Classification and Retrieval of Software Components Using UML
Descriptions

Pedro Reis dos Santos
Technical University of Lisbon
1049-001 Lisboa Codex
prs@digitais.ist.utl.pt

Abstract

As the number and complexity of com-
ponents available for reuse increases,
more accurate methods are need to clas-
sify the small differences among compo-
nents. To provide better accuracy, the
retrieval methods need to exploit those
differences in a user controlled man-
ner. UML structural information pro-
vide a rich set of primitives that describe
an implementation independent compo-
nent with significant detail. We propose
a representation model for UML struc-
tural information that classifies each
white box component. A fuzzy selec-
tion process retrieves a set of compo-
nents that matches some of the desired
criteria. Then, a set of mechanisms is
then used to increase precision by gath-
ering relevant information from each re-
trieved component in order to highlight
differences among them.

Keywords: reuse software process,
software components, component clas-
sification, component selection, fussy
matching.

1 Introduction

The advances in computer technology and soft-
ware development methods allow the construc-
tion of larger and more complex applications. The
reuse of software components permits the devel-
opment of such applications in a reasonable time

with limited resources [11]. A high quality compo-
nent may be reused over and over, reducing signif-
icantly the application’s development cost, since
it provides at almost no cost a documented, well
designed, efficient, thoroughly tested and easy to
adapt software block. These components are fre-
quently available in library packages for a spe-
cific application domain distributed commercially
at high cost.
ity, generally corresponding to components not
specifically designed for reuse, can still provide
considerable benefits when compared to develop-
ment from scratch. These component may be
freely available, or at a very low cost, from pri-
vate developers, universities and even commercial
companies. During the last decade, millions of
freely available applications have been tested, im-
proved, documented and regularly used by many
anonymous programmers, making such applica-
tions, and the components that form them, more
tested and efficient than many commercially avail-
able equivalents.

Other components of lower qual-

2 Classification and selection methods

The reuse of a software component requires meth-
ods to retrieve useful components from a very
large universe of available components. The
search of a components through the exhaustive
iteration through all components is only possi-
ble when the number of available components is
very small. An enumerative classification mech-
anism is, therefor, required to group components
in related areas of application, making the num-
ber of components to search much smaller. This
technique is possible when dealing with compre-
hensive libraries covering a complete taxonomy

of concepts in a given domain since the charac-
teristic of each component in the library do not
overlap significantly with the others [9]. However,
when there are many components providing dif-
ferent solutions to the same problem the classifi-
cation mechanism will insert them all in the same
group, making the exhaustive search within the
group difficult and time [11]consuming. In or-
der to make the classification process more pre-
cise hierarchical and faceted methods were de-
veloped [7, 18, 17]. Hierarchical classification
methods are difficult to change and limits the
kinds of relationships that can be represented.
Faceted classification methods allow one facet to
be changed without affecting others and can cre-
ate complex relationships by combining facets and
terms from a fixed vocabulary.

Although, when the number of similar compo-
nents is very large, the used of a fixed vocabu-
lary, common to all the above mentioned meth-
ods, proves to be insufficient. The stereotyping
introduced by fixed vocabulary methods groups a
significant number of similar components in the
same category. For such cases the creation of the
stereotype can not be performed on classification
process but rather on the selection process when
the requirements are specified. If the selection
process is based on a small number of stereotypes
then a large number of components will be re-
trieved resulting in method identical to a fixed
vocabulary approach. However, when the require-
ments include a large number of characteristics
it is possible to reduce the similarity evaluation
and retrieve a small number of components that
match very closely the requirements supplied. If
the number of retrieved components is large then
the requirements can be refined to include new
characteristics that exclude some components un-
til one, of just a few, are retrieved. On the other
hand, if no component is retrieved, the require-
ments can be relaxed by excluding very demand-
ing characteristics so that the closest match can
be found.

