CGRAs. The applications that have been tested in the present
architecture are outlined in Table V.

The present platform is compared with an ARM Cortex-
A9 processor running the same applications. Unfortunately, it

TABLE III
VERSAT FPGA IMPLEMENTATION RESULTS FOR KINTEX-7

Instance Logic #REG RAM #DSP Fmax
(LUTs) (kbit) (MHz)

Adept-3 1041 188 133 0 68

Adept-5 2533 1405 266 4 90

Versat-1 12,510 4,396 360 16 102

Versat-2 23,750 13,158 630 25 90

Versat-3 21,184 11,740 630 21 90

Versat-4 16,647 11,699 630 36 90

TABLE IV
ADEPT INTEGRATED CIRCUIT IMPLEMENTATION RESULTS.

Core N(nm) A(mm2) M(kB) F(MHz) P(mW)

Adept-3 130 1.61 16 200 48

Adept-3 65 0.40 16 400 24

Adept-5 130 3.68 32 210 121.8

Adept-5 65 0.92 32 420 58

Versat-1 130 5.20 46 90 132

Versat-1 65 5.20 46 170 132

Versat-2 130 9.52 76 256 355

Versat-2 65 2.38 76 500 179

Versat-3 130 8.54 76 261 330

Versat-3 65 2.18 76 510 167

Versat-4 130 8.30 68 258 321

Versat-4 65 2.10 68 510 160

was not possible to compare with other CGRAs [3] because
they were not available to be programmed with the same
applications. Comparisons using published results were made
in [5] and it was concluded that they depend on the resources
of the CGRAs being compared. In [19], the multi-dimensional
K-Means algorithm was shown to run 3.8x faster while con-
suming 46.3x less energy running on Versat when compared
to the ARM Cortex-A9 system [20], [21]. Here, the results
obtained for HE-AAC 5.1 audio encoder and decoder systems
are shown in Table VI. The results for the Adept+Versat
systems have been normalized to 40nm to facilitate direct
comparison.

For the HE-AAC 5.1 audio decoder, the ARM system is
2.6x larger than the proposed implementation and consumes
1.5x more power. For the HE-AAC 5.1 audio encoder, the
ARM system is 2.4x larger than the proposed implementation
and consumes 1.9x more power. The ARM Cortex A9 system
uses the NEON SIMD unit optimized at the assembly level.
The proposed system needs to use a slightly higher operation
frequency and much more memory than the ARM system.
However, this is largely compensated by the use of simple
CPUs and data centric CGRAs which consume much less logic
resources.

V. CONCLUSION

In this work a low power heterogeneous system is proposed,
composed of RISC-V processors and Versat CGRA cores,
targeting any design flow (FPGA or ASIC). The designed
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TABLE V
AUDIO ENCODERS AND DECODERS

Audio Format #CPUs #CGRAs

MPEG1/2 Layers I/II encoder/decoder (2 chs) 1 0

AAC-LC stereo/multichannel decoder (6 chs) 1 0

AAC-LC stereo encoder (2 chs) 1 0

AAC-LC multichannel encoder (6 chs) 3 0

HE-AAC stereo encoder/decoder (2 chs) 1 1

HE-AAC multichannel encoder/decoder (6 chs) 3 1

AC3 stereo encoder/decoder (2 chs) 1 1

AC3 multichannel encoder/decoder (6 chs) 3 1

K-Means Clustering 0 1

TABLE VI
IMPLEMENTATION COMPARISON FOR HE-AAC 5.1 AUDIO CODECS

Area RAM Freq. Power
Core (40nm) / Software (mm2) (kB) (MHz) (mW)

ARM Cortex-A9 / Decoder 4.6 64 50 31.25

ARM Cortex-A9 / Encoder 4.6 64 70 43.75

3xAdept-5 + Versat-4 / Decoder 1.75 164 80 20.76

3xAdept-5 + Versat-2 / Encoder 1.95 172 80 23.31

RISC-V core, Adept, has two configurations: a small 3-stage
pipeline configuration, and a more performant 5-stage pipeline
configuration. In both instances, Adept possesses a competitive
energy footprint and resource usage. The Versat CGRA allows
for a large set of applications to be executed with minimal
energy requirements and high performance.

The RISC-V ISA enables the development of SoCs that
use one or more processor instances, free of license fees or
royalties. Moreover, the RISC-V ISA is supported by a rich
open source toolchain and a thriving developer community. In
this work, it was concluded that it is still better to develop
the RTL in-house as the available open source projects are
difficult to manipulate and extend.

When implemented in FPGA, the present platform con-
stitutes an overlay architecture. Applications run slower on
it compared to when directly mapped to the FPGA fabric.
However, using fast on-the-fly reconfiguration, Versat is able to
multiplex large virtual hardware circuits into its small CGRA,
and enable applications that otherwise would not fit in the
FPGA. The implementation results show that it is possible
to instantiate several RISC-V and Versat cores in mid-range
FPGAs and run real-world applications such as the audio
encoders and decoders presented herein. When implemented
as an ASIC, the proposed heterogeneous computing platform
consumes close to 3x less silicon area and 2x less energy
compared to an ARM Cortex-A9 system equipped with the
NEON SIMD unit.
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