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Abstract — The emerging concept of smart cities demands for a 

large number of electronic devices, like sensors and actuators, 

distributed over several public spaces and buildings. The Internet 

of Things (IoT) has a key role in connecting devices to the 

Internet. However, the significant number of devices makes the 

maintenance task of the entire network difficult and expensive. 

To mitigate this problem, considerable research efforts have been 

made to develop energy-aware devices capable of self-sustainable 

operation, by harvesting their energy from various sources. In 

this paper, we study the possibility of harvesting energy from the 

light flowing in the Gigabit Passive Optics Network (GPON) to 

supply low-power devices. Since most cities already have a 

working GPON installation, using this installation to 

interconnect and power IoT devices can be a viable and less 

expensive solution, instead of installing new dedicated networks. 

This is also an interesting solution to convey communications and 

energy to low-power applications where access to the power grid 

is unfeasible. This study is focused in the 1550 nm wavelength, 

whose available optical power, in residential premises, is between 

-7 dBm and +2 dBm. With this range of optical power, and with 

a 30% efficiency photodiode, we show, for the worst-case scenario 

of the GPON, how it is possible to harvest 62 µW of energy at the 

Maximum Power Point (MPP). 

Keywords: Energy harvesting, photodiode, optical fiber, 

GPON, IoT, wireless sensor networks, smart cities. 

I. INTRODUCTION 

Powering electronic devices using an optical fiber is a widely 

studied topic. The earliest work in this domain, which 

consisted on remote powering an alarm, was presented by 

Deloach et al. [1]. Since then, various power-over-fiber (PoF) 

systems have been proposed in the literature [2]-[21]. The 

development of devices capable of being powered from the 

same optical fiber they use for communications is a very 

challenging task. However, the motivation for addressing this 

challenge is sustained by several advantages. The power 

supply block that harvests energy from fiber is immune to all 

forms of electromagnetic interferences, short-circuits and 
electrostatic or atmospheric discharges [2]. Moreover, optical 

fibers also have low attenuation and are capable of working up 

 

 

 

to considerable distances, in excess of 20 km [3], thus 

constituting an interesting solution to be used in remote 

locations where power from the grid is not available. 

The solutions that currently exist use optical sources with 
high power and dedicated fibers for powering purposes. Some 

PoF applications exist such as powering and reconfiguring 

remote nodes with and without batteries [5]-[6], powering 

optical splitters [7]-[8] and monitoring and signal measuring 

systems [9]-[10]. However, most of these applications make 

use of proprietary communication protocols that are not 

compatible with the existing telecommunication networks. 

This incompatibility makes it difficult, or even impedes, the 

establishment of low-cost sensor networks.  

For smart city applications, where the implementation of 

large-scale sensor networks will be needed, the use of the 

GPON can be a viable and less expensive solution than 
installing dedicated networks. Most cities have installed 

GPONs that provide 2488 Mbps links for television, internet 

and telephone into residential buildings. The use of the 

existing networks for sensor interconnection has the advantage 

of simultaneously providing a communication channel and 

device powering, while avoiding the use of additional electric 

cables. The use of the latest generation networks to power 

sensors, as well as other devices, has been yet little explored 

[11]-[12]. Therefore, this paper presents a study on the 

possibility of using the light flowing in these networks, namely 

GPON, to supply energy to devices with low-power 
requirements. 

In GPONs three communication bands are used: (1) the 

upstream band, with wavelengths between 1260 nm and 

1360 nm, (2) the downstream band, between 1480 nm and 

1500 nm, and (3) the RF video-overlay, between 1550 nm and 

1560 nm. The latter band is used for broadcasting analog and 

digital television channels. This band is the most suitable for 

energy harvesting because the optical power, available in the 

1550nm wavelength, ranges between -7 dBm and +2 dBm. 

Within this range, devices can extract between 60 μW and 

475 μW.  

This paper is organized as follows: Section II presents the 
state-of-the-art and discusses the existing PoF methods that are 
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currently used to power electronic devices, using optical fiber. 

Section III describes the methodology and the components that 

were used in the practical setup for measuring the amount of 

energy that can be harvested from the RF video-overlay band. 

Section IV presents the experimental results and a discussion 

on the feasibility of the proposed approach and Section V 

concludes this paper. 

II.BACKGROUND AND RELATED WORK 

The use of optical fiber telecommunication networks with 
powering features began to be researched in the late 1990s. 

The powering of devices on the client side, e.g. telephone or 

modems, was the focus of that research. It was demonstrated 

that the application was not feasible because of the relatively 

big amount of power required by the equipment on the client 

side [6], [11], [17]. However, one must stress out that from this 

research it has resulted the testing of a system that provided 

the client with 0.5 W of power. A similar application for local 

optical fiber networks was presented by Miyakawa [18]. 

