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Abstract—Vehicular Delay-Tolerant Networks use the delay-

tolerant architecture and protocols to overcome the disruptions in 

network connectivity. These concepts help in cases where the 

network is sparse or with large variations in density or there is no 

end-to-end connectivity, by providing a communications solution 

for non real-time applications. This paper presents data 

fragmentation techniques to optimize the efficiency of data 

delivery for the case of the short node contacts that characterize 

vehicle networks. The techniques were tested in a laboratory 

environment with portable digital assistants and Lego Mindstorm 

NXT robotic cars. If no fragmentation is used, only small 

messages are successfully transferred. Proactive fragmentation 

fragments messages to a predefined size in the source node. 

Reactive fragmentation adjusts the fragment sizes to the real 

duration of the contact when it is broken. Reactive fragmentation 

showed a good efficiency in adapting the fragmentation in real 

time to the contact duration. Proactive fragmentation can 

perform slightly better if the fragment sizes are carefully chosen 

as it requires less processing. As this choice is difficult, reactive 

fragmentation is more practical to use. 

 
Index Terms—Vehicular Delay-Tolerant Networks, 

Delay/Disruption-Tolerant Networks, Vehicular Ad Hoc 

Networks, Fragmentation. 

I. INTRODUCTION 

ELAY-TOLERANT Networks (DTNs) [1] are networks that 

enable communication where connectivity issues like 

sparse and intermittent connectivity, long and variable delay, 

high latency, high error rates, highly asymmetric data rate, and 

even no end-to-end connectivity exist. 

The DTN Research Group (DTNRG) [2], which was 
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chartered as part of the Internet Research Task Force (IRTF), 

has proposed an architecture [3] and a communication 

protocol [4] (the Bundle Protocol) for DTNs. 

Instead of working end-to-end, in DTNs, a message-oriented 

overlay layer called “Bundle Layer” employs a store, carry and 

forward message switching paradigm that moves messages 

from node to node, along a path that eventually reaches the 

destination. The idea is to “bundle” together all the 

information required for a transaction, minimizing the number 

of round-trip exchanges, which is useful when the round-trip 

time is very large.  

Vehicular Delay-Tolerant Networks (VDTNs) are DTNs 

where vehicles communicate with each other in order to 

disseminate messages. Some of the potential applications for 

these networks are the following: road safety, traffic 

monitoring, driving assistance, entertainment, advertisements, 

delivering connectivity to rural/remote communities or 

catastrophe-hit areas, and gathering information collected by 

vehicles such as road pavement defects.  

We proposed [5] a layered architecture for VDTNs (Fig. 1), 

where the bundle layer is placed below the network layer 

instead of over the transport layer as in the DTN architecture. 

The objective is to route large size messages instead of small 

size IP packets. This results in fewer packets processing and 

routing decisions, which can be translated to less complexity, 

lower cost and energy savings. 
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Fig. 1.  VDTN protocol architecture. 

 

The VDTN architecture uses out-of-band signaling, based 

on the separation of the control plane and data plane. The 

Bundle Aggregation and De-aggregation (BAD) layer 

aggregates incoming IP messages into bundle messages that 

Bundles Fragmentation in 

Vehicular Delay-Tolerant Networks 

Naércio Magaia, Paulo Rogério Pereira, Augusto Casaca, Joel J. P. C. Rodrigues, João A. Dias, 

João N. Isento, Cristina Cervelló-Pastor, Javier Gallego 

D



 

 

2

are transferred in the data plane and de-aggregated at the 

destination. The Bundle Signaling Control (BSC) layer 

provides a signaling protocol for use at the connection setup 

phase. The nodes exchange control information to discover 

each other’s characteristics and prepare the data transfer to 

occur in the data plane. This layer also includes routing 

algorithms. This separation of the control and data planes 

comes from the Optical Burst Switching techniques.  

Vehicular networks are characterized by scarce transmission 

opportunities and intermittent connectivity, particularly in 

rural or mountainous areas. A study [6] shows that the duration 

of contacts between cars using IEEE 802.11g crossing at 

20 Km/h is about 40 s, at 40 Km/h is about 15 s and at 

60 Km/h (relative speed 120 Km/h) is about 11 s. If TCP is 

used at 60 Km/h, the goodput is very low (average of 80 KB) 

and in 4 out of 10 experiments no data was transferred at all. 

UDP gives better results, with about 2 MB transferred in a 

contact at 60 Km/h. 

As contacts between vehicles are short, it is important to 

study fragmentation methods for VDTNs. If the contact is not 

long enough to transfer an entire bundle message and 

fragmentation is not used, the incomplete message is deleted. 

