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a b s t r a c t

Simulation models are frequently analyzed through a linear regression model that relates the input/output

data behavior. However, in several situations, it happens that different data subsets may resemble different

models. The purpose of this paper is to present a procedure for constructing switching regression metamodels

in stochastic simulation, and to exemplify the practical use of statistical techniques of switching regression in

the analysis of simulation results. The metamodel estimation is made using a mixture weighted least squares

and the maximum likelihood method. The consistency and the asymptotic normality of the maximum likeli-

hood estimator are establish. The proposed methods are applied in the construction of a switching regression

metamodel. This paper gives special emphasis on the usefulness of constructing switching metamodels in

simulation analysis.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Linear regression analysis plays an important role in many fields. A

regression metamodel may be used for interpreting the input/output

of a simulation model and, consequently, for analysing the real world

data. A simulation metamodel, usually a simple mathematical func-

tion, is an approximation of the input/output function that is defined

by the underlying simulation model (Kleijnen, 2008). Kleijnen (1975)

proposed some statistical tools for making the regression metamod-

els commonly usable, and the most popular methods for construct-

ing simulation metamodels are the polynomial regression ones; see

also (Biles, 1974). The construction and use of metamodels continues

today and comprises several types of metamodels like, for example,

linear regression metamodels (Kleijnen, 1992), nonlinear regression

metamodels (Santos & Nova, 2006; Santos & Santos, 2008), Kriging

metamodels (Kleijnen, 2009) among others. A metamodel may be

used with different purposes; for example, it may be used as a surro-

gate of a simulation model or as a building block inside a simulation

model (Santos & Santos, 2009).

However, in simulation practice sometimes we may obtain a

poor fit when a single regression metamodel is used. It happens

when simulation model behavior isn’t likely to follow one unique

regime, and that different subsets of the input/output data may fa-

vor different submodels. A different approach may be using switch-

ing regression techniques for constructing metamodels in stochastic
∗ Corresponding author. Tel.: +351 936166769.
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imulation. A switching regression model assumes that we have a

andom variable y such that E[y] is a linear function of explanatory

ariables with y ∼ N(xT θs, σ 2
s ) with probability λs, s = 1, . . . , S. So,

here are a set of S regression models characterized by the parame-

ers (θ1, σ 2
1 ), . . . , (θS, σ

2
S ), and for each observation pair (yi, xi) the

ndicator λsi chooses one among several models to obtain yi; the un-

nown parameters θ1, σ 2
1
, . . . , θS, σ 2

S
are estimated from the data.

Switching regression models are dated to at least (Quandt, 1958),

nd find applications in a wide variety of areas such as economics

Chen, 2007; McKenzie & Takaoka, 2008), finance (Fukuda, 2009), and

arketing (DeSarbo & Cron, 1988). Goldfeld and Quandt (1973) in-

roduced the Markov-switching models, in which a latent state vari-

ble (instead of a fixed probability) following a Markov-chain controls

egime shifts, meanwhile (Quandt, 1972) studies a mixture of nor-

al linear regression models where the choice between regimes is

ased on fixed probabilities. In the clusterwise linear regression con-

ext, Späth (1979) considers the regression problem where the error

ums of squares is computed over all regimes (referred by clusters) is

inimized using an exchange algorithm. Lau, Leung, and Tse (1999)

ropose a programming procedure to estimate clusterwise linear re-

ression models based on combinatorial optimization problems; see

lso Carbonneau, Caporossi, and Hansen (2011). Quandt (1972) pro-

osed the maximum likelihood method for estimating switching re-

ressions, and Kiefer (1978) studied the problem of data covering two

egression regimes and maximum likelihood methods for unknown

arameters estimation. In the maximum likelihood context, DeSarbo

nd Cron (1988) generalize the Quandt (1972) and Hosmer (1974)

tochastic switching regression models to more than two regimes.

his article extend these developments to the construction of

imulation switching regressions metamodels, where the unknown

http://dx.doi.org/10.1016/j.ejor.2015.11.033
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Table 1

Illustrative data.

xi yij

1 8.705 8.105 5.200

2 8.760 9.160 3.700

3 9.715 9.115 3.100

4 9.670 10.170 1.500

5 10.725 10.425 1.000

Fig. 1. Graphical representation of data from Table 1.
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ariances are estimated using the replications available from a simu-

ation experiment and the switching probabilities may vary with the

xperimental points, and are also estimated from de data.