PoF is currently being used in remote sensor systems and 

power distribution networks [13]. Two different architectures 

are being used for optical power transmission: wavelength 
division multiplexing (WDM) and space division multiplexing 

(SDM). Some applications use the combination of both [3]-

[4]. 

In SDM, depicted in Fig. 1 a), one or more fibers are used 

solely to power a device, while communication signals are 

allocated on another fibers [4]. Recently, for SDM, the use of 

double-clad fibers has been proposed to allow for the 

transmission of data in the core (in single mode) and the power 

in the second outer layer [14]-[15]. This architecture has the 

advantage of avoiding the need for using optical filters to split 

power and data, and interference between power and 
communications. The optical power transmitted is limited by 

the characteristics of the fiber. As an example, a SDM 

application is provided by Yasui et al. [16], where a system 

was developed to operate in high voltage environments, while 

providing 2 W continuously. 

 

 
a) 

 
b) 

Fig. 1. a) SDM architecture and b) WDM for remote power supply. 

 

 

In WDM, shown in b), the channels are separated into several 

different wavelengths over the same fiber. One of the 

wavelengths is used for powering purposes and, at least, two 

more wavelengths, for sending and receiving data. At the 

terminal devices, the various wavelengths are separated using 

dielectric filters and the optical energy from the energy carrier 

is converted into electrical energy, using a photodiode. 

Comparing both architectures, WDM has the advantage of 
using only one fiber for both PoF and data. In the past, Peña et 

al. [19] showed how remote devices can be powered 

(extracting up to 205 mW) with WDM. In another application, 

Nango et al. [20] showed how to power remote sensor nodes 

for measurements of the electric field radiated in anechoic 

cameras. Nevertheless, PoF applications over the GPON are 

severely limited by the energy optimization of the network 

[21] and mainly by the characteristics of the single mode fibers 

being used [4]. In particular, the nonlinearities existing in this 

kind of fiber, such as the Brillouin and Raman scattering, 

introduce a low return loss, limiting the maximum power in 

single mode fibers to 20 dBm. The safety limits for laser 
emission into the fiber are defined in the IEC/EN 60825 

standard and the maximum allowed levels are about hundreds 

of milliwatts, so as not to render the fiber inoperable because 

of micro curves [4], [6], [17]. 

The IoT research domain has been focusing on energy 

harvesting solutions based on the light [22], Radio Frequency 

(RF), and vibrations [23]-[25]. The use of the energy coming 

from the normal operation of the fiber has not drawn too much 

attention [26]. The main reason is because the optical power in 

data transmission, using wavelengths ranging from 1310 nm 

to 1490 nm, is quite small, -30 dBm. However, as it was 
already said, the power of the RF video-overlay service, in the 

1550 nm wavelength, is substantially higher (-7 dBm to 

+2 dBm). Moreover, since this is a unidirectional service, the 

service provider cannot alter or adjust the power as a function 

of the number of clients using this service. Therefore, this 

opens a novel PoF opportunity for low-power IoT 

applications. 

III. DESCRIPTION OF THE IOT NODE BLOCKS  

The IoT node proposed in this paper consists of a harvester, 

a power management unit (PMU), an energy storage device 

and a load, as shown on the right-hand side of Fig. 2. To 

harvest the energy from the fiber optics network, a PIN 
photodiode is used. The energy obtained by the harvester can 

be stored, or it can be transferred directly to the load. The 

storage uses a capacitor sized for the specific energy 

requirements of the application. As a proof of concept, a 

microcontroller and a LED are used as a load. 

One assumes that the node will work in a duty-cycling mode, 

meaning that the device has an active period, TON, and an idle 

period, TOFF, as shown in Fig. 3. 

The operation duty-cycle is given by 

� = ��	��	 + ���� = ��	� . (1) 

Using a simplified energy balance approach, one can design 

the storage capacitance needed for a specific application.  
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Fig. 2. Schematic illustration of the GPON (on the left) with the Optical Line Terminal (OLT) and the RF video-overlay OLT (VOLT) combined with a 

wavelength division multiplexer (WDM) and an optical splitter. On the right-hand side is the system block diagram of the IoT node with the harvester (PIN 

photodiode), PMU, storage and the load. 

 

 

 

Fig. 3. Power and energy budget for duty-cycling mode. 

Thus, if the incident power and the temperature are constant, 

the energy supplied by the harvester can be described as 


� = � ��  �� =�� �� × �, (2) 

where PH is the instantaneous output power of the harvester 

and T is the cycling period. 

Regarding the load power supply, two energy levels must be 

considered. When active, the energy required by the load is 

given by 


�� = � ������ �� = ��� × ��	, (3) 

where PLA is the instantaneous load power when active. When 

the load is idle, its energy consumption is given by 


�� = � �����  �� = ������� = ���!� − ��	 #, (4) 

where PLI is the instantaneous load power when idle. 