This results in a waste of transmission resources and a 

decrease on the message delivery ratio or an increase in the 

message delivery time.  

The remaining of the paper is structured as follows. Section 

II presents an overview of fragmentation in DTNs. The 

following section details on the proposed fragmentation 

mechanisms. Section IV presents the experimental evaluation 

of the mechanisms. Section V presents conclusions and further 

work topics. 

II. RELATED WORK 

Fragmentation in IP networks has been considered harmful 

[7]. It can lead to poor performance or complete 

communication failure. The loss of fragments requires the 

higher layer protocol to retransmit all of the data in the 

original datagram. Fragmentation also introduces additional 

headers, requiring additional bandwidth, additional processing 

at intermediate nodes, and complex reassembly mechanisms at 

the receiver. For this reason, IPv6 [8] disallows fragmentation 

inside the network, requiring that fragmentation is done in the 

source node to comply with the path’s maximum transmission 

unit (MTU) to the destination.  

However, large application messages can benefit from 

fragmentation when connections are disrupted, a normal 

circumstance in DTN. An example is the HTTP protocol that 

allows byte ranges of objects to be individually retrieved [9], 

enabling partial file retrievals to be resumed without restarting 

the transfer from the beginning.  

Two types of fragmentation are foreseen in the DTN 

architecture [3]: proactive and reactive. In proactive 

fragmentation, a DTN node may divide a block of application 

data into multiple smaller blocks and transmit each block as an 

independent bundle. This approach is called proactive 

fragmentation because it is used primarily when the contact 

duration is known (or predicted) in advance. In the reactive 

fragmentation, the DTN nodes in communication may 

fragment a bundle cooperatively when a bundle is only 

partially transferred; the receiving bundle layer modifies the 

incoming bundle to indicate the data received is a fragment 

and forwards it normally; the sender node truncates the 

successfully transferred part from the original bundle and 

keeps the undelivered fragment for a subsequent contact. This 

approach is called reactive fragmentation because the 

fragmentation process occurs after an attempted transmission 

has taken place. A variant of reactive fragmentation does not 

allow arbitrary sizes of fragments, creating fragments only at 

pre-defined boundaries of the message, as defined by the 

source. This variant is often called toilet paper approach [10], 

which allows fragment authentication. 

The bundle protocol [4] defines how fragments are created, 

processed and reassembled. However, little is said on how and 

when to use fragmentation. 

Proactive fragmentation is particularly adequate for satellite 

networks where the connectivity periods are known. An 

example is provided in [11], where very large files transfers 

are proactively fragmented at the source. In addition, 

connection problems can lead to subsequent reactive 

fragmentation of the initial fragments. Proactive and reactive 

fragmentation are supported by the DTN2 reference 

implementation [12], but not for all lower layer protocols. 

As in vehicle networks, contact durations are not know a 

priori, the only way to use proactive fragmentation is to 

fragment the message in fragments of a pre-determined size in 

the first node. 

The work in [13] explores the use of node localization in 

vehicles, as provided by a Global Positioning System (GPS), 

to estimate the duration of contacts between vehicles and 

schedule the message transmission order to prevent incomplete 

transmissions. But no fragmentation mechanism is explored. 

The most complete study of message fragmentation in DTN 

through simulation is provided in [14]. It concludes that the 

effects of fragmentation are largely independent of the routing 

protocol. Proactive fragmentation can reduce the performance, 

as fragments can be spread across multiple paths and the loss 

of one compromises the whole message. Reactive 

fragmentation can effectively increase overall connectivity, 

improving the delivery ratio, while the latency remains about 

the same. The reactive fragmentation with predefined fragment 

boundaries (”toilet paper approach”) shows slightly better 

performance as it avoids small fragments. However, this study 

is only based on simulations. In this paper, we study 

fragmentation mechanisms based on a real testbed 

environment.  

III. VDTN FRAGMENTATION 

In a real network, a synchronization problem between 

adjacent nodes may arise when a connection is broken. If the 

sending node has successfully passed the data to the operating 
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system for transmission and the connection is broken, the 

operating system drops the data without warning. This might 

result in the sender thinking that the data was successfully 

transmitted, while it was not received by the next node in the 

path to the destination. This problem may be solved by a 

convergence layer adapter that performs the adaptation to the 

lower protocol layers. This convergence layer would provide 

an acknowledgement that the data was successfully transferred. 

So, any synchronization problem might result in a subsequent 

retransmission of the data and a possible overlapping of data 

that has to be solved by the final destination. Without the 

acknowledgement, data loss might occur. 