This paper is organized as follows. A framework of the metamodel

ith relation to simulation metamodels and switching regression

odels is described in Section 2. In Section 3 the estimation proce-

ure for constructing switching regression metamodels is presented.

ection 4 describes an application example related to a simple man-

facturing process. The conclusions are presented in Section 5.

. Simulation metamodels

A simulation model viewed as a black-box may be represented

rough a mathematical function g(., .) as

= g(d, r0)

here, y is a vector of simulation outputs, d is the vector of input

actors of the simulation model and r0 is a vector of pseudo-random

eeds. Typically, one metamodel is constructed for each component

f y, so we consider metamodels where y has one component

= f (x; θ) + ε

here θ is the unknown metamodel parameters, and x is a vector

f metamodel inputs; for example, in the simulation of the M/M/1

ystem we may choose x1 = d1/d2 = λ/μ, where λ is the arrival rate

nd μ is the service rate. If f is a linear regression function, then a

ommon set of regression parameters is enough for describing the

nput/output characteristics of the simulation program and, conse-

uently, the simulation data may be described with only one regime.

owever, sometimes the input/output data exhibit some heterogene-

ty which produces the variation of the set of regression parameters

ver the data and, consequently, one regime may not be adequate for

pproximating the simulation input/output data. Switching regres-

ion metamodels (mixture of linear regressions) may help to over-

ome the lack-of-fit problem in these situations.

An illustrative example, where the usual regression leads to mis-

eading results, is given in Table 1 and is depicted in Fig. 1. The ad-
usted metamodel based on all data points is

ˆ = 0 x + 7.270

nd we may observe that this line poorly approximates the data. If the

bservations are split into two subsets then the following metamodel,

hich allows a good fit, is obtained

ˆ =
{

−1.06 x + 6.080, with probability λ̂1 = 2/3 (subset 1)

0.53 x + 7.865, with probability λ̂2 = 1/3 (subset 2)

. Switching regression metamodels in stochastic simulation

Consider an experimental design consisting of n different design

oints, {xil : i = 1, . . . , n; l = 1, . . . , p}, with p explanatory variables.

or each design point i, r independent replications of the simula-

ion model are carried out and the experiment yields �i j = {z̃i jk : i =
, . . . , n, j = 1, . . . , r, k = 1, . . . , o}, where z̃ is the relevant system re-

ponse, with o observations per replication. For each experimental

oint i and replicate j the observations (z̃i j1, z̃i j2, . . . z̃i jo) are split into

regimes sequentially ordered:

regime 1: �1i j = {zi, j,1, zi, j,2, . . . , zi, j,t1i j
}

regime 2: �2i j = {zi, j,t1i j +1, zi, j,t1i j +2, . . . , zi, j,t1i j +t2i j
}

regime 3: �3i j = {zi, j,t1i j +t2i j +1, zi, j,t1i j +t2i j +2, . . . , zi, j,t1i j +t2i j +t3i j
}

.

.

.

.

.

.

regime S: �Si j = {zi, j,t1i j +t2i j +···+ti jS−1+1, zi, j,t1i j +t2i j +···+ti jS−1+2, . . . , zi, j,t1i j +t2i j +...+tSi j
}

where

i j =
S⋃

s=1

�si j

he probability associated with each set �sij is estimated by

ˆ
si· = 1

r

r∑
j=1

λ̂si j where λ̂si j = #�si j

#�i j

= tsi j

o
(1)

here #� represents the number of elements belonging to the set �.

If λ̂si ≈ 1 for some i and s = 1, . . . , S, then we may assume one

egime only at experimental point i. Since λs may depend on the ex-

erimental point, when predicting the response at x between xi and

i+1 the corresponding probabilities may be computed using, for ex-

mple, interpolation of first degree. For a single input:

ˆ
s(x) = λ̂si + x − xi

xi+1 − xi

(λ̂s,i+1 − λ̂s,i)

For each regime s = 1, . . . , S, and replication j of each design point

a measure of interest ysij is determined from zi, j, k. For instance, the

ean value for each regime is

si j = 1

tsi j

k2i j∑
k=k1i j

zi, j,k

here

1i j = 1 +
s−1∑
m=1

tmi j and k2i j =
s∑

m=1

tmi j

or each experimental point i the mean and variance values of the

easure of interest each regime can now be computed

¯si· = 1

r

r∑
j=1

ysi j

ˆ 2
si = 1

r − 1

r∑
j=1

(ysi j − ȳsi·)2 (2)
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To represent the simulation model, the following mixture of linear

regressions is assumed

ȳi. =

⎧⎪⎨
⎪⎩

θ10 + ∑p

l=1
θ1lxli + ε̄1i., with probability λ1i

...

