

1

Abstract—Vehicular Delay-Tolerant Networks use the delay-

tolerant architecture and protocols to overcome the disruptions in

network connectivity. These concepts help in cases where the

network is sparse or with large variations in density or there is no

end-to-end connectivity, by providing a communications solution

for non real-time applications. This paper presents data

fragmentation techniques to optimize the efficiency of data

delivery for the case of the short node contacts that characterize

vehicle networks. The techniques were tested in a laboratory

environment with portable digital assistants and Lego Mindstorm

NXT robotic cars. If no fragmentation is used, only small

messages are successfully transferred. Proactive fragmentation

fragments messages to a predefined size in the source node.

Reactive fragmentation adjusts the fragment sizes to the real

duration of the contact when it is broken. Reactive fragmentation

showed a good efficiency in adapting the fragmentation in real

time to the contact duration. Proactive fragmentation can

perform slightly better if the fragment sizes are carefully chosen

as it requires less processing. As this choice is difficult, reactive

fragmentation is more practical to use.

Index Terms—Vehicular Delay-Tolerant Networks,

Delay/Disruption-Tolerant Networks, Vehicular Ad Hoc

Networks, Fragmentation.

I. INTRODUCTION

ELAY-TOLERANT Networks (DTNs) [1] are networks that

enable communication where connectivity issues like

sparse and intermittent connectivity, long and variable delay,

high latency, high error rates, highly asymmetric data rate, and

even no end-to-end connectivity exist.

The DTN Research Group (DTNRG) [2], which was

Manuscript received March, 2011. Part of this work has been supported by

the Instituto de Telecomunicações, Next Generation Networks and

Applications Group (NetGNA), Portugal, in the framework of the

VDTN@Lab Project, by the Euro-NF Network of Excellence of the Seventh

Framework Programme of EU, in the framework of the Specific Joint

Research Project VDTN, as well as by FCT (INESC-ID multiannual funding)

through the PIDDAC program funds.

N. Magaia, P. Pereira and A. Casaca are with INESC-ID, Instituto

Superior Técnico, Technical University of Lisbon, Rua Alves Redol, nº 9,

1000-029 Lisboa, Portugal. (phone: +351-213100345; fax: +351-213145843;

e-mails: naercio.magaia@ist.utl.pt, {prbp, augusto.casaca}@inesc.pt).

J. Rodrigues, J. Dias and J. Isento are with Instituto de Telecomunicações,

NetGNA Group, University of Beira Interior, Covilhã, Portugal. (e-mails:

joeljr@ieee.org, {joao.dias, joao.isento}@it.ubi.pt).

C. Cervelló-Pastor and J. Gallego are with the Dept. of Telematics

Engineering, Universitat Politècnica de Catalunya (UPC), Esteve Terradas, 7,

Castelldefels, Spain. (e-mails: {cristina, javier.gallego}@entel.upc.edu).

chartered as part of the Internet Research Task Force (IRTF),

has proposed an architecture [3] and a communication

protocol [4] (the Bundle Protocol) for DTNs.

Instead of working end-to-end, in DTNs, a message-oriented

overlay layer called “Bundle Layer” employs a store, carry and

forward message switching paradigm that moves messages

from node to node, along a path that eventually reaches the

destination. The idea is to “bundle” together all the

information required for a transaction, minimizing the number

of round-trip exchanges, which is useful when the round-trip

time is very large.

Vehicular Delay-Tolerant Networks (VDTNs) are DTNs

where vehicles communicate with each other in order to

disseminate messages. Some of the potential applications for

these networks are the following: road safety, traffic

monitoring, driving assistance, entertainment, advertisements,

delivering connectivity to rural/remote communities or

catastrophe-hit areas, and gathering information collected by

vehicles such as road pavement defects.

We proposed [5] a layered architecture for VDTNs (Fig. 1),

where the bundle layer is placed below the network layer

instead of over the transport layer as in the DTN architecture.

The objective is to route large size messages instead of small

size IP packets. This results in fewer packets processing and

routing decisions, which can be translated to less complexity,

lower cost and energy savings.

Application Layer

Transport Layer

Network Layer

BAD Layer BSC Layer

MAC Layer MAC Layer

PHY Layer PHY Layer

Data Plane Control Plane

Persistent
Storage

Fig. 1. VDTN protocol architecture.