Fig. 2 shows the implementation architecture where a 

bundle forwarder interacts with storage, routing decisions, a 

bundle fragmentation and reassembly layer and a convergence 

layer adapter to interface to a delivery protocol. Note that this 

fragmentation and reassembly layer is a sub-layer of the 

bundle layer that deals with fragmentation and reassembly of 

bundles internally to the network. The bundle layer of Fig. 1 

deals with building bundles with the application data at the 

communication end points (source and destination). 
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Fig. 2.  Implementation architecture. 

 

Naturally, the synchronization problem does not occur if the 

routing protocol generates an arbitrary number of copies of the 

messages, such as the Epidemic routing [15] that floods the 

messages to all nodes. In this case, whether the data was 

transferred or not, the next contact will provide another 

opportunity to transfer the data that had not yet been 

transferred. So, the acknowledgement in the convergence layer 

adapter is optional in this case. However, for routing protocols 

that keep a single copy of the messages, the acknowledgment 

is necessary so that the fragmentation is independent of the 

routing protocol. Examples of such protocols are Direct 

Delivery routing, in which the node originating a message 

carries it until it meets its final destination, and First Contact 

routing, where the nodes forward messages to the first node 

they encounter, which results in a “random walk” search for 

the destination node. 

For comparison purposes, we will test communications over 

a VDTN in three scenarios: i) no fragmentation; ii) proactive 

fragmentation; iii) reactive fragmentation. 

Without fragmentation, when a bundle is only partially 

transmitted, it is deleted. This prevents the transmission of 

messages larger than the size that can be transferred in a 

contact between vehicles. As contacts may be rather short, this 

is a serious limitation, as will be demonstrated. 

For proactive fragmentation, the bundles are fragmented, 

when entering the VDTN, into fragments of a given size for 

transmission. The bundle is reassembled only at the destination 

when all fragments are received. As each fragment has its own 

headers, fragmenting into small fragments introduces an 

increased transmission overhead and an increased processing 

overhead. If the fragments are large, more data can be lost 

when the contact between nodes is broken. So, there is a 

compromise in setting the length of fragments. It is very 

difficult to accurately predict the duration of contacts between 

vehicles, as vehicles may change direction without warning. 

Using GPS, information about the road where the car is and a 

received signal strength indicator (RSSI) may help estimating 

the duration of the contact. To be more general, we assumed 

no such information was available and tested with different 

fixed fragment sizes. Messages are lost if any of the fragments 

does not reach the destination. Fragments may be lost if: i) 

their time to live (TTL) expires, maybe because they took a 

very long path; ii) memory is exhausted at some node due to 

congestion; iii) a node leaves the network, maybe because the 

vehicle is turned off. 

Reactive fragmentation requires that during a contact, the 

nodes can determine which part of the data has been 

successfully transferred and which has not. The receiver 

creates a fragment with all the data correctly received. The 

sender keeps a fragment with all the untransferred data. As the 

radio transmission over a Medium Access Control (MAC) 

layer is packet oriented, we do not consider the possibility of 

fragments of arbitrary size, but only multiples of a certain 

block size.  

To illustrate the fragmentation operation, we consider an 

example where the bundle message has 10KB data, the contact 

allows the transmission of approximately 9.5KB and the 

blocks transferred by the convergence layer adapter are of 

4KB. Fig. 3 shows the operation of the three fragmentation 

scenarios (not to scale). 

 

i) no fragmentation 

 
 

 
ii) proactive fragmentation 

 
 
 

iii) reactive fragmentation 
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Fig. 3.  Fragmentation example. 

 

For this example, when no fragmentation is used, the bundle 

is not entirely transferred, so it is discarded. When proactive 
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fragmentation is used, the two first 4KB fragments are 

transferred and the last 2KB fragment is not. When reactive 

fragmentation is used, the bundle is fragmented into an 8KB 

fragment successfully transferred and a 2KB fragment not 

transferred. In this example, we assumed that no 

synchronization problem occurred. If it did occur, some 

overlapping data might be present when reassembling the 

bundle at the destination. We also neglected the processing 

times. 

In addition to the increase in data transferred when 

fragmentation is used, the proactive fragmentation also has an 

increase in signaling to announce more fragments available for 

transfer during a contact. In the example of Fig. 3, the 

signaling required for proactive fragmentation would be the 

triple of the no fragmentation or the reactive fragmentation 

cases.  