θS0 + ∑p

l=1
θSlxli + ε̄Si., with probability λSi

(3)

where ε̄si. are iid as N(0, σ 2
si
/r), i = 1, . . . , n, represents the inaccu-

racy of the metamodel (σ si > 0), s = 1, . . . , S. Assume that the mix-

ing weights λsi, 0 < λsi < 1, and the regression parameters θ =
(θ10, . . . , θ1d, . . . , θS0, . . . , θSd) are unknown, and

S∑
s=1

λsi = 1 i = 1 . . . n

We assume λsi �= 0 and λsi �= 1 because if λsi = 0 or λsi = 1, the pa-

rameters of some regime is not identified. If the regime’s probabilities

are unknown, then they may be estimated by (1).

Consequently, ȳ has a finite mixture probability density function

f (ȳ. ) =
S∑

s=1

λs√
2πσ 2

s /r
exp

[
− 1

2σ 2
s /r

(ȳ. − θs0 −
p∑

l=1

θslxl )
2

]

3.1. Mixture weighted least squares

Späth (1979) first introduced the term clusterwise regression as a

separation technique when clustering data. Instead of a separation

criterion given a set of previously known mathematical functions, the

approach proposed in this paper estimates the function parameters

from observations already clustered into different groups. Whereas

in the traditional regression model the approximating function is the

same for all subsets of the sample, that is, it assumes only one regime

(θsl = θl , for all s = 1, . . . , S and l = 0, . . . , p), the clusterwise model

assumes a mixture of linear regressions like in (3). Späth presents an

exchange algorithm to minimize the global problem

n∑
i=1

S∑
s=1

(
ȳsi. − θs0 −

p∑
l=1

θslxli

)2

In this sense, the clusterwise linear regression is a regression problem

where the error sums of squares computed over all clusters is mini-

mized. In order to assure the existence of a solution, it is required that

the number of observations is significantly larger than the number of

unknown parameters (o � dS).

In this paper, the following global estimated weighted error sum

of squares used is

n∑
i=1

S∑
s=1

λ̂si

σ̂ 2
si
/r

(
ȳsi. − θs0 −

p∑
l=1

θslxli

)2

In mixture weighted least squares (MWLSQ), all regimes must be

adjusted simultaneously, taking into account the relative estimated

variances σ̂ 2
si

and the estimated regime probabilities λ̂si, obtained

from the previously clustered observations.

Initial values are computed using estimated separated weighted

least squares (WSLQ) method for each regime.

n∑
i=1

1

σ̂ 2
si
/r

(
ȳsi. − θs0 −

p∑
l=1

θslxli

)2

Then an unconstrained nonlinear minimization is performed, using

the previously determined initial values. The use of an initial value

near the solution improves the robustness of the nonlinear search.
.2. Maximum likelihood estimation

The log-likelihood function can be expressed as

n L(λ, θ,σ2)

=
n∑

i=1

ln

{
S∑

s=1

λsi√
2πσ 2

si
/r

exp

[
− 1

2σ 2
si
/r

(ȳsi.−θs0−
p∑

l=1

θslxli)
2

]}

here λ = (λ11, . . . , λ1n, . . . , λS1, . . . , λSn), θ = (θ10, . . . , θ1p, . . . ,

S0, . . . , θSp), and σ2 = (σ 2
11

, . . . , σ 2
1n

, . . . , σ 2
S1

, . . . , σ 2
Sn

).