The VDTN architecture uses out-of-band signaling, based

on the separation of the control plane and data plane. The

Bundle Aggregation and De-aggregation (BAD) layer

aggregates incoming IP messages into bundle messages that

Bundles Fragmentation in

Vehicular Delay-Tolerant Networks

Naércio Magaia, Paulo Rogério Pereira, Augusto Casaca, Joel J. P. C. Rodrigues, João A. Dias,

João N. Isento, Cristina Cervelló-Pastor, Javier Gallego

D

2

are transferred in the data plane and de-aggregated at the

destination. The Bundle Signaling Control (BSC) layer

provides a signaling protocol for use at the connection setup

phase. The nodes exchange control information to discover

each other’s characteristics and prepare the data transfer to

occur in the data plane. This layer also includes routing

algorithms. This separation of the control and data planes

comes from the Optical Burst Switching techniques.

Vehicular networks are characterized by scarce transmission

opportunities and intermittent connectivity, particularly in

rural or mountainous areas. A study [6] shows that the duration

of contacts between cars using IEEE 802.11g crossing at

20 Km/h is about 40 s, at 40 Km/h is about 15 s and at

60 Km/h (relative speed 120 Km/h) is about 11 s. If TCP is

used at 60 Km/h, the goodput is very low (average of 80 KB)

and in 4 out of 10 experiments no data was transferred at all.

UDP gives better results, with about 2 MB transferred in a

contact at 60 Km/h.

As contacts between vehicles are short, it is important to

study fragmentation methods for VDTNs. If the contact is not

long enough to transfer an entire bundle message and

fragmentation is not used, the incomplete message is deleted.

This results in a waste of transmission resources and a

decrease on the message delivery ratio or an increase in the

message delivery time.

The remaining of the paper is structured as follows. Section

II presents an overview of fragmentation in DTNs. The

following section details on the proposed fragmentation

mechanisms. Section IV presents the experimental evaluation

of the mechanisms. Section V presents conclusions and further

work topics.

II. RELATED WORK

Fragmentation in IP networks has been considered harmful

[7]. It can lead to poor performance or complete

communication failure. The loss of fragments requires the

higher layer protocol to retransmit all of the data in the

original datagram. Fragmentation also introduces additional

headers, requiring additional bandwidth, additional processing

at intermediate nodes, and complex reassembly mechanisms at

the receiver. For this reason, IPv6 [8] disallows fragmentation

inside the network, requiring that fragmentation is done in the

source node to comply with the path’s maximum transmission

unit (MTU) to the destination.

However, large application messages can benefit from

fragmentation when connections are disrupted, a normal

circumstance in DTN. An example is the HTTP protocol that

allows byte ranges of objects to be individually retrieved [9],

enabling partial file retrievals to be resumed without restarting

the transfer from the beginning.

Two types of fragmentation are foreseen in the DTN

architecture [3]: proactive and reactive. In proactive

fragmentation, a DTN node may divide a block of application

data into multiple smaller blocks and transmit each block as an

independent bundle. This approach is called proactive

fragmentation because it is used primarily when the contact

duration is known (or predicted) in advance. In the reactive

fragmentation, the DTN nodes in communication may

fragment a bundle cooperatively when a bundle is only

partially transferred; the receiving bundle layer modifies the

incoming bundle to indicate the data received is a fragment

and forwards it normally; the sender node truncates the

successfully transferred part from the original bundle and

keeps the undelivered fragment for a subsequent contact. This

approach is called reactive fragmentation because the

fragmentation process occurs after an attempted transmission

has taken place. A variant of reactive fragmentation does not

allow arbitrary sizes of fragments, creating fragments only at

pre-defined boundaries of the message, as defined by the

source. This variant is often called toilet paper approach [10],

which allows fragment authentication.

The bundle protocol [4] defines how fragments are created,

processed and reassembled. However, little is said on how and

when to use fragmentation.

Proactive fragmentation is particularly adequate for satellite

networks where the connectivity periods are known. An

example is provided in [11], where very large files transfers

are proactively fragmented at the source. In addition,

connection problems can lead to subsequent reactive

fragmentation of the initial fragments. Proactive and reactive

fragmentation are supported by the DTN2 reference

implementation [12], but not for all lower layer protocols.

As in vehicle networks, contact durations are not know a

priori, the only way to use proactive fragmentation is to

fragment the message in fragments of a pre-determined size in

the first node.

