[dentifier Based Representation and Management of
Sottware Components

Pedro Reis dos Santos
Technical University of Lisbon
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal
E-mail: prs@digitais.ist.utl.pt

Abstract— As the problems to be solved by computers be-
come larger, software development becomes more complex
and difficult to grasp by software engineers. We propose a
representation model that uses identifiers extracted from the
various software development stages and interconnects them
in a hierarchical naming tree. A set of mechanisms is then
used to manipulate and gather relevant information for each
particular task of software processes.

I. INTRODUCTION

Computers are being used to store, manage and solve
increasingly more complex problems. This complexity is
reflected on every stage of computer application develop-
ment [14]. Problems begin as we need to decompose the
problem and build up to the final test and acceptance stages.
The main problem is that humans are limited in their ability
to deal with large and complex systems [12]. Abstraction
becomes the most common mechanism to enable humans to
grasp and solve large and complex problems. From these
abstractions we are able to model the problem, identify the
requirements and produce a computer solution. Finally, the
software solution is even more complex than the problem
that we started with [16]. Much of the software complex-
ity comes from the problem to solve but, up to some extent
it results from the solution found. Some of the additional
complexity results from the model chosen to solve the prob-
lem. Models based on simple and extendible concepts using
a small set of entities and operations have proven success-
ful [11]. They result in a series of manageable abstractions
composed or decomposed in hierarchies, that humans can
deal more easily. Examples include Petri net processes,
entity-relationship databases, object-oriented models.

Engineering disciplines use sets of representations for
modeling artifacts. In software engineering we have entity-
relationship models, dataflow and state transition diagrams.
However, they address a limited set of stages in the soft-
ware development leading to the well known inconsistencies
between the final product and the original problem to be
solved. These problems become more acute as the prob-
lems to be solved and the resulting software representation
scheme become more complex. We advocate the needed for
a place, that we can use a reference, where we can represent
the initial problem and then enrich it as we get closer to the
solution.

Producing several separate documents leads invariably to
inconsistencies so the model used must ensure continuity. It
would be too complex to induce every aspect of the problem
and every aspect of the solution into one model. It better to
integrate different representation schemes, each one focusing
on a particular aspect. Since different participants have dif-
ferent views, of the problem and solution, they need a model
that helps them to cope with possible inconsistencies.

The existence of a single model follows the need to track
each system functionality from definition to the final imple-
mentation. This model includes a mesh of links to relevant
areas of each aspect from the initial problem representation
to the final solution. The abstraction that humans use to
refer functionalities within a system are names. So names
are good candidates to model a wide range of software pro-

cess stages. Our model is based on a rich structure of names
that allows the representation of each different stage of soft-
ware processes. It provides flexible cross-referencing mech-
anisms that enables consistency checking as the development
flows. In addition, it offers a set of management and manip-
ulation mechanisms to navigate through the names and their
associated values.

We aim at achieving a full representation of the soft-
ware system just by using names to identify the abstraction
used when sketching the problem and adding references from
those identifiers to the several stages of development process.
These identifiers will have a meaning to the project member
and can be used as a reference as the project evolves. A set
of mechanisms will allow search operation based on those
identifiers. The resulting system is a name service where
different types of data can be registered and searched in a
flexible and intuitive way.

TI1. SEPARATION OF CONCERNS

In order to have a clean model we impose the require-
ments uniformity and economy of concepts. The first re-
quirement makes life easier by giving less to remember, no
special cases. The later requirement aims to get the greatest
power with the smallest number of concepts [15]. By look-
ing closely into the way we represent information we find out
that at the higher abstraction level resort to names [7]. Our
objective is to concentrate on names bound to some piece of
information, called identifiers, to represent a system. If we
extract all useful and meaningful identifiers from objects to
the model we end up with raw data, called entities.

The first problem we come up with is mobility of entities.
That is when entities change place we end up with dangling
links, a common problem when dealing with symbolic links
in file systems and URL in WEB services. We need an inter-
mediate level to make identifiers immune to entity changes.
This reference level is present in many systems, such as file
system i-nodes, object’s capabilities and internet addresses.
The reference level is also a naming level where names are
represented in computer form, instead of a user easily read-
able form.