Considering a capacitor as the storage element, the energy it 

can accumulate is given by 
% = &' ()*' , (5) 

where C is the storage capacitance and VC is the voltage level 

of the storage element. It should be noted that the node cannot 

consume all the stored energy, because a minimum voltage, VCmin, is required to supply the PMU. Thus, the usable energy 

in each cycle is given by 
0% = &' (!)*123' − )*145' #, (6) 

where VCmax is the threshold voltage level to protect the storage 

element from overcharging. This threshold can be configured 

in the PMU. 

To obtain a self-sustainable node, the following criteria are 
required: 

89 ∙ � ∙ 
� + 
0% ≥ 
��,                    when active
9 ∙ !1 − �# ∙ 
� ≥ 
�� + 
0% ,             when idle, 

(7a) 

(7b) 

where η is the efficiency of the PMU.  

Substituting (1), (2), (3) and (4) into (7) and assuming that 

all the stored energy will be delivered to the load, results in  

89�� ��	 + 
0% = �����	 ,                     when active
9�� !� − ��	 # = ���!� − ��	# + 
0% , when idle . (8a) 

 (8b) 

Solving (8a) to EUS results in 


0% = !��� − 9��#��	 . (9) 

Substituting (6) into (9) and solving to C, one obtains the 
minimum capacitance for the storage element, given by 

( = '!IJKLMIN#���OPQRST LOPQUVT  . (10) 

Adding (8a) to (8b) gives 

9��� = �����	 + ���!� − ��	#, (11) 

from which the duty-cycle is obtained:  

� = 9�� − ������ − ��� . (12) 

It is clear from (12) that the usable power ηPH must be larger 

than the idle load power, i.e. ηPH  > PLI for the system to be 

self-sustainable. 

 

A. Harvester characterization and modeling 

The photodiode is used in photovoltaic (PV) mode, working 

as a PV cell. In this mode, the photodiode generates a current 

(photocurrent) proportional to the incident light power that it 
receives in its active area. The equivalent electrical model of a 

PV cell consists of a light-induced current source (I1), in 

parallel with a diode D (acting as a voltage limiter), a shunt 

resistance (Rp) and a series resistance (Rs), as shown in Fig. 4. 

 

Fig. 4. Equivalent electrical model of a PV cell. 
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The series resistance is due to the resistance of the metal 

contacts, ohmic losses in the front surface of the cell, impurity 

concentrations, and junction depth. From the electrical model 

(Fig. 4), the output current (Iout) is given by 

 ^_`a = b cdcdecfg h &̂ − %̂ bijklmnopfUlmnVqr − 1g − Olmncd s, (13) 

 

where IS is the limit of the current in the diode under high 

reverse bias, q is the electron elementary charge 

(1.60217657 × 10-19 C), k is the Boltzmann constant 

(1.380648813 × 10−23 J/K), T is the ambient temperature, 

expressed in Kelvin, and n is the emission (or ideality) 

coefficient, which equals 1 for an ideal diode. Moreover, if the 

diode did not exhibit breakdown, the maximum reverse current 

that one could get through the diode, with an infinite reverse 

bias, would be IS. Another definition for it, is that it is the “dark 

saturation current”, i.e. the diode leakage current density in the 

absence of light. 
Measurements were obtained using the fiber triplexer 

ITR-D3T-SD6-2 from the Source Photonics manufacturer. 

Using a triplexer has the advantage of having WDM that 

separates light for device powering (in the 1550 nm 

wavelength) and light for the data, as shown in Fig. 5. 

 

 

Fig. 5. Internal block diagram of the optical fiber triplexer ITR-D3T-SD6-2, 

from the Source Photonics manufacturer. 

 

The PIN diode of the triplexer is usually used to demodulate 

the RF video-overlay signal and was not specifically designed 

for energy harvesting purposes as a PV cell is. Thus, this 

photodiode needs to be studied for this kind of assignment. As 

such, to assess the power that can be harvested from the 

GPON, the PIN photodiode was characterized, for several 

optical power levels. 

By measuring the output voltage and current of the PIN 
photodiode for several load values, we obtained its I-V 

characteristics, which is shown in Fig. 6. The PIN photodiode 

characteristics were obtained for distinct optical power levels, 

measured using a JDSU OLP-35 optical power meter. 

From Fig. 6, the open circuit voltage of the harvester can be 

obtained. This is an important parameter because it sets the 

minimum cold start voltage of the PMU. 

 

 
Fig. 6. Photodiode I-V characteristic measured values for various incident 

optical power values. 

 

 

Fig. 7. Photodiode P-V characteristic for various incident optical power 

values. 

