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Abstract—In the context of IoT, silicon devices are employed
to perform intense signal processing computations. They tend
to operate under heavy constraints for power and area, tra-
ditional computing paradigms struggle to exhibit high levels
of availability and fault-tolerance. Stochastic Computing is a
computing paradigm that provides fast and compact implemen-
tations of arithmetic operations, with high levels of parallelism,
and graceful degradation. Stochastic Computing is based on the
computation of pseudo-random sequences of bits, hence requiring
only a single bit per signal. Because of that, FPGAs are often
adopted to implement such systems. This work presents a rapid
prototyping framework that takes a high-level specification from
the user and creates a complete Stochastic Computing systems
capable of interfacing analog sensors directly on the FPGA,
and perform signal processing computations over the stochastic
bitstreams.

Index Terms—Approximate Computing, Fault-Tolerance,
Stochastic Computing, Stochastic Bitstreams, FPGA, Prototyping
Framework, IoT.

I. INTRODUCTION

Stochastic arithmetic has emerged as a computing paradigm
that provides approximate computations requiring less hard-
ware, towards a solution with simpler but massively parallel
components, trading off precision for computation time [1].

Applications such as neuromorphic systems [2], Bayesian
inference [3], digital filters [4], [5], and cyber-physical sys-
tems [6] are characterized for their regularity in their datapath.
Their computations are mainly based on multiple multiplica-
tions followed by accumulations. Moreover, many of these
applications do not require exact results and can tolerate some
deviations in their computations.

Insofar, the majority of research conducted on Stochastic
Computing (SC) is confined to a set of applications, which
are highly customized, and difficult to extend its adoption.
Furthermore, the benefits of SC are not always clear due to the
resources of the supporting elements and the clock latency to
process long bitstreams. Often, the benefit of SC is shadowed
by the latency and resources required to interface a traditional
computing systems.

The main challenge addressed in this paper is to ease the
definition and evaluation of a Stochastic Processor (SP) to
compute mathematical expressions as alternative to other more
time consuming and prone-to-error design approaches, and
without having to delve into the technicalities of High-Level
Synthesis (HLS).

Fig. 1. Example of a stochastic bitstream encoding 0.625 and 0.25 in unipolar
and bipolar encodings, respectively (left); and architecture of basic stochastic
arithmetic units: multiply, sum, negative and square (right).

The main contribution of this work is a highly customizable
and scalable framework that given a datapath’s specification,
it generates the corresponding SP, and its supporting blocks,
targeting Field-Programmable Gate Arrays (FPGAs). This
work is intended to facilitate automated architectural changes
via unified and regular interfaces, and design-space exploration
often sought in research due to the long execution times.
Moreover, this work provides an early assessment of resources,
power and performance metrics. This enables the usage of
the SC in stand-alone stochastic systems or accelerators for
heterogeneous and System-on-a-Chip (SoC) platforms.

By definition, a stochastic signal is the result of a
continuous-time stochastic process which produces two values:
0 and 1. According to [1], a stochastic bitstream is a sequence
of stochastic signals over time whose value is within [0; 1]
for unipolar, or within [−1; 1] for bipolar. It is defined as
the number of ones (1) over the total number of bits. On
stochastic bitstreams there are no weights in the representation,
as in typical binary-radix representation, thus all bits have the
same contribution for the encoded value. For example, the
same sequence of 8 bits 10110110 represents 5/8 = 0.625 in
unipolar and 2 ∗ (5/8 − 0.5) = 0.25 in bipolar. Stochastic
bitstreams intrinsically provide graceful degradation as the
impact of bit-flips on the bitstream, regardless their position
on the bitstream, is the same as the least significant bit, in
binary-radix.

Fig. 1 illustrates the aforementioned stochastic bitstream.
On top there’s the clock signal, to ensure synchronism; and
on bottom the encoded value.

To perform arithmetic computations several stochastic arith-
metic units have been proposed, including an adder, and a
multiplier, as illustrated in Fig. 1.More details on stochastic
arithmetic units can be found in the survey presented in [7]
which covers the most common arithmetic units.



Fig. 2. Top-level architecture of the circuit design to test the Stochastic
Processor, including the interface and support units.

II. RAPID PROTOTYPING FRAMEWORK

Like any datapath for signal processing, SP implements
a chain of computations, but over a bitstream. This work
proposes a novel method to specify it as a mathematical
expression, defined as a list of operands and operators in a
data structure. These mathematical expressions can be variable
in size and type of operations. The data structure is organized
as a regular tree of computations which maintains the data
dependencies in the datapath. From this data structure it is
possible to identify the requirements for a system. Essentially,
the framework recognizes the different operands and operators
for a datapath, and then generates the corresponding circuit
description in Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL).

Considering the following motivational exam-
ple of a function to be implemented: f =
1
N (in0 × in1 + in2 × in3 × in4) has the corresponding
internal representation:

[[’in0’,’in1’,’*’],[’in2’,’in3’,’in4’,’*’],’+’]

In this example, variables in0 to in4 are the inputs, or
operands, of the datapath, and f the output. The operators
are + and *, for addition and multiplication, respectively. The
inputs and outputs of the SP correspond to the number of
variables and are automatically determined.

The generated SP was planned to be autonomous or part
of a larger system, as illustrated in Fig. 2. The SP is in the
middle and the rest of the circuit is formed by the supporting
units to do the computations. The system is interfaced via the
input and output bitstreams, and also the Finite State Machine
(FSM)’s control signals, namely Clk, Enable and Reset. In
particular, the FSM is responsible for the generation of the
control signals for all units in the design. It also controls the
burn-in period to compensate the clock cycles required any
FSM-based stochastic arithmetic units present.

The conversion between binary-radix and stochastic bit-
streams is the major limitation in interfacing typical digital
systems or analog I/Os. Connecting the SP from the rest of
the supporting elements allows to integrate it in other systems,
capable of interfacing with stochastic bitstreams, such as [6].
In this work cyber-physical system interfaces analog sensors
and actuators without the need to have either analog to digital
and binary-to-stochastic converters to acquire input data; and
neither stochastic-to-binary and digital to analog converters to
drive the actuators.

In essence, performing signal processing computations on
a bitstream from a binary-radix value requires more resources

than an analog interface, but the analog interface requires a
dedicated input pin.

To improve the statistical quality of the stochastic bitstreams
on the datapath, this work adopts the Self-Timed Ring-
Oscillator (STRO) proposed in [8].

A. Test Platform

The proposed framework provides a test platform to in-
corporate any SP generated on an FPGA. This test platform
manages the input and output signals required by the SP,
along with the required conversions to be accessed by the host
computer, or analog sensors and actuators.

The test platform circuit is constituted by the circuit under
test (i.e. a simple arithmetic unit or a SP), the bitstream
generators, and the output calculators.

The framework relies on Quartus, from Altera, to synthesize
the test circuit and to produce a configuration bitstream, along
with resource consumption, and timing and power estimates.

III. CONCLUSIONS AND FUTURE WORK

This work introduces an open-source framework easy im-
plementation of SC systems for signal processing. It re-
ceives a high-level specification for a datapath and produces
a synthesizable description of a signal processing system
for SP on an FPGA. The framework is available at https:
//fenix.tecnico.ulisboa.pt/homepage/ist14551/stochastic, under
an open-source license.
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