The widespread use of public licensed free soft-
ware components implies that components are
available not only from comprehensive libraries
covering a complete taxonomy of concepts in a
given domain. This fact makes the classification

process a recording of the relevant characteristics
of the component, since the stereotyping occurs
later when the components is being inspected by
the selection process. The relevant characteristics
may be manually inferred by the component de-
veloper or the catalog builder as is the case most
fixed vocabulary methods. If no stereotyping is
needed at the classification level then the classifi-
cation process can automatically extract the rel-
evant information from the component, generally
in its source code form. The component’s charac-
teristics may be obtained from signatures, metrics
or structural information. The description can be
very detailed resulting in large memory recording
requirements for classification and big computa-
tional overload for the selection process.

The work described in this article uses UML
structural description information to record the
characteristics of each component. These charac-
teristics are included in a hierarchical description
of identifiers that is more complete than signa-
tures and can be complemented with information
obtained from other sources such as metrics or
facet classification methods. The selection pro-
cess uses a set of operations on hierarchies to se-
lect the parts of the hierarchy that contain infor-
mation related to the query performed. Then a
weighted fussy comparisons of the identifiers in
the sub-hierarchy is performed in order to evalu-
ate the degree of similarity between the query and
the retrieved components.

3 Related Work

The increasing number of components available
for selection and the overlapping of many of their
characteristics discourages the use of fixed vocab-
ulary methods. Structural classification meth-
ods gather large quantities of unadulterated infor-
mation from the original component allowing for
more precise selection methods. In pair attribute-
value methods, the component is classified using
a set of predefined attributes. Every component
must find a suitable value for each attribute [4, 7).
While faceted based classification methods must
choose a value that best matches the component
behavior from a small number of previously de-
fined choices, in pair attribute-value methods the
matching is done in the selection process and can

be controlled from query to query. In the system
proposed in this article we extend pair attribute-
value methods by structuring attributes in an hi-
erarchy according to their scope and generality.
Furthermore, the name of many of the attributes
are not predefined but rather extracted from the
component allowing comparisons between compo-
nents and against the keywords in the query.

Methods of classification and selection of com-
ponents based on signatures extend the princi-
ples of binding and linking of the programming
languages and compilers to fussy cases [19, 13].
A routine to be reused does not need to have
the same name, number and type of arguments.
Name overloading and sub-typing allow several
routine candidates, but when the call is made
there only one implementation that matches the
query. Component reuse based on signatures
extends such binding mechanism to fussy cases
where candidates with similar signatures might
be considered good candidates. This implies that
some adaptation, manual or automatic, must be
performed before the component can be reused.
The adaptation may require to change the order
of the arguments, perform type conversions, or
infer the value of some arguments based on other
arguments or global data. The system described
in this article uses the signature information pro-
vided by UML and is capable of many signature
based matches by controlling the degree of simi-
larity on the selection query.

Other methods of structural classification include
the use of source code identifiers and data struc-
tures [6, 5] and pattern based methods [8, 2, 15].
The first are similar to signature matching but
use data structures and other information instead
of just using functions. Although, these meth-
ods are sensitive to the choice of names for the
identifiers and data types, but can still be used
in the proposed system by setting a small de-
gree of similarity. Finally, structural classifica-
tion based on formal methods uses mathematical
descriptions of components and theorem proving
to determine similarity between component de-
scriptions and queries [1, 16, 3, 20]. Some of the
drawbacks of formal based methods include the
need for a formal description of the component
which is not common, the difficulty to compute

and control similarity and huge computation ef-
fort required even for a small number of compo-
nents. The system proposed in this article does
not address formal based descriptions, although,
UML may include formal descriptions in a sub-
language called OCL.

4 Component classification

The purpose of the classification process is to
gather information relevant to the selection pro-
cess. While the classification is performed once
for each component, the matching is performed
on every every query of the selection process.
Therefor, the information should be then orga-
nized from the selection point of view. The pro-
posed system builds an hierarchical data struc-
ture of attributes from UML structural informa-
tion that can be used in the selection process.

4.1 Why UML ?

Many classification mechanisms are based on tex-
tual descriptions or source code. In either case the
information relevant for the classification of the
component constitutes a small part of all avail-
able data. An Unified Modeling Language - UML
— description is a design level representation of the
component excluding language dependencies and
implementation details. At the design level, UML
includes and extends most of the other design lan-
guages and provides a precise notation and well
defined semantics. It is able to represent the in-
formation present in many other design languages
with no loss and captures the essential character-
istics of a component [10]. However, the current
implementation of system described in this article
uses only a partial UML description ignoring the
information present in some diagrams and formal
OCL descriptions.