IV. EXPERIMENTAL EVALUATION 

For assessing the performance of the fragmentation 

mechanisms, we used a mobile node going back and forth 

crossing a fixed node. The mobile node is a Lego Mindstorm 

NXT robotic car coupled with a Samsung OMNIA II GT-

i8000 Personal Digital Assistant (PDA) running Windows 

Mobile version 6.5.3 Professional. The fixed node is a laptop 

running Windows 7. The applications were developed using 

the C# language in a Microsoft Visual Studio environment. 

All nodes use Bluetooth 2.0 (3 Mbit/s) for out-of-band 

signaling and IEEE 802.11b (11 Mbit/s) connections for data 

transfers, and storage capacities to allow VDTN data 

communications. The routing protocol is Epidemic, where the 

nodes try to transfer the messages to all contacts until they 

expire or reach the destination. The message TTL was set 

longer than the experiments so that the messages have an 

opportunity to be delivered to the destination without expiring. 

No storage limitation was imposed on the nodes, so that no 

message is deleted due to congestion. 

The data plane convergence layer is using the User 

Datagram Protocol (UDP) over IP over IEEE 802.11b. In the 

PDA used, the maximum datagram length is 32 KB, so the 

maximum transfer block size used was 32 KB. 

The contact times vary from 9 to 21 seconds (average 15 

seconds, standard deviation 3.5 seconds), which according to 

[6] corresponds to vehicles crossing at a relative speed of 

approximately 80 Km/h. The interval between successive 

contacts varies from 1 to 27 seconds (average 9 seconds, 

standard deviation 7 seconds).  

For each situation tested, the corresponding test was 

repeated 20 times and the results averaged. For some 

situations, the tests were repeated 20 additional times to 

improve the confidence level of the results. 

When a contact is established, the nodes inform each other, 

through signaling, which bundles they have and decide which 

bundles are to be transferred. Then, they transfer them through 

the data link. 

Fig. 4 and Fig. 5 show, respectively, the mobile node and 

terminal node application screens. Several messages from the 

terminal node (TN) to the mobile node (MN) are shown with 

the corresponding details for debugging. 

 

 
Fig. 4.  Mobile node application screen. 

 

 
Fig. 5.  Terminal node application screen. 

 

A first interesting result is the average number of contacts 

necessary to transfer a message. Fig. 6 shows the experimental 

results for this measurement, using a 32 KB block size for the 

different scenarios. When fragmentation is not used, the 

message is only transferred if the contact is long enough, so 

when the message size increases, the number of contacts long 

enough to transfer the entire message is dramatically reduced. 

No value for 900 KB messages without fragmentation is 

presented, as this message size is too long for successful 

transmissions in our scenario. In contrast, a 900 KB message 

does not require more than an average 1.4 contacts to be 

transferred with either fragmentation method. This result 

shows the importance of fragmentation methods when contacts 
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are short, as in vehicular networks. The difference between the 

two fragmentation methods is negligible in this aspect.  

Another important aspect is the effect of varying the block 

size. Fig. 7 shows the average message delivery latency when 

the block size is 4 KB, while Fig. 8 shows the same results 

when the block size is 8 KB and Fig. 9 for a block size of 

32 KB. When no fragmentation is used, it is very difficult to 

transfer an entire 600 KB message in our test scenario, so only 

the value for 32 KB blocks is shown. Again, as it is almost 

impossible to transfer a 900 KB message without 

fragmentation, the corresponding results are not shown.  
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Fig. 6.  Average number of contacts to transfer a message as a function of the 

message size. 

 

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

100 300 600 900

Message Size [KB]

Average Message Delivery Time [s]

no 

fragmentation

proactive 

fragmentation

reactive 

fragmentation

 
Fig. 7.  Average message delivery latency for a block size of 4KB. 
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Fig. 8.  Average message delivery latency for a block size of 8KB. 

 

For a small block size, such as 4 KB, the proactive 

fragmentation has a significant cost in terms of additional 

signaling to inform the peer entity, during a contact, of the 

numerous (4 KB) fragments available for transfer and in terms 

of additional headers for each fragment (12% to 17%, as listed 

in Table I). So, although the messages are successfully 

transferred, the delivery latency is strongly affected, 

particularly for larger message sizes. However, we note that 

fragmentation is worth being used, as even for messages as 

small as 100 KB, the waste of resources for incomplete 

transmissions when no fragmentation is used exceeds the 

overhead incurred with fragmentation. Reactive fragmentation 

performs much better for the different message sizes, without a 

degradation effect for larger messages. 