From the I-V characteristics it is possible to obtain the P-V 

characteristics, shown in Fig. 7, which are important to 

determine the Maximum Power Point (MPP). Fig. 7 shows the 

output power (�_`a = ^_`a × )_`a) extracted from the 

harvester as a function of the output voltage. 

By looking into Fig. 7, one can inspect which is the ratio 

between the voltage of the MPP and the open circuit voltage 

(VOC). This ratio (k), for each incident optical power, is 

computed and documented in TABLE I. 

TABLE I 

RATIO BETWEEN VMPP and Voc 
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Optical input 
power Pin 

(dBm) 

Open circuit 

voltage Voc 

(V) 

MPP 
voltage 

VMPP (V) 

Ratio 

k = VMPP/Voc 

(%) 

-6.85  0.535  0.438  81.78  

-10.55  0.512  0.429  83.77  

-14.24  0.481  0.400  83.29  

-17.05  0.466  0.374  80.37  

-19.47  0.450  0.360  80.00  
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The value of the k ratio agrees with the ones commonly 

known in the literature, for example, in [27].  

Through the analysis of Fig. 6 and Fig. 7, it is possible to 

extract some simple data concerning the performance of the 

photodiode. This information is summarized in TABLE II. An 

important parameter is the conversion efficiency of the 

harvester (ηE), which is defined as the ratio between the 

maximum power output of the harvester, i.e. the power at the 
MPP, and the optical incident power, shown at the rightmost 

column of TABLE II. 

TABLE II 

MEASURED CHARACTERISTICS FROM THE PHOTODIODE 

Optical 
incident 
power 

Pin 
(dBm) 

Short 
circuit 
current 

Isc 
(µA) 

Open 
circuit 
voltage 

Voc 
(V) 

Maximum 
output 
power 
Pmax 
(µW) 

Efficiency at the 
MPP 

ηE 
ηE = Pmax/Pin(µW) 

(%) 

-6.85 146 0.535 62 30.0 

-10.55 64 0.512 25 28.4 

-14.24 28 0.481 10 26.5 

-17.05 15 0.466 6 30.4 

-19.47 8 0.450 3 26.6 

It is worth to note that 

�45!vwx# = 10log&�{�45!|}#~ − 30 (14) 

and that 

�45!��# = 10�UV!���#o���� . (15) 

By analyzing the data plotted in Fig. 6, along with the 

electrical equivalent depicted in Fig. 4, one can extrapolate the 

values of the parameters in the model, namely, I1, IS, n, Rs and Rp. Obtaining the value of these parameters is useful to 

simulate the behavior of the photodiode in an electrical 

simulation computer program. 

There are essentially two ways to extract the parameter’s 

values. One is solving a system of algebraic transcendental 

equations, and a comprehensive survey about it can be found 

in [28]. The other way is to use optimization algorithms that 

determine the parameters numerically. The least mean squares 

method is the most popular. The parameters are calculated by 

minimizing the error between the measured data and the 

theoretical curve and beforehand, each of the parameters to be 
obtained is bounded by a lower and an upper value, considered 

to be consistent with the order of magnitude of the true 

parameter. The photodiode parameters were extracted using 

the MATLAB® function lsqnonlin() with a tolerance of 

10-12 and a maximum number of iterations of 1000. This 

function solves nonlinear least squares curve fitting problems 
numerically. For each of the light intensities that were tested, 

the extraction of the five parameters that make up the model, 

have the results listed in TABLE III. 

In order to confirm that the extracted values are the correct 

ones, the photodiode output current function (Iout), shown in 

equation (13), is plotted using the values of TABLE III and 

checked against the measured data of Fig. 6, in order to verify 

if they match. The resulting plots are shown in Fig. 8. 

 

 

TABLE III 

PHOTODIODE EXTRACTED PARAMETERS FOR THE ELECTRICAL MODEL 

 

 
Fig. 8. Photodiode I-V characteristic with measured data (dots) and 

analytical function using extracted parameters (lines). 

By observing Fig. 8, one can confirm that there is a close 
match between the set of dots obtained by experimental 

measurements, and the theoretical function using the extracted 

parameters.  

Moreover, by using the values of the obtained parameters 

into the electrical model of Fig. 4, and using the LTspice® 

electric circuit simulator, a simulation was now run for each 

value of incident optical power. The resulting plots are shown 

in Fig. 9, where they are compared with the ones already 

shown in Fig. 8. 

Given the functions depicted in Fig. 9, it can be noted that 

there is also a very strong match between the analytical curves 
and the ones obtained by the computer simulation of the 

electrical model. 