An important aspect of UML is its ability to in-
terface with programming languages. The UML
is capable of producing a description of the UML
information in many languages, that must then
be filled with implementation details not present
in UML. However, the ability to built an UML de-
scription from source, capturing the design infor-
mation present in the source code, represents the
most important UML characteristic for this work.

In this way, instead of parsing each source file and
taking into consideration the peculiarities of each
programming language, a single uniform, concise
and compact description of the component is ob-
tained. Furthermore, since almost every compo-
nent must be subjected to some form of adapta-
tion, the changes can be described in UML and
then transported to the programming language
in use. Even if no source code is available, al-
though a manual UML description must be built
from some form of documentation, the resulting
UML description can then be used to compare
components in equal term and plan changes and
integration procedures.

1. 1.3 -
I Account - Client
. -~ ---~"clients accounts -~~~
| Savings | > _copitd_ | neme
| interest | | Currents | balance | _ address |
balance | credit | deposit name
deposit balance withdraw address
withdraw withdraw

Figure 1: Simplified UML accounting example.

4.2 Representation model

The representation model maps almost all of the
information contained in a UML class diagram
into an hierarchy of attribute-value pairs. Since
UML class diagrams are collection of classes, the
first level of the hierarchy is represented by the
names of each class. In the second level, each class
is described in three branches representing the op-
erations, attributes and associations of the class.
The operations of a class are essentially signatures
of procedures with a name, a return type and a set
of named and typed arguments. The attributes of
a class are typed data structures and are treated
the same way as operations without arguments
except that are placed on a different branch. Fi-
nally, a branch of associations that includes in-
heritance, aggregation and composition associa-
tions. Inheritance associations are described by
the name of the super class, while aggregations
and compositions are modeled by an association
name, a class name and cardinality information.
The UML example in figure 1 produces the hier-
archical representation of figure 2.

An hierarchical description of a class includes
the names of each element and the associated
type in the respective branch. The separation by

assocs accounts agreg

. Account
Client

/ name
N atvibsé address
. ——mame

ops—— = address
. clients ———= agreg
assocs T
Client
. ital
bs capi

/ balance

—— > deposit
T = withdraw

assocs —— o
\ / Account ————— inherit
Currents attribs credit
\ / balance

Account attri

ops
finance

ops— = withdraw

assocs Account inherit

Savings \ / interest
attribs

balance

%’7 deposit

ops— = withdraw

Figure 2: Hierarchical representation of the
accounting example from figure 1.

branches is very important since each branch has
a very different implication on adaptation cost of
a selected component. For instance, a missing op-
eration is not important since it can be seamlessly
added, while adding an attribute might force the
change of the constructors and imply changes on
many function to keep the attribute consistent
with the other internal state of the class. On
the other hand changes on inheritance dependen-
cies might be almost impossible to perform, and
changes on some compositions and aggregations
propagate changes to other classes.

The hierarchical model described tries to cap-
ture the compartments types of UML descriptions
and explore the importance of their role in the
component. The identifiers used to describe at-
tributes, operations, arguments or data types are
retained since the name of the identifier will be
used to characterize its semantics. Therefor, a
good choice of names can influence the selection
or rejection of a component, even when using a
thesaurus as a basis for weighted fussy compar-
isons.

4.2.1 Description enrichment

An UML description includes most of the infor-
mation used to characterize a component at a de-
sign level. So, it will quite rare for two differ-
ent components to have the same UML descrip-
tion, even on an abundance of similar compo-

nents. However, these descriptions can be long
when compared to faceted classifications making
the selection process time consuming in presence
of a large number of components. A simple way
to speedup the selection process is to include a
facet branch where a small number of stereotyped
attributes provides a fast way to exclude the com-
ponents that do not match closely the query cri-
teria. In the current implementation the faceted
branch is inserted manually in each component.
The selection process is then performed in two
phases: a first selection and an iterative refine-
ment. The first selection is, after all, a faceted
based method that produces a number similar
components of components that must then be pro-
cessed by the iterative refinement. Since the ma-
jority of the components will fall in this category
only a small fraction will be subjected to the hi-
erarchical matching process.