Using (1) and (2), the maximum likelihood approach consists on

aximizing the log-likelihood function with respect to θ, that is, con-

ists on solving the following system of equations:

∂ ln L(λ̂, θ, σ̂
2
)

∂θ
= 0 (4)

r equivalently,

∂ ln L(λ̂, θ, σ̂
2
)

∂θst
= 0, s = 1, . . . , S, t = 0, . . . , p

here,

∂ ln L(λ̂, θ, σ̂
2
)

∂θst

=
n∑

i=1

1

Vi

λ̂si√
2πσ̂ 2

si
/r

xti(ȳsi. − θs0 − ∑p

l=1
θslxli)

σ̂ 2
si
/r

exp

[
− 1

2σ̂ 2
si
/r

(ȳsi. − θs0 −
p∑

l=1

θslxli)
2

]

ith

i =
S∑

s=1

λ̂si√
2πσ̂ 2

si
/r

exp

[
− 1

2σ̂ 2
si
/r

(ȳsi. − θs0 −
p∑

l=1

θslxli)
2

]

In Proposition 1, the existence of a consistent root of the likeli-

ood Eq. (4) is established; also, the asymptotic distribution of this

onsistent root is obtained (see the verification of these results in

ppendix).

roposition 1. Let the random variable ȳsi. has probability density

unction

f (ȳi.; θ) =
S∑

s=1

λ̂si√
2πσ̂ 2

si
/r

exp

[
− 1

2σ̂ 2
si
/r

(ȳi. − θs0 −
p∑

l=1

θslxli)
2

]

(5)

here θ = (θ10, . . . , θ1p, . . . , θS0, . . . , θSp), with θsl ∈ R. Then for n suf-

ciently large there exists an unique consistent root θ̂ of the likelihood

q. (4), and the asymptotic distribution of
√

n(θ̂ − θ
∗
) is multivariate

ormal with zero mean vector and variance-covariance matrix given by

(θ
∗
)−1, where θ∗ represents the true value of the parameter θ and I(θ∗)

s the Fisher information matrix.

The system of nonlinear Eq. (4) yields the maximum likelihood

stimates (MLE). However, this system cannot be solved explicitly

nd, frequently, has non-unique solution. Consequently, numerical

ethods like, for example, Newton method or Neder–Mead may be

sed for obtaining maximum likelihood estimates. These methods

ay converge to a local solution instead of the global one, especially

f the initial guess is not sufficiently near the exact solution. How-

ver, Proposition 1 assures the existence of a unique global solution

ut, if there is more than one solution, it does not provide any infor-

ation about which solution is consistent. When conventional algo-

ithms fail in detecting the global optimum, stochastic methods like

.g. Simulated Annealing might prove to be a good alternative. Al-

hough sometimes slower, they converge to the global optimum.
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Fig. 2. Simulation model of the simplified manufacturing process.

Fig. 3. Time in system growth rate (measure of interest).
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Table 2

Simulation output data for metamodel construction (response).

xi ȳ1i· ȳ2i· ȳ3i· ȳ4i·

6.0 1.2748 × 10−1 2.3841 × 10−1 3.3526 × 10−1 4.1945 × 10−1

6.1 1.1591 × 10−1 2.1833 × 10−1 3.0894 × 10−1 3.8882 × 10−1

6.2 1.0169 × 10−1 1.9222 × 10−1 2.7238 × 10−1 3.4445 × 10−1

6.3 8.9629 × 10−2 1.7132 × 10−1 2.4585 × 10−1 3.1369 × 10−1

6.4 7.9326 × 10−2 1.5237 × 10−1 2.1977 × 10−1 2.8234 × 10−1

6.5 6.9566 × 10−2 1.3383 × 10−1 1.9355 × 10−1 2.4918 × 10−1

6.6 5.4843 × 10−2 1.0664 × 10−1 1.5555 × 10−1 2.0215 × 10−1

6.7 4.1868 × 10−2 8.1969 × 10−2 1.2057 × 10−1 1.5667 × 10−1

6.8 3.2370 × 10−2 6.3870 × 10−2 9.4196 × 10−2 1.2392 × 10−1

Table 3

Estimated variances for the simulation output data.

xi σ̂1i σ̂2i σ̂3i σ̂4i

6.0 1.2748 × 10−1 2.3841 × 10−1 3.3526 × 10−1 4.1945 × 10−1

6.1 1.1591 × 10−1 2.1833 × 10−1 3.0894 × 10−1 3.8882 × 10−1

6.2 1.0169 × 10−1 1.9222 × 10−1 2.7238 × 10−1 3.4445 × 10−1

6.3 8.9629 × 10−2 1.7132 × 10−1 2.4585 × 10−1 3.1369 × 10−1

6.4 7.9326 × 10−2 1.5237 × 10−1 2.1977 × 10−1 2.8234 × 10−1

6.5 6.9566 × 10−2 1.3383 × 10−1 1.9355 × 10−1 2.4918 × 10−1

6.6 5.4843 × 10−2 1.0664 × 10−1 1.5555 × 10−1 2.0215 × 10−1

6.7 4.1868 × 10−2 8.1969 × 10−2 1.2057 × 10−1 1.5667 × 10−1

6.8 3.2370 × 10−2 6.3870 × 10−2 9.4196 × 10−2 1.2392 × 10−1

Table 4

Estimated mixing weights for metamodel construction.