 
Fig. 9. Photodiode I-V characteristics using analytical functions with 

extracted parameters (blue) and electrical simulation results (dashed red). 
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 Experimental measurements

 Using parameters extracted with MATLAB
(R)

 Simulated results using LTspice
(R)

Incident Power 
(dBm) 

I1 
(µA) 

Is 
(pA) 

n Rs 
(Ω) 

Rp 
(MΩ) 

-6.85 146.5 6.18 1.224 29.6 9.52 

-10.55 63.9 7.43 1.243 20.7 10.0 

-14.24 27.8 5.55 1.216 0.0 3.62 

-17.05 15.1 37.07 1.401 100.0 10.0 

-19.47 8.1 41.44 1.435 100.0 10.0 
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 Although at naked eye, the electrical model function (13), 

as well as its electrical simulation, are very close to the original 

measured values, it is important to quantify how close they are. 

As such, the plot of the relative error is shown next, in Fig. 10 

and Fig. 11, for the analytical and the simulated functions, 

respectively. 

 
Fig. 10. Relative error between the experimental currents and the ones 

obtained by the analytical functions with extracted parameters. 

 
Fig. 11. Relative error between the experimental currents and the ones 

obtained by electrical simulation of the extracted model. 

By inspecting both Fig. 10 and Fig. 11, a common pattern 

can be identified for each input power, in which the relative 

error increases with Vout, especially when it approaches the 

value of the open circuit voltage. This is because when the 

derived function, either the analytical or the electrical 

simulated one, is in its steepest zone, there is a progressive 

increase in the deviation from the original values. This 

deviation is more critical as one gets closer to the open circuit 

voltage. Nevertheless, at the MPP (see TABLE I), for each of 

the input levels, the relative error is below 3%. In addition, for 
the most unfavorable value of the relative error, the absolute 

current error is less than 1 µA. Given that the GPON operates 

between -7 dBm and +2 dBm, the most meaningful input 

power values are those at higher levels of optical power. Thus, 

the most representative function is the one at -6.85 dBm, 

where the relative error tends to be smaller than for the other 

optical levels in the same variation zone. 

B. Power Management Unit 

The function of the PMU is to process the energy harvested 

by the photodiode, stepping it up and sending it to the storage 
element, or directly to the load, if the storage is already full. 

The selection criteria to be fulfilled must encompass a step-

up DC-DC converter capable of working with very low 

voltages, below 0.5V. The Voc of the photodiode is in the range 

of 0.4 V to 0.6V. Thus, a DC-DC step-up converter, with the 

capability of having a cold start input voltage below the lower 

bound of this range, must be selected. If the demand for this 

worst case is met, the PMU will always start. 

Thus, such a converter was selected, consisting in the 

ADP5091, provided by Analog Devices®. This integrated 

circuit was chosen because of its functional characteristics and 

for being a relatively recent device in the market. The cold start 
operating input voltage of the ADP5091 is 380 mV [29]. This 

PMU has an evaluation board whose features were sufficient 

and suited, on one hand, to have the voltage coming from the 

photodiode stepped-up, and on the other hand, to have a 

supercapacitor being charged with the energy harvested from 

the photodiode. The abovementioned board is shown in Fig. 

12. 

 

Fig. 12. Photograph of the ADP5091-2-EVALZ evaluation board [30]. 

This board encompasses a ADP5091 PMU, a storage 

supercapacitor, and additional circuitry (resistors, mainly) to 

configure key voltage levels. This PMU can charge storage 

elements such as rechargeable batteries, supercapacitors, or 

even conventional capacitors. 
The ADP5091 PMU performs Maximum Power Point 

Tracking (MPPT), which keeps the input voltage ripple in a 

fixed range near the MPP of the harvester. The purpose is to 

make the harvesting process as efficient as possible. Moreover, 

it has sensing modes with programming regulation points of 

the input voltage, which allow for the extraction of the highest 

possible energy from the harvester. A programmable 

minimum operation threshold enables shutdown during a low 

input condition. A typical operation circuit, taken from the 

manufacturer datasheet [29], is shown in Fig. 13. 

The adopted settings for the proposed approach mainly make 
use of the TERM pin (bottom right-hand side of Fig. 13), 

whose function is to set the value up to which the 

supercapacitor will charge (VCmax, previously defined). Using 

the default settings of the board, this voltage is preset to 3.5 V. 
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Fig. 13. Typical application circuit [29]. 

To perform the MPPT, and based upon the data gathered in 

TABLE I, the value of k that was chosen to work with the DC-

DC converter is 82%. This value can be set by establishing a 

voltage divider over the input voltage. One can check in Fig. 
13 that, at the left-hand side, between the VIN terminal and the 

ground terminal, there is a voltage divider, yielding a voltage 

to the MPPT pin. The ratio of this voltage divider is the one 

that needs to be set, to have k ≈ 0.82 (see TABLE I). Thus, the 

pull-down resistor (R18 in [30]) is set to 18 MΩ, keeping the 

default value used the evaluation board. However, value of the 

pull-up resistor (R15) needed to be adjusted to 3.9 MΩ, leading 

to a change in the original value used by the board, so that the 

value experimentally determined for k could be met. In fact, 

when wiring together the photodiode and the board, and using 

the original supercapacitor shipped with it (0.1 F), it takes 
8h47m to fully charge it to 3.5 V. If the original setup was used 

instead (with R15 = 4.7 MΩ), it would take 9h11m to achieve 

the same goal. Thus, it takes 24 minutes more, as the MPP is 

deviated from the optimum point, confirming the importance 

of setting the MPPT voltage divider to the value determined in 

TABLE I. 