The identifier, no matter how meaningful its name can be,
may not be enough to provide an immediate distinction of
the entities it refers to. This does not mean that it can be
used to refer two entities or that an entity may be referred
by other identifiers, it simply means that the name used
may not be enough to identify the entity. The solution is the
use of attributes to qualify the entity making the distinction
clearer. However attributes should be treated as a name
decomposition mechanism, not as different kind of object in
the model.

The model is composed of names that refer references
and references that refer entities. So far there is noth-
ing really new, any system with a complete naming scheme
will provide such concepts. For example, filing systems
use pathnames, i-nodes and files. WEB services use URN,
URL and HTML files. Programming languages use variable
names, variable addresses and variable values. DNS uses
host and domain names, internet addresses and hardware
addresses. However, in all these approaches there is a dis-



tinction between user names, machine names and values.

ITI. SpriTTING OBJIECTS

Abstraction is the most effective way to manage complex-
ity. A hierarchy is a structured organization where different
abstractions can be handled at different levels. The problem
is divided into ordered levels or increasing detail [1]. The
detail does not go away, you just push it into a lower level.
Most important is the fact that hierarchies come natural
to most people. So, when you describe a problem whether
in top-down or bottom-up approach you end up with the
solution at the root of the hierarchy and set of simple prob-
lems at every leaf. Functional languages claim must of their
expressively by exploring this concept as opposed to lan-
guages based on side effects of sequences of independent
instructions. However, each intermediate level has a role to
play in the process and, in many cases, refers to important
milestones. So, when describing a problem there is a need
to associate data with each node and each leaf. The root
node will start to contain the core of the problem and finish
up with the final solution, while each leaf will start from a
simple and atomic problem that is added with one or more
solutions (figure 1).

The characterization of each node or leaf will start from
the name and be enriched with a series of properties that
represent their values. The properties will also have a name
describing their function that will be inserted as sub-names
of the node being characterized. The objects being modeled
will be broken down into values and their names, and these
names will be regrouped as a hierarchical tree and pointing
to the respective values. These object nodes [3], after being
characterized, must relate to other objects in the system.
The links [8] are, in a second stage, a way to express weaker
connections between objects in the system. They form the
basis for sharing among objects and definition of objects
as extension of others [13]. Links allow the designation of
other identifiers while identifiers refer to entities. The way a
link operates is given by the name of the link. For instance,
links named delegate, class or inherit will operate differently on
the target object. Because, there are no predefined names
a dictionary must be supplied, if the behavior can not be
unambiguously extracted from the name of the link. This
dictionary is a set of identifier to entity associations and can
also be a part of the global hierarchy.

Decomposition

Document

Fig. 1. A naming tree links project documents.

IV. MANAGEMENT ISSUES

Since we are representing potentially large and complex
systems in a single monolithic hierarchy, we must tackle the
managerial problem. We divide the system naming hierarchy
down into small interconnected hierarchies. The smaller
hierarchies may reflect different views over the same sys-
tem or may reflect some administrative or geographical or-
ganization. The interconnection of the hierarchies into the
global hierarchy can be done by special links. These links
can reside on leaf of the hierarchy if there is a need to refer
another hierarchy or, the other way around, the link can
be inserted at the root of the hierarchy stating where this
hierarchy should inserted into the global system.

As the system is described in very simple and repetitive
way the mechanisms necessary will be fairly simple. The
tools that implement them, however, will time consuming
since they must iterate through thousands of equal structures
differing only the names and values of each entry.

A. Locating and Browsing

To keep track of the relevant information in a certain stage
of the development process, two operations are fundamental
in helping the user to locate and relate relevant information:
locating and browsing.

The browsing operation on trees is performed in two dif-
ferent ways: breadth and depth [17]. In this model, however,
both breadth and depth algorithms can be large enough, if
you add many details. To make browsing lighter, we extract
a subset of tree nodes that match a certain criteria using a
find operation and then browse the result.