Besides allowing the inclusion of a faceted branch,
the hierarchical model allows the insertion of
other branches containing information considered
useful to some selections like the target language
of the component, architecture or operating sys-
tem dependencies, as well as, metric information
such as complexity or performance. This addi-
tional information, even if not used in the selec-
tion process since it may be absent, can be de-
cisive when a final decision must be made by di-
rect inspection of a very small number of retrieved
components.

5 Component retrieval

The selection process should retrieve a small num-
ber of candidate components that match the
query criteria imposed by the selection require-
ments, in a small amount of time. A good selec-
tion process should not ignore components that
match the requirements — recall — and should not
retrieve components that do not match the re-
quirements — precision [12, 13, 7]. In order to
achieve high recall and high precision rates the
selection process must create a query that rig-
orously formulates the requirements. Then the
query must be able to produce an ordered list of
matches that reflects the degree of similarity be-
tween the elements in the query and every com-
ponent. The degree of similarity should reflect

the adaptation effort needed to transform the re-
trieved component into an usable component for
the target application [14].

5.1 Degree of similarity

The computation of the degree of similarity is the
evaluation of a similarity function that returns a
number representing the proximity between the
query and a particular component. The numbers
returned from the evaluation of every component
against the same query are then sorted. Since the
component is represented by an hierarchy of iden-
tifiers, the similarity function compares the iden-
tifiers used to represent the component with ev-
ery query identifier. A fixed vocabulary approach
may use boolean comparisons, where the number
of exact matches is the returned value. However,
if the name of each identifier can be selected from
an very large set, there is a small probability of
using the same name in the query and in the com-
ponent representation. The use of a thesaurus al-
lows the matching of synonymous names, enabling
the use of the same fixed vocabulary techniques
by performing the stereotyping in every query[12].
Therefor, the computation time is bigger than in
fixed vocabulary techniques but the results are
the same.

The main advantage of retaining the original iden-
tifier names in the classification process is the pos-
sibility of evaluating the similarity in case by case
basis. Two synonymous names have the same es-
sential meaning, but one cannot be used in all
senses the other can. Some names have a broader
meaning, or more specific meaning. That is, a
name with a broader meaning can be used in-
stead of a more specific one, but not the contrary
(see figure 3). The fact that two names are not
perfect synonymous, generally, implies that in a
thesaurus each name must associate a similarity
weight with every synonymous. Then, the sim-
ilarity function must evaluate the weighted sim-
ilarity between the query name and the names
describing the component. The returned value is
the summation of the similarities of every name in
the query. The proposed system enables each user
to supply his own thesaurus, besides the global
thesaurus. The personal thesaurus can include
regular expressions to group names with similar

writing, like plurals and verb tenses. This charac-
teristic is specially important in Latin languages
where verbs can have dozens of terminations ac-
cording to time and subject, as well as names that
can be male or female, singular or plural, or even
support declinations.

P 00 o1
fAE

’ Q

° §

P 00 03
f

BA

03

® @
=

0.7 10

@

Figure 3: Weighted degree of similarity between
the scope of different names.

Each identifier has a relative importance in the
overall query, therefor, a factor must assigned
to scale its influence in the value resulting from
the query evaluation. When defining the require-
ments, the user must assign a large factor to in-
crease the importance of an identifier, specify a
small factor in order to decrease its importance, or
associate a negative factor to exclude the compo-
nents that include similar identifiers. Finally, the
use of the same identifier in a different branch of
the hierarchy can have a different meaning. Also
the depth of the identifier in the hierarchy indi-
cates its generality or even its function, for in-
stance, as an argument name or as an operation
name. For the above reasons, the evaluation of
similarity can have a different meaning depend-
ing on the location of the matching identifier.
Therefor, it is possible to restrict the matching
algorithm to a particular area of the hierarchy by
previously slicing the hierarchy through a set of
operations.