Even though the board itself is fitted with a 0.1 F 

supercapacitor, this capacitor was replaced by several other 

capacitors with higher values, to store more energy and study 

the charging curve over an extended period of time. 

 

C. Storage device 

The harvested energy is stored in a supercapacitor. This 
device has the purpose of storing energy using a double layer 

between an electrolyte and a solid, in which the inner structure 

is composed by two electrodes immersed into an electrolyte, 

which can be liquid or solid, and that are separated by a 

membrane. These capacitors differ from rechargeable batteries 

because they store energy at the surface of the electrodes, 

unlike batteries, that store energy thanks to an electrochemical 

reaction. Because of this, supercapacitors can stand a higher 

number of charge and discharge cycles than batteries can, 

being suited for applications where this kind of regime is usual. 

The number of these cycles can be as high as a million, leading 
to an operational lifetime of ten years, until the capacitance 

value starts to show some signs of degradation [31], because 

of the degradation of the electrodes and of the electrolyte 

solution. One very appealing factor about supercapacitors is 

that they do not require specific charging circuits, being able 

to stand trickle charging. 

Supercapacitors are inexpensive, making them very 

appealing to use in opposition to rechargeable batteries, as 

these are more expensive. Examples of systems that are 

designed to make use of a supercapacitor to store harvested 

light energy can be found in [32]-[33]. There are also some 

applications that use both a battery and a supercapacitor [34]. 
These act as primary and secondary energy storage, 

respectively. 

With rechargeable batteries, there are only a few typical 

voltage ratings, depending on the technology being used. With 

supercapacitors, these ratings are much more diverse, similarly 

to regular capacitors. This factor is also important, not only 

because of the end application, but also because it can result in 

a smaller device, if a lower voltage rating is allowed. Fig. 14 

shows the supercapacitors that were selected to be used in the 

experiments with the energy harvesting application in this 

work, all of them having a rating of 5 V.  

 

 

Fig. 14. Supercapacitors selected for the application (5 F, 3 F, 1 F and 0.1 F). 

It must be considered that, for typical low-power energy 

harvesting applications, the size of the whole system is 

intended to be small. As such, although the capacitance value, 

for supercapacitors, can reach values as high as 3000 F, for 

practical small sized applications, due to body size restrictions, 

the selected supercapacitors must have lower values, as well 

as their voltage rating. 

The higher the capacitance value, the larger will be the 

leakage current due to self-discharge. Moreover, the leakage 
current increases in proportion to the increase in the voltage at 

the terminals of the supercapacitor. The leakage current can be 

modeled as a resistor placed in parallel with the capacitor. 

According to the manufacturer’s datasheet [35]-[36], the 

leakage current for each capacitor in Fig. 14 is presented in 

TABLE IV. 

TABLE IV 

LEAKAGE CURRENT FOR THE SUPERCAPACITORS THAT WERE USED 

Capacitance 

(F) 

Leakage current @20ºC and @5.0V 

(μA) 

0.1 3 

1.0 12 

3.0 16 

5.0 25 

IV.EXPERIMENTAL RESULTS 

Some experimental results have been determined so far, 

given that the photodiode was characterized from an 

experimental point of view. From the set of measurements, by 

varying the output conditions of the photodiode from short 



circuit to open circuit, it was possible to obtain the various 

values of current that, subsequently, allowed for obtaining the 

data in TABLE I, TABLE II and TABLE III. 

The measurements setup is shown in Fig. 15, which includes 

one oscilloscope (Tektronics TDS 2004B) and two digital 

multimeters (Agilent Keysight 34401A). The laser was 

generated using a JDSU (OLS-38), at the wavelength of 

1550 nm and a power of -7 dBm. 
 

 

Fig. 15. Photo of the measurements setup. 

 

A. Performance of the supercapacitors 

Several tests have been run to determine how long would it 

take to charge a supercapacitor of a given value, connected to 

the BAT pin of the DC-DC converter, from a 0 V condition 

(cold start). Just as described in section III.B, the terminal 

voltage of the charging process is set to 3.5 V. For each of the 
devices shown in Fig. 14, the results of their charge, using an 

optical incident power of -6.85 dBm, at the wavelength of 

1550 nm, have been recorded. The voltage variation at 

terminals of the supercapacitor (VC) is shown for each unit. The 

horizontal axis is normalized to hours per Farad, so that all the 

voltages representing the charge can be compared on a 

common basis. 