xi λ̂1i λ̂2i λ̂3i λ̂4i

6.0 8.2487 × 10−1 1.4550 × 10−1 2.5290 × 10−2 4.3433 × 10−3

6.1 8.2374 × 10−1 1.4590 × 10−1 2.5713 × 10−2 4.6467 × 10−3

6.2 8.2125 × 10−1 1.4746 × 10−1 2.6560 × 10−2 4.7233 × 10−3

6.3 8.1946 × 10−1 1.4873 × 10−1 2.6950 × 10−2 4.8600 × 10−3

6.4 8.1505 × 10−1 1.5184 × 10−1 2.7890 × 10−2 5.2233 × 10−3

6.5 8.1440 × 10−1 1.5166 × 10−1 2.8663 × 10−2 5.2767 × 10−3

6.6 8.1248 × 10−1 1.5287 × 10−1 2.8957 × 10−2 5.7000 × 10−3

6.7 8.1059 × 10−1 1.5416 × 10−1 2.9530 × 10−2 5.7133 × 10−3

6.8 8.0803 × 10−1 1.5699 × 10−1 2.9047 × 10−2 5.9267 × 10−3

Fig. 4. Metamodel relates interarrival time with time in system growth rate.

(

T

g

n

p

m

o

. Application example

Several systems exhibit switching output regimes. Some of these

ystems include a feedback component. The depicted application

xample is a system with feedback that exhibits output regimes in

ertain range of inputs. The example is a simplification of a manu-

acturing process where items must be reprocessed if the result does

ot meet specifications.

The system used for depicting the construction of the proposed

etamodels is a simple parts painting processing unit. The parts to

e painted arrive at the unit according to a Poisson process. The mean

ime between arrivals is the decision variable x. The painting time is

riangularly distributed between 2 and 10 minutes, with a mode of

minutes. However, 20 percent of the painting operations have to be

epeated due to imperfections (see Fig. 2).

The paint process is repeated up to 3 times for each part, if the

revious painting operation did not meet specifications, resulting in

regimes. The time in system grows during the day, but the growth

ate varies with the interarrival time. The purpose of the simulation

xperiment is to express the time in the system, z, as a function of

he mean time between arrivals of parts. The metamodels were built

n MATLAB 7.10 with some custom made routines. The observa-

ions zijk were gathered from 6 independent replications of 9 equally

paced design points in the [6, 6.8] experimental region. From each

eplication of 51000 observations, the first 1000 observations were

emoved to mitigate initialization transient and provide a good sepa-

ation between regimes.

Every observation from each simulation run is grouped into one

f four switching regimes. From each regime, a growth rate is deter-

ined by the slope of the line that is obtained by applying a least

quares to the regime observations (see Fig. 3). The probability of each

egime is computed from the relative number of observations of each

egime. At each design point, a set of six replications are performed.

he average values of six computed slopes ȳsi. (see Table 2) are de-

ermined (measure of interest), as well as their variances σ = σ̂
si si
see Table 3) and the average probability of each regime λ̄si. = λ̂si (see

able 4).

The resulting metamodel relates the interarrival time with the

rowth rate (see Fig. 4). All four regimes must be adjusted simulta-

eously, taking into account the relative variances σ̂si and the regime

robability λ̂si. In the first approach, a mixture weighted least squares

ethod is used to compute the θ values of the metamodel. In a sec-

nd approach, a maximum likelihood method is applied.
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Table 5

Estimated unknown parameters values.

ax + b regime 1 regime 2 regime 3 regime 4

WLSQ a 0.8525389 1.5684717 2.1714385 2.6876232

WLSQ b −0.1209539 −0.2217537 −0.3059143 −0.3774470

MWLSQ a 0.8369327 1.5570236 2.1684496 2.6730821

MWLSQ b −0.1183631 −0.2194875 −0.3046008 −0.3739679

MLE a 0.8368609 1.5555085 2.1518431 2.6808206

MLE b −0.1183521 −0.2192511 −0.3020517 −0.3753420

Table 6

Error sum of squares (SSE) for esti-

mated metamodels.