The work in [13] explores the use of node localization in

vehicles, as provided by a Global Positioning System (GPS),

to estimate the duration of contacts between vehicles and

schedule the message transmission order to prevent incomplete

transmissions. But no fragmentation mechanism is explored.

The most complete study of message fragmentation in DTN

through simulation is provided in [14]. It concludes that the

effects of fragmentation are largely independent of the routing

protocol. Proactive fragmentation can reduce the performance,

as fragments can be spread across multiple paths and the loss

of one compromises the whole message. Reactive

fragmentation can effectively increase overall connectivity,

improving the delivery ratio, while the latency remains about

the same. The reactive fragmentation with predefined fragment

boundaries (”toilet paper approach”) shows slightly better

performance as it avoids small fragments. However, this study

is only based on simulations. In this paper, we study

fragmentation mechanisms based on a real testbed

environment.

III. VDTN FRAGMENTATION

In a real network, a synchronization problem between

adjacent nodes may arise when a connection is broken. If the

sending node has successfully passed the data to the operating

3

system for transmission and the connection is broken, the

operating system drops the data without warning. This might

result in the sender thinking that the data was successfully

transmitted, while it was not received by the next node in the

path to the destination. This problem may be solved by a

convergence layer adapter that performs the adaptation to the

lower protocol layers. This convergence layer would provide

an acknowledgement that the data was successfully transferred.

So, any synchronization problem might result in a subsequent

retransmission of the data and a possible overlapping of data

that has to be solved by the final destination. Without the

acknowledgement, data loss might occur.

Fig. 2 shows the implementation architecture where a

bundle forwarder interacts with storage, routing decisions, a

bundle fragmentation and reassembly layer and a convergence

layer adapter to interface to a delivery protocol. Note that this

fragmentation and reassembly layer is a sub-layer of the

bundle layer that deals with fragmentation and reassembly of

bundles internally to the network. The bundle layer of Fig. 1

deals with building bundles with the application data at the

communication end points (source and destination).

Convergence Layer
Adapter

Storage

Routing
Decisions

Bundle
Forwarder

WiFi

Fragmentation and
Reassembly

Fig. 2. Implementation architecture.

Naturally, the synchronization problem does not occur if the

routing protocol generates an arbitrary number of copies of the

messages, such as the Epidemic routing [15] that floods the

messages to all nodes. In this case, whether the data was

transferred or not, the next contact will provide another

opportunity to transfer the data that had not yet been

transferred. So, the acknowledgement in the convergence layer

adapter is optional in this case. However, for routing protocols

that keep a single copy of the messages, the acknowledgment

is necessary so that the fragmentation is independent of the

routing protocol. Examples of such protocols are Direct

Delivery routing, in which the node originating a message

carries it until it meets its final destination, and First Contact

routing, where the nodes forward messages to the first node

they encounter, which results in a “random walk” search for

the destination node.

For comparison purposes, we will test communications over

a VDTN in three scenarios: i) no fragmentation; ii) proactive

fragmentation; iii) reactive fragmentation.

Without fragmentation, when a bundle is only partially

transmitted, it is deleted. This prevents the transmission of

messages larger than the size that can be transferred in a

contact between vehicles. As contacts may be rather short, this

is a serious limitation, as will be demonstrated.

For proactive fragmentation, the bundles are fragmented,

when entering the VDTN, into fragments of a given size for

transmission. The bundle is reassembled only at the destination

when all fragments are received. As each fragment has its own

headers, fragmenting into small fragments introduces an

increased transmission overhead and an increased processing

overhead. If the fragments are large, more data can be lost

when the contact between nodes is broken. So, there is a

compromise in setting the length of fragments. It is very

difficult to accurately predict the duration of contacts between

vehicles, as vehicles may change direction without warning.

Using GPS, information about the road where the car is and a

received signal strength indicator (RSSI) may help estimating

the duration of the contact. To be more general, we assumed

no such information was available and tested with different

fixed fragment sizes. Messages are lost if any of the fragments

does not reach the destination. Fragments may be lost if: i)

their time to live (TTL) expires, maybe because they took a

very long path; ii) memory is exhausted at some node due to

congestion; iii) a node leaves the network, maybe because the

vehicle is turned off.

Reactive fragmentation requires that during a contact, the

nodes can determine which part of the data has been

successfully transferred and which has not. The receiver

creates a fragment with all the data correctly received. The

sender keeps a fragment with all the untransferred data. As the

radio transmission over a Medium Access Control (MAC)

layer is packet oriented, we do not consider the possibility of

fragments of arbitrary size, but only multiples of a certain

block size.