 

Fig. 16. Normalized voltage variation (during charge) of the supercapacitors. 

The time needed to charge each of the supercapacitors up to 

3.5 V (starting from zero), is indicated in TABLE V, as well 

as their stored energy. From Fig. 16, one can conclude that the 

supercapacitor that has the highest rate of charge per unit of 

capacitance is the one with 1 F. 

TABLE V 

CHARGING DATA FOR EACH SUPERCAPACITOR 

Capacitance 
(F) 

Time of charge to 3.5 V 
(days hours minutes) 

Stored energy 
(J) 

0.1 00d 08h 47m 0.6125 

1.0 03d 09h 10m 6.1250 

3.0 14d 16h 09m 18.375 

5.0 33d 16h 18m 30.625 

 
Although, in principle, this does not agree with the data in 

TABLE IV, it is to note that both the temperature and the 

working voltage that were used are not the same as in the 

datasheet, nor constant. Moreover, when referring to the 

source of input power to the circuit (the photodiode), one must 

bear in mind that temperature is a variable to consider for the 

current generation. For those longer periods of time to get the 

supercapacitor fully charged, the temperature variation is 

bigger, given that it spans for a full 24-hour cycle, for several 

days. Also, a common remark for any of the capacitances 

reported in Fig. 16, is that when the voltage reaches slightly 
less than 2.5 V, the charging regime suffers a change. This 

change is directly associated with the mode of operation of the 

DC-DC converter, when it enters synchronous mode [29] and 

the output voltage is driven to follow the voltage of the storage 

device.  

 

B. Powering an electronic application 

As described in the datasheet of the ADP5091, the average 

value for the efficiency of the DC-DC converter is about 80% 

(assuming its worst-case scenario). To check if the approach 

tried in this paper is feasible, a simple electronic application 

was built. The power supply is obtained from the PMU to 

demonstrate that it is possible to harvest energy from the 
GPON, store it, and use it to supply a low power IoT sensor 

node. The application consists of a PIC16F1459 Micro 

Controller Unit (MCU), running a program that periodically 

turns a LED on and off using a very low duty-cycle. The 

timings where calculated so that this application, after starting 

up, could permanently remain in operation. During the interval 

of time when the LED stays turned off, the MCU remains 

turned on, in a sleeping mode, maintaining the internal 

oscillator running and the watchdog timer to periodically wake 

up. A picture of this application, being powered by the PMU, 

is shown in Fig. 17. 

 

Fig. 17. Electronic application: powering a MCU that flashes a LED. 
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The optical generator provides a laser with an incident power 

of approximately -7 dBm (actually, -6.85 dBm), which is 

converted to electrical power by the photodiode and is 

delivered to the PMU that manages the charge of a capacitor 

and the power supply for the application. 

In Fig. 18, it is shown a cold start of the PMU, where it can 

be identified the various stages that the supplying voltage goes 

through until it starts powering up the MCU. 

VSYS

VBAT

Fast charging

Main boost in
asynchronous mode

Main boost in
synchronous mode

MCU
Power up

 
 

Fig. 18. Phases of operation, from cold start until the MCU (load) powers up. 

As it can be seen Fig. 18, this takes about 72 s. Note that 

when VBAT reaches about 2.5 V, i.e. about 60 s after the cold 

start, the DC-DC converter enters the synchronous mode, as 

already mentioned. VBAT is the name adopted by the 
datasheet of the ADP5091 to identify the voltage of the storage 

device. However, this voltage has been introduced before in 

this paper and is named VC. VSYS is the output voltage of the 

PMU, which directly interfaces with the load to supply it. 

The ADP5091 is configured to swing the charging and 

discharging voltages of the storage element between VCmax = 3.2 V and VCmin = 2.5 V, respectively. Let us consider 

the scenario where the load, when active, requires PLA = 2.5 mW during TON = 211 ms and PLI = 35.5 μW, when 
idle. According to (10) and (12), the value of the storage 

capacitance will be C = 259 μF and the duty-cycle δ ≈ 0.5%. 

Using the E6 series, the nearest capacitance value is 330 μF. 

The cycling period is T = TON / δ = 42.2 s. 

Since the capacitor is small, when there is a demand for 

energy, it rapidly drains out. This is the reason why there is a 

drop in the value of VSYS and VBAT when the MCU is turned on, 

because the first thing it does is to turn the LED on, thus 

demanding a reasonable amount of current. 