WLSQ MWLSQ MLE

10.6968 4.4052 4.3948

A

i

T

d

f

d

t

M

z

o

w

T

f

The results of performing independent weighted least squares on

each regime provide the initial θ values for the mixture weighted

least squares and maximum likelihood estimation (see Table 5).

These θ values are used as initial values for the minimization Neder–

Mead simplex method (see Lagarias, Reeds, Wright, & Wright (1998)),

implemented by fminsearch in Matlab, also depicted in Table 5.

The adjusted values through mixture weighted least squares and

maximum likelihood methods produce indistinguishable lines in

Fig. 4. However, the SSE values, depicted in Table 6, provide an insight

into the precision of the resulting metamodels

SSE =
n∑

i=1

S∑
s=1

λ̂si

σ̂ 2
si
/r

(ȳsi· − fs(xi, θ̂s))
2

where θ̂s = (θ̂s0, . . . , θ̂sp).

If all regimes are adjusted simultaneously, a better adjustment is

achieved. The maximum likelihood method provides a slightly better

fit.

5. Conclusions

Metamodels provide a simple representation of the input/output

relationship of a simulation model. When the output data exhibits

independent groups of data, the metamodel should reproduce that

grouping if a good representation of the original simulation model is

to be achieved. In order to reproduce those groups, the metamodel

must switch between different regimes. Each regime is modeled by a

different mathematical function and switch mechanism is activated,

usually a probability. The probability at each design point can es-

timated using the relative frequencies of the observations. As the

regimes result from the same output sequence, and are therefore de-

pendent, they must be adjusted simultaneously. A number of sim-

ulation replications should be performed, if the variances of output

are to be estimated. The metamodel construction processes the pro-

posed fitting with a set of functions, one for each regime. Although

each of the functions is usually linear, the resulting mixture is non-

linear. An unconstrained minimization algorithm is employed to es-

timate the metamodel parameters for the set of functions. The initial

values for the minimization are obtained from the independent esti-

mation of each regime to improve the performance of the algorithm,

and consequently the precision of the estimated parameters. The ex-

ample presented displays four regimes that are fitted with first de-

gree polynomial functions. The metamodels are compared using the

sum of squared errors and show that a global estimation improves

the quality of the fitted metamodel. The maximum likelihood method

provides slightly better fitting results and the resulting estimators are

consistent.
ppendix

The verification of Proposition 1 consists on applying the follow-

ng Theorem stated by Chanda (1954) to switching regression.

heorem 1. Let (u1, u2, …, un) a random sample such that ui are in-

ependent and identically distributed with probability density function

(u; θ), where θ is a vector of unknown parameters. If the following con-

itions hold

1. For almost all u and for all θ ∈ �̄ ⊂ R
k

∂ ln f

∂θr
,

∂2 ln f

∂θr∂θs
, and

∂3 ln f

∂θr∂θs∂θt
, r, s, t = 1, . . . , k. (A.1)

2. For almost all u and for all θ ∈ �̄ ⊂ R
k∣∣∣∣ ∂ f

∂θr

∣∣∣∣ < Fr(u),

∣∣∣∣ ∂2 f

∂θr∂θs

∣∣∣∣ < Frs(u)C,

and

∣∣∣∣ ∂3 f

∂θr∂θs∂θt

∣∣∣∣ < Hrst (u), r, s, t = 1, . . . , k. (A.2)

where H is such that
∫ ∞
−∞ Hrst (u) f (u; θ)du ≤ M < ∞ and Fr(u)

and Frs(u) are bounded for r, s, t = 1, . . . , k.

3. For all θ ∈ �̄ ⊂ R
k, the following matrix is positive definite:

I(θ) =
∫ ∞

−∞

(
∂ ln f (u; θ)

∂θ

)(
∂ ln f (u; θ)

∂θ

)T

f (u; θ)dx (A.3)

Then, there exists a unique consistent estimator θ̂ which is the solu-

ion of the likelihood equations

∂ ln L

∂θ j

= ∂

∂θ j

(
n∑

i=1

ln f (ui; θ)

)
= 0, j = 1, . . . , k

oreover,
√

n(θ̂ − θ
∗
) is asymptotic normally distributed with mean

ero and variance-covariance matrix I(θ
∗
)−1, where θ∗ is the true value

f θ and I(θ∗) is the Fisher information matrix.