To illustrate the fragmentation operation, we consider an

example where the bundle message has 10KB data, the contact

allows the transmission of approximately 9.5KB and the

blocks transferred by the convergence layer adapter are of

4KB. Fig. 3 shows the operation of the three fragmentation

scenarios (not to scale).

i) no fragmentation

ii) proactive fragmentation

iii) reactive fragmentation

ack header Data (4KB) ack header Data (4KB) ack header Data
(2KB)

header Data (4KB) Data (4KB) ack Data

(2KB)

ack header Data (4KB) ack Data (4KB) ack Data
(2KB)

Fig. 3. Fragmentation example.

For this example, when no fragmentation is used, the bundle

is not entirely transferred, so it is discarded. When proactive

4

fragmentation is used, the two first 4KB fragments are

transferred and the last 2KB fragment is not. When reactive

fragmentation is used, the bundle is fragmented into an 8KB

fragment successfully transferred and a 2KB fragment not

transferred. In this example, we assumed that no

synchronization problem occurred. If it did occur, some

overlapping data might be present when reassembling the

bundle at the destination. We also neglected the processing

times.

In addition to the increase in data transferred when

fragmentation is used, the proactive fragmentation also has an

increase in signaling to announce more fragments available for

transfer during a contact. In the example of Fig. 3, the

signaling required for proactive fragmentation would be the

triple of the no fragmentation or the reactive fragmentation

cases.

IV. EXPERIMENTAL EVALUATION

For assessing the performance of the fragmentation

mechanisms, we used a mobile node going back and forth

crossing a fixed node. The mobile node is a Lego Mindstorm

NXT robotic car coupled with a Samsung OMNIA II GT-

i8000 Personal Digital Assistant (PDA) running Windows

Mobile version 6.5.3 Professional. The fixed node is a laptop

running Windows 7. The applications were developed using

the C# language in a Microsoft Visual Studio environment.

All nodes use Bluetooth 2.0 (3 Mbit/s) for out-of-band

signaling and IEEE 802.11b (11 Mbit/s) connections for data

transfers, and storage capacities to allow VDTN data

communications. The routing protocol is Epidemic, where the

nodes try to transfer the messages to all contacts until they

expire or reach the destination. The message TTL was set

longer than the experiments so that the messages have an

opportunity to be delivered to the destination without expiring.

No storage limitation was imposed on the nodes, so that no

message is deleted due to congestion.

The data plane convergence layer is using the User

Datagram Protocol (UDP) over IP over IEEE 802.11b. In the

PDA used, the maximum datagram length is 32 KB, so the

maximum transfer block size used was 32 KB.

The contact times vary from 9 to 21 seconds (average 15

seconds, standard deviation 3.5 seconds), which according to

[6] corresponds to vehicles crossing at a relative speed of

approximately 80 Km/h. The interval between successive

contacts varies from 1 to 27 seconds (average 9 seconds,

standard deviation 7 seconds).

For each situation tested, the corresponding test was

repeated 20 times and the results averaged. For some

situations, the tests were repeated 20 additional times to

improve the confidence level of the results.

When a contact is established, the nodes inform each other,

through signaling, which bundles they have and decide which

bundles are to be transferred. Then, they transfer them through

the data link.

Fig. 4 and Fig. 5 show, respectively, the mobile node and

terminal node application screens. Several messages from the

terminal node (TN) to the mobile node (MN) are shown with

the corresponding details for debugging.

Fig. 4. Mobile node application screen.

Fig. 5. Terminal node application screen.

A first interesting result is the average number of contacts

necessary to transfer a message. Fig. 6 shows the experimental

results for this measurement, using a 32 KB block size for the

different scenarios. When fragmentation is not used, the

message is only transferred if the contact is long enough, so

when the message size increases, the number of contacts long

enough to transfer the entire message is dramatically reduced.

No value for 900 KB messages without fragmentation is

presented, as this message size is too long for successful

transmissions in our scenario. In contrast, a 900 KB message

does not require more than an average 1.4 contacts to be

transferred with either fragmentation method. This result

shows the importance of fragmentation methods when contacts

5

are short, as in vehicular networks. The difference between the

two fragmentation methods is negligible in this aspect.