5.2 Manipulation operations

Each component is represented by a single hierar-
chy containing all the information extracted from
the UML class diagram. For many large compo-
nents the generated hierarchies can be quite large
increasing significantly the query time. Further-
more, by restricting the search to certain areas
of the hierarchy more specific conclusion can be
draw from the use of a particular identifier. The
user can confine the search to certain areas of the
hierarchy by slicing it with six manipulation oper-

ations. These operations can be combined by the
query language to produce complex restrictions.
The manipulation operations are:

granulation: limits the depth of the hierarchy.
It allows for generic search and ignoring de-
tails, being useful in the first stages of the
selection process to ensure a good recall.

specialization: limits the hierarchy to a single
branch. It allows the search in specific con-
texts, being useful in the later stages of the
selection process to ensure a good precision.

locate: limits the hierarchy to the branches that
contain a specific name. It is able to char-
acterize the use of a particular by providing
the number of occurrences and the depth at
which they occur.

qualification: limits the hierarchy to the
branches with the same ancestor as a given
name. It is useful to determine the presence
of other identifiers in the same context.

union: groups two hierarchies in a single one. It
is useful to determine, in the later stage of
selection, if two or more components can be
grouped in order to provide the requirements
in the query.

differentiation: limits the branches of the hier-
archy to those branches that are not present
in another hierarchy. It is useful to eval-
uate what characteristics are absent from
the selected component, or vice-versa, what
characteristics does the component have that
were not required. It is also very useful for
comparing two selected components for a fi-
nal choice.

5.3 Selection analysis

The selection process consists of series of queries
that are expected to retrieve a smaller number of
components on each query, since the number of re-
strictions can be tuned from the previous query.
A restriction, or query element, is built by asso-
ciating names and their associated factors to a
subtree obtained by manipulating the component
hierarchy with the operations above. The query

consists in the evaluation of each query element
and adding the resulting values, for every com-
ponent in the catalog. The query elements can
be named and used repeatedly, allowing a succes-
sive refinement of the selection process combining
different query elements in each query.

The process usually starts with a small number
of, not too restrictive, queries to ensure a good
recall. The first query can also be replaced by
an auxiliary method like a faceted based method.
When the number of components retrieved in the
first choice is high, then the proposed process can
perform a more precise selection since it records
much more information from each component.

The refinement process uses the components re-
trieved from the first selection and through a se-
ries of more specific queries is, hopefully, able to
elect the best candidate component for reuse. The
refinement process is based on an analysis along
three axis, in order to highlight small differences
between the components and supply clues for the
next query. The functionality of each of the three
axis is:

descriptive: controls the amount of information
supplied by the description of a component
to the query. It relates to the depth of tree
and the number of branches used when per-
forming element queries. In some queries, ex-
cessive detail may produce erroneous results
by focusing on too much detail, while other
queries may require more information to find
a proper match [12].

comparative: relates two or more queries and
evaluates the comparative results of adding
or removing query elements, or changing
name factors. The use of an uncontrolled
vocabulary is particularly important in this
type of analysis since a different choice of
names may produce divergent results.

development: addresses very similar and re-
lated components such as different produc-
tion versions, and inherited or specialized
versions of the same component. The devel-
opment analysis studies more than one com-
ponent by comparing the individual results
of each one. This type of analysis is based

on evaluating the cross differences produced
by the differentiation operation, and is able
to highlight small differences.

6 Conclusion

The method proposed in this article addresses the
abundance of components where classical selec-
tion methods are unable to distinguish from sim-
ilar components. The classification process uses
UML class diagram descriptions to extract the
classification information. The precision of the
process is limited, essentially by the amount of
information available on UML structural descrip-
tions. Since detail is added at a deeper level in
the hierarchy it does not lead to misinterpreta-
tion whenever the additional information is not
needed. The use of identifiers produces richer
representations that can be used when necessary
and ignored by the use of thesaurus. The con-
trol over the detail involved in the queries makes
the method attractive to explore small differences
between similar components.