Finding is necessary when you know what you are looking
for but you forgot the location on the model. If you have
a graphical representation the problem is even more serious
since you will end up with huge sheets and highlighting relev-
ant information might be difficult for the system to identify
them and for the user see them in the naked eye. A better
approach is to generate an auxiliary model containing only
these relevant information, more or less the same way you
perform select operations on tables of a relational database
and end up with new table containing the results. In this
case you will get a smaller naming tree containing only the
nodes leading to the selected leafs. Then you can perform
browsing operations on this subset tree as in the original
one but without being distracted by lots of data irrelevant
for this stage of development.

B. Name Spaces

The hierarchical naming tree can be broken into small
hierarchies interconnected, but independent from each
other, the named spaces (figure 2). These name spaces form
the basis to express the necessary change in the support char-
acteristics as we deeper into the hierarchy. Different name
spaces can reside on distant geographical locations or hold
different access protections. Name spaces can also perform
different types of persistence or even, during a test and try
phase, provide no persistence.

Since we have dissociated identifiers from entities, we need
to have different operations to operate on both. If you move
an identifier only its name is moved, the entity will remain
where it is. On the other hand, when you move an entity,
the identifier or identifiers that refer to it will remain where
they where. The usual operation of moving an identifier
and carrying the associated entity can also be done by a
composition of the previous operations.

C. Manipulation Language

In order to perform more complex operations on the
structure obtained when representing the system we need
a manipulation language. This language, following the same
philosophy of the representation model, is composed only of
names and values. This means that there are very simple
syntax rules, since any sequence of names and values are
allowed. The language interpreter performs the lexical iden-
tification of the names and values and then, as it evaluates



Fig. 2.

Connecting project name spaces.

the code, it replaces the names by the associated values. If
the values are associated with data, the later are pushed into
the stack of the interpreter; if it is associated with a compiled
or interpreted function, the function is called performing the
operations directly on the stack of the interpreter.

The integration into the representation model is done by
allowing the variable names to be entries in the hierarch-
ical naming tree. These variables can then be accessed by
relative or absolute pathnames. By given a certain beha-
vior to some names, like inherit or delegate, simulations of the
representation model can be performed.

Although the final solution to the problem being modeled
can be solved using the language, it is intended as a model
manipulation language. This means that end-user friendli-
ness is not one of its strongest points [9]. Nevertheless, it
can be used as a symbolic assembler for some higher level
language.

D. Policy Free Environment

Many models give you a large set of constructs to built the
solution for a problem. This offers you a model ready to use
but, generally limited to a certain area of problem solving
where those constructs apply better [2]. By giving no spe-
cific constructs, we enable each project member to establish
particular constructs or restrictions to each particular area.
On the other hand, if some rules must be followed there is
a need to first develop a meta-model using this model and
then model the problem in hands in those rules. However, if
no other constructs are defined the model can still be used to
develop solutions that have no restriction other than a hier-
archical problem decomposition. In the later case every pro-
ject member can still enjoy the cross-reference and browsing
capabilities. This is specially useful when modeling prob-
lems that do not seam to match any existing model.

The purpose of this model is to force the user to a minimal
set of constructs that constitute the most general form of
design: hierarchical abstractions using names.

V. EXISTING APPROACHES

Filing systems support hierarchical naming trees with a
limited set of links. However, the major limitation results
from the fact that, while splitting different phases of the de-
velopment process into different directories is common, de-
tail are stored in files. Establishing associations between the
same abstraction in different approaches and development
stages is difficult. The use of hypertext is opening new per-
spectives for the first stages of the development process but
integration with the remaining process is difficult to achieve.

Entity-relationship databases offer a more systematic ap-
proach. Tool exist to model design and to produce in auto-
matic way a structure and basic procedures for each prob-
lem. A software engineering database should be able to ex-
press several levels of abstraction. While tables are a power-

ful and organized way to store data at some level they lack
scalability. Object-oriented databases [10] have additional
expressively but it is still difficult to begin with an incom-
plete specification and add detail in a simple way. Expressing
entities on earlier analysis and design stages is difficult, due
to typing and semantic restrictions that will only be available
on later stages.