Another important aspect is the effect of varying the block

size. Fig. 7 shows the average message delivery latency when

the block size is 4 KB, while Fig. 8 shows the same results

when the block size is 8 KB and Fig. 9 for a block size of

32 KB. When no fragmentation is used, it is very difficult to

transfer an entire 600 KB message in our test scenario, so only

the value for 32 KB blocks is shown. Again, as it is almost

impossible to transfer a 900 KB message without

fragmentation, the corresponding results are not shown.

0

5

10

15

20

25

100 300 600 900

Message Size [KB]

Average Number of Contacts to Transfer a Message

no

fragmentation

proactive

fragmentation

reactive

fragmentation

Fig. 6. Average number of contacts to transfer a message as a function of the

message size.

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

100 300 600 900

Message Size [KB]

Average Message Delivery Time [s]

no

fragmentation

proactive

fragmentation

reactive

fragmentation

Fig. 7. Average message delivery latency for a block size of 4KB.

00:00

00:15

00:30

00:45

01:00

01:15

01:30

100 300 600 900
Message Size [KB]

Average Message Delivery Time [s]

no

fragmentation

proactive

fragmentation

reactive

fragmentation

Fig. 8. Average message delivery latency for a block size of 8KB.

For a small block size, such as 4 KB, the proactive

fragmentation has a significant cost in terms of additional

signaling to inform the peer entity, during a contact, of the

numerous (4 KB) fragments available for transfer and in terms

of additional headers for each fragment (12% to 17%, as listed

in Table I). So, although the messages are successfully

transferred, the delivery latency is strongly affected,

particularly for larger message sizes. However, we note that

fragmentation is worth being used, as even for messages as

small as 100 KB, the waste of resources for incomplete

transmissions when no fragmentation is used exceeds the

overhead incurred with fragmentation. Reactive fragmentation

performs much better for the different message sizes, without a

degradation effect for larger messages.

00:00

01:00

02:00

03:00

100 300 600 900

Message Size [KB]

Average Message Delivery Time [s]

no

fragmentation

proactive

fragmentation

reactive

fragmentation

Fig. 9. Average message delivery latency for a block size of 32KB.

TABLE I

QUANTITY OF INFORMATION FOR PROACTIVE FRAGMENTATION FOR

DIFFERENT MESSAGE SIZES AND BLOCK SIZES

Message

Size

Block Size
100 KB 300 KB 600 KB 900 KB

4 KB 117 KB 347 KB 693 KB 1010 KB

8 KB 108 KB 322 KB 642 KB 962 KB

32 KB 103 KB 306 KB 611 KB 915 KB

For an 8 KB block size, the fragmentation overhead is

reduced. However, the proactive fragmentation still performs

25-85% worse than reactive fragmentation. Both

fragmentation methods greatly outperform the no

fragmentation case.

For a larger block size, such as 32 KB, the overhead

incurred by proactive fragmentation has little significance (2%

to 3% more headers, as listed in Table I), so the results of

proactive and reactive fragmentation are very similar. The

differences in the results shown (0-5 seconds) are smaller than

their 95% confidence intervals, which are 1-5 seconds for the

proactive fragmentation and 4-9 seconds for the reactive

fragmentation, depending on the message size. Although

proactive fragmentation requires the transmission of more

information, it performs slightly better than reactive

fragmentation for a 32 KB block size as it requires less

processing during the contacts. This is because fragments are

generated in advance in the source node when the bundle

6

message is created. On the other hand, reactive fragmentation

requires some additional processing during the contact to

determine if any part of a message is missing, possibly causing

the transfer of some overlapping part. When comparing the

results without fragmentation for 4 KB and 32 KB block sizes,

we find that the 32 KB blocks are more efficient. The

difference is that with 32 KB blocks, less system calls are

generated to transfer the same application data, which leads us

to conclude that there is a considerable additional overhead in

processing the data in the application layer as compared with

processing it in the operating system, particularly for systems

with limited processing capabilities such as PDAs. This

conclusion also justifies that reactive fragmentation is slightly

less efficient than proactive fragmentation for 32 KB blocks,

as it requires more processing. When a contact is broken, the

impact of interrupting the data transfer of a 32 KB block as

compared with a 4 KB block is negligible as compared with

the corresponding processing overhead, so it is more efficient

to use larger blocks.