Let the density probability function (5) written as

f (y; θ) =
S∑

i=1

f s

here

f s = λ̂s√
2πσ̂ 2

s /r
exp

[
− 1

2σ̂ 2
s /r

(y − θs0 −
p∑

l=1

θslxl )
2

]

hen it may observed that the following derivatives exist

∂ f

∂θ
=

(
∂ f 1

∂θ10

, . . . ,
∂ f 1

∂θ1p

, . . . ,
∂ f S

∂θS0

, . . . ,
∂ f S

∂θSp

)T

∂2 f

∂θ∂θ
T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f 1

∂θ2
10

. . .
∂2 f 1

∂θ10∂θ1p
. . . 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

∂2 f 1

∂θ1p∂θ10
. . .

∂2 f 1

∂θ2
1p

. . . 0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 . . .
∂2 f S

∂θ2
S0

. . .
∂2 f S

∂θS0∂θSp

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 . . .
∂2 f S

∂θSp∂θS0
. . .

∂2 f S

∂θ2
Sp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering w = (1, xT )T , then, w1 = 1, w2 = x1, . . . , wp+1 = xp the

ollowing may be written.
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∂ f

∂θsi

= ∂ f s

∂θsi

= f s wi+1

σ̂ 2
s /r

(y − wTθs)

∂2 f

∂θ2
si

= ∂2 f s

∂θ2
si

= w2
i+1

σ̂ 2
s /r

[
1

σ̂ 2
s /r

(y − wTθs)
2 − 1

]
f s

∂2 f

∂θsi∂θk j

= ∂2 f s

∂θsi∂θk j

= 0, k �= s

∂3 f s

∂θsi∂θk j∂θlt

= 0, k �= s or l �= s

∂2 f

∂θsi∂θs j

= wi+1x j+1

σ̂ 2
s /r

[
1

σ̂ 2
s /r

(y − wTθs)
2 − 1

]
f s

∂3 f

∂θsi∂θs j∂θsk

= wi+1wj+1wk+1

(σ̂ 2
s /r)2

(y − wTθs)

[
1+ 1

σ̂ 2
s /r

(y − wTθs)
2

]
f s

Consequently, the following derivatives exits and the first condi-

ion (A.1) is verified:

∂ ln f

∂θsi

= ∂ f s

∂θsi

1

f

∂2 ln f

∂θsi∂θk j

= 1

f

∂2 f s

∂θsi∂θk j

− 1

f 2

∂ f s

∂θsi

∂ f k

∂θk j

(A.4)

f k �= s then

∂2 f s

∂θsi∂θk j

= 0

nd, as a result,

∂2 ln f

∂θsi∂θk j

= − 1

f 2

∂ f s

∂θsi

∂ f k

∂θk j

sing Eq. (A.4) the following third degree derivative may be written

∂3 ln f

∂θsi∂θk j∂θtm
= 2

∂ f s

∂θsi

∂ f k

∂θk j

∂ f t

∂θtm

1

f 3
− ∂2 f s

∂θsi∂θtm

∂ f k

∂θk j

1

f 2

− ∂ f s

∂θsi

∂2 f k

∂θk j∂θtm

1

f 2
− ∂ f t

∂θtm

∂2 f s

∂θsi∂θk j

1

f 2
+ ∂3 f s

∂θsi∂θk j∂θtm

1

f

f k and t are both not equal to s then

∂3 ln f

∂θsi∂θk j∂θtm
= 2

∂ f s

∂θsi

∂ f k

∂θk j

∂ f t

∂θtm

1

f 3

The first and second derivatives of f (ȳ; θ) are continuous in both

¯ and θ. Consequently, they are bounded for θ ∈ �̄ and ȳ ∈ [a; b] ⊂ R.
f ȳ is arbitrarily large, the derivatives remain bounded because the

argest of these derivatives is O = (ȳ4 exp(−ȳ2)). Also, the largest

alue of the third derivatives of ln f is O(ȳ6). Moreover, all the mo-

ents of f exist and they are finite for all θ ∈ �̄, so we may choose a

onstant M such that the second condition (A.2) is satisfied.

The third condition (A.3) is also satisfied because I(θ) is a variance-

ovariance matrix.
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