The current consumption when the MCU is in sleep mode is 
12.5 µA, as measured using a digital ammeter. When the MCU 

wakes up, it turns the LED on for approximately 211 ms 

increasing the supply current to 880 μA. In addition, it can also 

be noted that the decreasing variation in VBAT is approximately 

500 mV, as shown in Fig. 19. To have a broader perspective 

about how the voltages in Fig. 19 evolve over time, one can 

observe Fig. 20. 

From the above results we conclude that the minimum usable 

power that can be extracted from a GPON is 48 µW, 

for -7 dBm (200 µW) of optical power, assuming an efficiency 

of 30% for the photodiode and 80% for the DC-DC converter. 

If a more power demanding application is to be supplied, a 
longer interval must be allowed for the storage device to 

charge, in addition to having a device with a higher storage 

capacity. If the purpose is to supply a ONT module for data 

transmission, encompassing the phases that go from powering 

up the module, obtaining the IP address and then 

communicating the intended data, enough energy must be 

harvested. 

After the characterization of the various supercapacitors, it is 

possible to estimate the energy needed to power a GPON 

Small Form-factor Pluggable Optical Network Terminal 

(GPON-SFP-ONT). These have a lower power consumption 

when compared to the power that other ONTs put available to 
customers through service providers. 

 

 

Fig. 19. Detail showing the current consumption and related waveforms. 

 

Fig. 20. Variation of the working voltages during long term operation. 

In TABLE VI, the consumption of some GPON-SFP-ONT 
modules is shown, to serve as a guide to size the features of 

the supplying system. 

TABLE VI 

SFP GPON-ONT MODULES 

Manufacturer / Model 
Current 

[mA] 

Power 

[W] 

Finisar FTGN2117P2xxN 450 1.418 

WTD RTXM167-522 200 0.627 

MicroTik FG1537TWGPA04T8 600 1.884 

Prolabs GPON-SFP-OLT-B+-NC 500 1.565 

Delta Electronics OPGP-34-A4B3SL-B 400 1.252 



Let us consider the use of the less power hungry GPON-SFP-

ONT in TABLE VI, the WTD RTXM167-522 [37], which has 

a bit rate of 2488 Mbps for upstream and 1244 Mbps on 

downstream. If this device is used for 10 seconds, to 

periodically transmit data collected over a relatively long 

period (e.g. billing telemetry), system sizing can be carried out 

as follows. For the same voltage swing in VBAT (VC) as before, 
if a constant power of 627 mW and an ON time of 10 s is 

considered, according to equations (10) and (12), the value of 

the storage capacitance is C = 3.2 F and the duty-cycle is 

δ ≈ 19.94×10-6, i.e T = 5.8 days. Note that this result does not 

take into consideration the leakage current of the storage 

device, which increases with larger capacitance values. For a 

capacitance of 3 F, the leakage current cannot be neglected, as 

shown in Fig. 16 and TABLE IV. Moreover, considering the 

leakage and temperature variation, one obtains (from Fig. 16) 

a charging time of 3.17 days, i.e. 3 days and 4 hours. However, 
note that the charging times in Fig. 16 are taken with no load, 

i.e. PLI = 0 µW, which explains the shorter charging time, 

compared to theoretical expected results. 

V. CONCLUSIONS 

This paper presented a feasibility study about harvesting 

light energy flowing in GPON, store it, and use it to supply 

low-power nodes for the IoT. The harvested light comes from 

the RF video-overlay wavelength in 1550 nm. The 

instantaneous energy extracted from the fiber is small and, in 

the worst case, it is 60 µW. Storing it into a supercapacitor 

over time, allows for periodically powering an application with 

more demanding requirements. 
Experimental results show that it is possible to power 

low-power nodes from a GPON with low duty-cycle activity 

and extremely low power when devices are in idle or sleeping. 

In the worst case, it should be less than 48 µW. The theory was 

validated by a prototype that periodically powers a 2.5 mW 

load during 211 ms, with a period of about 44.8 seconds. With 

an incident power of -6.85 dBm, the present study can serve as 

a worst-case scenario that can be obtained from the GPON. 

A theoretical scenario to power a GPON ONU with a 

627 mW during 10 seconds with a periodicity of 6 days was 

presented. Theory shows that it is possible to power a IoT node 
from the GPON and use the GPON to send the collected data 

to a remote server. 

A design framework was derived, so that the designer can 

conveniently determine both the values of the storage 

capacitance and the operating duty-cycle. In the approach that 

was followed, a working methodology was also established to 

characterize the harvester photodiode using a numerical least 

squares approach and establish its electrical model. In 

addition, several supercapacitors were studied, by letting them 

charge over a large period, encompassing several days, as it 

would happen in a real low duty-cycle situation. From this 

study, the effects of the leakage current were observed. A 

commercial PMU was selected, to manage the charging 

process of the storage device and to serve as the power supply 

to the load. The circuitry around the PMU was configured to 

be in accordance to the MPP of the harvester, thus enabling 

MPPT. 
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