However, an important advantage of reactive fragmentation

is that it adapts to the contact duration in real-time, which is

particularly important when the contact duration is not know in

advance. This is confirmed by the message delivery times of

the reactive fragmentation being almost the same for the

different block sizes. Using a 4 KB block size with reactive

fragmentation results only in an average 20% increase in the

delivery time as compared with the 32 KB block size case. In

contrast, reducing the block size from 32 KB to 4 KB with

proactive fragmentation can result in a 39 times increase of the

delivery time for a 900 KB message.

As for memory occupancy, proactive fragmentation requires

some additional memory to store the fragments as new headers

are necessary as compared to the situation without

fragmentation. The required memory is as listed in Table I.

Reactive fragmentation only requires more memory as

compared to the situation without fragmentation if fragments

are really created, so the increase in memory use is negligible.

V. CONCLUSION

By applying DTN concepts to vehicular networks, new

challenging situations typical of vehicular networks may be

overcome, such as sparse and intermittent connectivity,

variable delays, high error rates and inexistence of an end-to-

end path.

The use of fragmentation allows the transfer of messages

larger than the typically short contacts between vehicles,

resulting in an increased delivery ratio and decreased delivery

latency.

Reactive fragmentation adapts the fragments size

dynamically to the duration of the contact, resulting in an

efficient use of the contact opportunities. In contrast, proactive

fragmentation requires an a priori definition of the fragment

size, which is difficult to adjust to the duration of the contact

opportunity in a VDTN. If the fragments are set too short,

proactive fragmentation is inefficient.

However, reactive fragmentation requires more processing

than proactive fragmentation so, if the fragments of the

proactive fragmentation are well adjusted to the contact

opportunity, the latter may perform slightly better than reactive

fragmentation.

Some future work possibilities are testing more complex

VDTN scenarios, with more nodes and mixes of different

message sizes; using contact duration prediction mechanisms

to combine scheduling and fragmentation of bundles to

optimize the data transfer phase.

REFERENCES

[1] Kevin Fall and Stephen Farrell, “DTN: An Architectural Retrospective”,

IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp.

828-836, June 2008.

[2] Delay Tolerant Networking Research Group. http://www.dtnrg.org/wiki

[3] V. Cerf et al., “Delay Tolerant Network Architecture”, IETF, RFC 4838,

April 2007.

[4] K. Scott and S. Burleigh, “Bundle Protocol Specification”, IETF, RFC

5050, November 2007.

[5] V. Soares, F. Farahmand and J. Rodrigues, “A Layered Architecture for

Vehicular Delay-Tolerant Networks”, IEEE Symposium on Computers

and Communications (ISCC 2009), Sousse, Tunisia, July 5-8.

[6] M. Rubinstein et al, “Measuring the Capacity of In-Car to In-Car

Vehicular Networks”, IEEE Communications Magazine, vol. 47, no. 11,

pp. 128-136, November 2009.

[7] C. Kent, J. Mogul, “Fragmentation considered harmful”, ACM

SIGCOMM Computer Communication Review, Vol. 25, Issue 1, Jan.

1995.

[8] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)

Specification”, IETF RFC 2460, December 1998.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.

Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1”. IETF RFC

2616, June 1999.

[10] S. Farrell, S. F. Symington, H. Weiss, P. Lovell, “Delay-Tolerant

Networking Security Overview”, Internet Draft draft-irtf-dtnrg-sec-

overview-06, March 2009.

[11] W. Ivancic, P. Paulsen, D. Stewart, J. Taylor, S. Lynch, J. Heberle, J.

Northam, C. Jackson, L. Wood, “Large File Transfers from Space using

Multiple Ground Terminals and Delay-Tolerant Networking”, IEEE

Global Communications Conference (Globecom 2010), Miami, USA,

December 2010.

[12] DTN Code. http://www.dtnrg.org/wiki/Code

[13] Vasco Soares, Joel Rodrigues, Farid Farahmand, and Mieso Denko,

“Exploiting Node Localization for Performance Improvement of

Vehicular Delay-Tolerant Networks”, IEEE International Conference

on Communications (ICC 2010), Cape Town, South Africa, May 23-27,

2010.

[14] M. Pitkänen, A. Keränen, J. Ott, “Message Fragmentation in

Opportunistic DTNs”, Second WoWMoM Workshop on Autonomic and

Opportunistic Communications (AOC), 2008.

[15] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected

Ad Hoc Networks”, Tech. Rep. CS-200006, Department of Computer

Science, Duke University, Durham, NC, 2000.