 

00:00

01:00

02:00

03:00

100 300 600 900

Message Size [KB]

Average Message Delivery Time [s]

no 

fragmentation

proactive 

fragmentation

reactive 

fragmentation

 
Fig. 9.  Average message delivery latency for a block size of 32KB. 

 
TABLE I 

QUANTITY OF INFORMATION FOR PROACTIVE FRAGMENTATION FOR 

DIFFERENT MESSAGE SIZES AND BLOCK SIZES 

Message 

Size 

Block Size 
100 KB 300 KB 600 KB 900 KB 

4 KB 117 KB 347 KB 693 KB 1010 KB 

8 KB 108 KB 322 KB 642 KB 962 KB 

32 KB 103 KB 306 KB 611 KB 915 KB 

 

For an 8 KB block size, the fragmentation overhead is 

reduced. However, the proactive fragmentation still performs 

25-85% worse than reactive fragmentation. Both 

fragmentation methods greatly outperform the no 

fragmentation case. 

For a larger block size, such as 32 KB, the overhead 

incurred by proactive fragmentation has little significance (2% 

to 3% more headers, as listed in Table I), so the results of 

proactive and reactive fragmentation are very similar. The 

differences in the results shown (0-5 seconds) are smaller than 

their 95% confidence intervals, which are 1-5 seconds for the 

proactive fragmentation and 4-9 seconds for the reactive 

fragmentation, depending on the message size. Although 

proactive fragmentation requires the transmission of more 

information, it performs slightly better than reactive 

fragmentation for a 32 KB block size as it requires less 

processing during the contacts. This is because fragments are 

generated in advance in the source node when the bundle 



 

 

6

message is created. On the other hand, reactive fragmentation 

requires some additional processing during the contact to 

determine if any part of a message is missing, possibly causing 

the transfer of some overlapping part. When comparing the 

results without fragmentation for 4 KB and 32 KB block sizes, 

we find that the 32 KB blocks are more efficient. The 

difference is that with 32 KB blocks, less system calls are 

generated to transfer the same application data, which leads us 

to conclude that there is a considerable additional overhead in 

processing the data in the application layer as compared with 

processing it in the operating system, particularly for systems 

with limited processing capabilities such as PDAs. This 

conclusion also justifies that reactive fragmentation is slightly 

less efficient than proactive fragmentation for 32 KB blocks, 

as it requires more processing. When a contact is broken, the 

impact of interrupting the data transfer of a 32 KB block as 

compared with a 4 KB block is negligible as compared with 

the corresponding processing overhead, so it is more efficient 

to use larger blocks. 

However, an important advantage of reactive fragmentation 

is that it adapts to the contact duration in real-time, which is 

particularly important when the contact duration is not know in 

advance. This is confirmed by the message delivery times of 

the reactive fragmentation being almost the same for the 

different block sizes. Using a 4 KB block size with reactive 

fragmentation results only in an average 20% increase in the 

delivery time as compared with the 32 KB block size case. In 

contrast, reducing the block size from 32 KB to 4 KB with 

proactive fragmentation can result in a 39 times increase of the 

delivery time for a 900 KB message. 

As for memory occupancy, proactive fragmentation requires 

some additional memory to store the fragments as new headers 

are necessary as compared to the situation without 

fragmentation. The required memory is as listed in Table I. 

Reactive fragmentation only requires more memory as 

compared to the situation without fragmentation if fragments 

are really created, so the increase in memory use is negligible.  

V. CONCLUSION 

By applying DTN concepts to vehicular networks, new 

challenging situations typical of vehicular networks may be 

overcome, such as sparse and intermittent connectivity, 

variable delays, high error rates and inexistence of an end-to-

end path.  

The use of fragmentation allows the transfer of messages 

larger than the typically short contacts between vehicles, 

resulting in an increased delivery ratio and decreased delivery 

latency. 

Reactive fragmentation adapts the fragments size 

dynamically to the duration of the contact, resulting in an 

efficient use of the contact opportunities. In contrast, proactive 

fragmentation requires an a priori definition of the fragment 

size, which is difficult to adjust to the duration of the contact 

opportunity in a VDTN. If the fragments are set too short, 

proactive fragmentation is inefficient.  

However, reactive fragmentation requires more processing 

than proactive fragmentation so, if the fragments of the 

proactive fragmentation are well adjusted to the contact 

opportunity, the latter may perform slightly better than reactive 

fragmentation. 

Some future work possibilities are testing more complex 

VDTN scenarios, with more nodes and mixes of different 

message sizes; using contact duration prediction mechanisms 

to combine scheduling and fragmentation of bundles to 

optimize the data transfer phase. 
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