The system is not as automatic as other methods
but is still much better than manual inspection
where other algorithms return dozens of compo-
nents classified in the same category. It is tar-
geted for situations where the number of avail-
able components is very high, which is gener-
ally the case if the required component cannot be
found in the local catalog and wider search must
be performed. Most WWW search engines per-
form searches by filename or a small number of
keywords, making millions of components freely
available. If the component proves to be worth-
while, then it can be manually classified and inte-
grated in the local catalog, even if an equivalent
component exists in the home catalog.

References

[1] Dean Allemang and Beat Liver. Func-
tional representation for reusable compo-
nents. In Workshop on Institutionalizing

Software Reuse, 1995.

[2] Patrick Ateyaert, Carine Lucas, Kim Mens,
and Theo D’Hondt. Reuse contracts: Manag-
ing the evolution of reusable assets. In OOP-
SLA, pages 268-285, 1996.

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Yonghao Chen and Betty H. C. Cheng. For-
mally specifying and analysing architectural
and functional properties of components for

reuse. In 8th Annual Workshop on Software
Reuse, March 1997.

Ernesto Damiani, Maria Grazia Fugini, and
Enrico Fusaschi. A description-based ap-
proach to OO code reuse. IEEE Computer,
30(10):73-80, October 1997.

Pedro Reis dos Santos and Rui Gustavo Cre-
spo. Assisted selection of components us-
ing classified identifiers. In 7th IPMU, pages
740-747, Paris, France, July 1998.

Letha H. Etzkorn and Carl G. Davis. Au-
tomatically identifying reusable OO legacy
code. IEEE Computer, 30(10):66-71, Octo-
ber 1997.

William B. Frakes and Thomas P. Pole. An
empirical study of representation models for
reusable software components. IEEE Trans-

actions on Software Engineering, 20(8):617—
630, August 1994.

Koen De Hondt, Carine Lucas, and Patrick
Steyaert. Reuse contracts as component in-
terface descriptions. In ECOOP, 2nd Inter-
national Workshop on Component-Oriented
Programming, pages 43-49, 1997.

Mehdi Jazayeri. Component programming -
a fresh look at software components. In Euro-
pean Software Engineering Conf., September
1995.

Philippe Kruchten. Modeling component sys-
tems with the unified modeling language.
In International Workshop on Component-
Based Software Engineering. Software Engi-
neering Institute, 1998.

Hafedh Mili, Fatma Mili, and Ali Mili.
Reusing software: Issues and research direc-
tions. IEEFE Transactions on Software Engi-
neering, 21(6):528-561, June 1995.

Rym Mili, Ali Mili, and Roland T. Mit-
termeir. Storing and retrieving software
components: A refinement based system.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

IEEEFE Transactions on Software Engineering,
23(7):445-460, July 1997.

R. T. Mittermeir, H. Pozewaunig, Ali Mili,
and Rym Mili. Uncertainty aspects in com-
ponent retrieval. In 7th IPMU, pages 564—
571, Paris, France, July 1998.

Eduardo Ostertag, James Hendler,
Rubén Prieto Diaz, and Christine Braun.
Computing similarity in a reuse library
system: An Al-based approach. ACM
Transactions on Software Engineering and
Methodology, 1(3):205-228, July 1992.

Santanu Paul and Atul Prakash. A frame-
work for source code search using program

patterns. IEEE Transactions on Software
Engineering, 20(6):463-474, June 1994.

John Penix and Perry Alexander. Compo-
nent reuse and adaptation at the specifica-
tion level. In 8th Annual Workshop on Soft-
ware Reuse, March 1997.

Rubén Prieto-Diaz. Implementing faceted
classification for software reuse. Communi-
cations of the ACM, 34(5):89-97, May 1991.

Rubén Prieto-Diaz and Peter Freeman. Clas-
sifying software for reusability. IEEE Soft-
ware, 4(1):6-16, January 1987.

Amy Moormann Zaremski and Jeannette M.
Wing. Signature matching: A tool for us-
ing software libraries. ACM Transactions
on Software Engineering and Methodology,
4(2):146-170, April 1995.

Amy Moormann Zaremski and Jeannette M.
Wing. Specification matching of software
components. ACM Transactions on Software
Engineering and Methodology, 6(4):333-369,
October 1997.