Integrated project support environments help reducing
complexity of tools manipulation and organize large sets
of items by structuring them. These environments provide
their own tools or integrate existing tool into it. The use of
databases is the most common way to support all data re-
lated to the project. PCTE [6] is the basis for many IPSEs.
PCTE and its based IPSEs provide global schemas that must
be followed closely and are generally monitored and kept
consistent. The PCTE approach proves to be too restrictive
since each implementation must follow a set of rules result-
ing from the scheme definition. The entity-relationship ap-
proach adapts poorly to a composition and decomposition
of abstractions needed in the software development process.
It is successful in representing each layer in structured way
but that is not the only problem for a software engineer.

Object-oriented modeling languages do not support the
later stages of the development process. The Unified Mod-
eling Language [4], [5] is a very complete and expressive
analysis and design method borrowing ideas from the most
known works. Its diagrams offer very visual and intuit-
ive descriptions of the system. However, cross-referencing
between diagrams is a time consuming job. UML is a solu-
tion for problems that can be solved by automatic genera-
tion of the final code from the final design, if an analysis and
design is available. Large projects tend to require direct in-
tervention at low level languages in order to optimize pieces
of code or ensure interoperability with other systems.

REFERENCES

[1] Thomas Ball and Stephen G. Eick. Software visualization in the
large. TEEE Computer, 29(4):33-43, April 1996.

[2] Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi.
Software process model evolution in the spade envrionment.
IEEE Transactions on Software Engineering, 19(12):1128-1144,
December 1993.

[3] Daniel Bardou and Christophe Dony. Split objects: a disciplined
use of delegation within objects. In Object-Oriented Program-
ming Systems and Applications, 1996.

[4] G.Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling
Language for Object-Oriented Development. Rational Software
Coporation, 0.91 edition, September 1996.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling
Language Sematics. Rational Software Coporation, 1.0 edition,
January 1997.

[6] Gerald Boudier, Ferdinando Gallo, Regis Minot, and Ian M.
Thomas. An overview of PCTE and PCTE+4. In Proceed-
ings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
November 1988.

[7] David Boundy. A taxonomy of programmers. Software Engin-
eering Notes, 16(4):23-30, October 1991.

[8] Link Architecture for a Global Information Infrastructure. Jef-
frey R. Van Dyke. PhD thesis, Massachusetts Institute of Tech-
nology, June 1995.

[9] James Howatt. A project-based approach to programming lan-
guage evaluation. ACM SIGPLAN Notices, 30(7):37-40, July
1995.

[10] Won Kim. Modern Database Systems. Addison-Wesley, Reading,
MA, USA, 1995.

[11] Steve McConnell. Keep it simple. IEEE Software, 13(11),
November 1996.

[12] Michael C. McFarland. The social implications of computariza-
tion: Making the technology more humane. In 26th ACM/IEEE
Design Automation Conference, pages 129-134, 1989.

[13] Hernan Astudillo R. Reorganizing split objects. In Object-
Oriented Programming Systems and Applications, 1996.

[14] Jerzy W. Rozenblit and Sanjaya Kumar. Toward synergistic en-

gineering of computer systems. TEEE Computer, 30(2):126-127,
February 1997.



[15]

(16]

(17]

Anténio Rito Silva, Pedro Sousa, and José Alves Marques. De-
velopment of distributed applications with separation of con-
cerns. In Asia-Pacific Software Engineering Conference, Digital
Equipment Corporation 1995.

Anthony 1. Wasserman. Toward a discipline of software engin-
eering. IEEE Software, 13(11), November 1996.

M. Wein, Wm Cowan, and W. M. Gentleman. Visual support
for version management. In Symposium on Applied Computing

ACM/SIGAPP, pages 1217-1233, March 1992.



