
Differentiated Services Network Simulation
Paulo Rogério Pereira, Bruno Afonso, Daniel Gomes

Instituto Superior Técnico, Universidade Técnica de Lisboa. INESC ID, Rua Alves Redol, 9. 1000-029 Lisboa, Portugal.
Phone: +351-213100345. Fax: +351-213145843. Emails: prbp@inesc.pt, baaa@rnl.ist.utl.pt, dhgo@rnl.ist.utl.pt

Abstract

This paper describes the Network Modeler application that
helps differentiated services network design, planning and
configuration testing. This application allows a user to draw a
network, configure it, and evaluate its performance through
simulation. A simple scenario is presented, showing the
potentialiti es of the Network Modeler, the advantages of
using differentiated services, and proving that this application
is an excellent learning and testing tool.

I. INTRODUCTION
In the last few years, the growth of the Internet and the use

of new services such as e-business, voice over IP (VoIP) and
multimedia applications has risen the need to support Quality
of Service (QoS) requirements and to accommodate different
service levels. The differentiated services architecture
(DiffServ) [1] allows to provide quality of service to users.
However, its use makes network management and planning a
hard task.

To help performing network design, planning and
configuration testing, a differentiated services Network
Modeler application was developed [2]. This paper describes
this application, and how it allows creating a network
topology, configuring it, and defining modifications for
simulation time. The application produces the code to run the
simulation, runs the simulation, retrieves the results, and
presents them to the user.

The main simulation work is done by the VINT Project’s
network simulator (ns) [3] version 2.1b5a, with a modified
version of the DiffServ patches [4]. The ns network simulator
has an extensible simulation engine implemented in C++ that
uses MIT' s Object Tool Command Language, OTcl (an
object oriented version of Tcl, the Tool Command Language
[5]), as the command and configuration interface. ns is an
event driven simulator. Events are scheduled in ns allowing
OTcl procedures to be invoked at arbitrary points in
simulation time. These OTcl callbacks provide a flexible
simulation mechanism, as they can be used to start or stop
sources, dump statistics, define link failures, reconfigure the
network topology, etc.

This paper starts by describing the Network Modeler
application in the next section. The following section
describes a simple scenario to show the potentialiti es of the
application and the advantages of using differentiated
services. The final section draws some conclusions and raises
some further work topics.

II . NETWORK MODELER APPLICATION
Figure 1 shows the Network Modeler main screen. The

palette on the left shows the three main elements used to

create a topology: Router represents a network node with a
router; POP represents a network Point of Presence, with
traff ic sources and sinks; and Linha represents a physical
line connecting two network nodes.

Fig. 1 Network Modeler main screen

Each element may allow defining some configuration
parameters, events for simulation time, and statistics to be
retrieved.

A router allows configuring only simulation events to
change the state (up/down) of the router.

A POP allows configuring the number of simultaneous
users, the weight of the traffic in each DiffServ class (EF,
AF, BE), the weight of each application protocol (HTTP,
FTP, Telnet, OnOff, CBR), the weight of incoming and
outgoing traffic, the traffic profile to the sources, the average
duration of user traffic, and the rate of user arrivals.
Internally, the POP can have different traffic aggregation
configurations, ranging from all the sources in the same
node, to all sources in different nodes with traffic shapers and
conditioners for each one. The simulation events include the
time for starting and ending traffic generation, and the initial
load. The possible statistics to be retrieved are the
throughput, delay, jitter, bytes, packets, and packet loss per
user, or per POP.

As shown on figure 2, a line allows configuring the routing
cost, line bandwidth, and delay. Additional parameters,
which are common to all lines, allow configuring the
differentiated services queue weights, sizes, and random
early detection (RED) [6] parameters. The simulation events
allow changing the state (up/down) of the line, or the routing

cost. The possible statistics to be retrieved are line load, bytes
transmitted, packets, packet loss, and average queue delay.

Fig. 2 Line configuration panel

The area on the right side of the screen of the Network
Modeler application (figure 1) is the drawing area where the
network topology is drawn by dropping the three mentioned
components as needed. The bottom left window shows the
events for the selected component (currently POP1), and the
bottom right window shows the statistics requested for the
selected component.

The toolbar in the top of the application includes the
Simular button that produces the necessary OTcl code for ns,
invokes ns, and retrieves the simulation statistics that can be
presented by clicking the appropriate network components.
These results are presented as graphics or text in separate
windows. The NAM button invokes the network animator
nam [7] that shows the packets flowing in the network.

III . EXAMPLE SCENARIO
In this section, a fictitious example scenario is analyzed

with the Network Modeler application. A certain company
needs to perform videoconferences between two of the
company’s buildings. However, the company’s network
manager noted that the quality being obtained is very poor,
so he has to test alternative configurations, probably using
differentiated services. The company has three buildings
connected to each other by 2 Mbps lines. In each building
there are local area networks that generate traff ic to the
networks of the other buildings. The network manager
studied the problem and realized that the current
configuration could be modeled in the Network Modeler as

shown in figure 1. Each building is modeled by a POP that
generates traff ic, and a router that provides connections to
the other buildings. First, the network manager analyzed the
current situation, and then he studied alternatives to obtain
good videoconference quality.

A. Scenario without DiffServ

The company’s current situation does not use differentiated
services. As the Network Modeler application uses
differentiated services, the network manager configured all
the traff ic sources to use the same DiffServ traff ic class, to
simulate the current situation. The class that best serves this
purpose is the EF class, as it does not use a random early
detection mechanism. To simulate the videoconference, the
network manager configured a constant bit rate (CBR) source
at POP1 with 128 Kbps both ways to POP2. Then he
configured background traff ic at POP2 and POP3 using all
possible application protocols: HTTP, FTP, Telnet, OnOff ,
and also CBR.

Fig. 3 Delay and jitter for traff ic generated by client 0, Pop1

Fig. 4 Delay and jitter for traff ic received by client 1, Pop1

The network manager performed a 5-minute simulation,
requesting the statistics of the videoconference application at
POP1. Additional simulation events were added to put line
Linha1 down from time 60 to 90 seconds, and to increase its
routing cost from 1 to 4 for times 120 to 150 seconds. Figure
3 shows the packet delay and jitter for the outgoing
videoconference traff ic, and figure 4 for the corresponding
incoming traff ic. The statistics for the incoming traff ic are
shown on figure 5. These results show large values for the
delay (average 255 ms) and jitter (average 26 ms), that are

unacceptable to a good quality videoconference. Worse, there
was some packet loss for this traff ic, with about 3% packet
loss ratio, which again is unacceptable. By analyzing the
statistics from the other sources, the network manager
concluded that the HTTP and FTP traff ic was using a large
fraction of the line bandwidth. Figure 6 shows the load on the
line connecting POP1 and Router1 for both directions. The
load for the incoming direction is almost always 1, meaning
that the line is almost always transmitting data.

Fig. 5 Statistics for the sources at Pop1

Fig. 6 Load for line LinhaPop1

As the TCP traff ic of HTTP and FTP applications is mainly
limited by the TCP slow-start mechanism, it is useless to
increase the bandwidth of the lines connecting the company’s
buildings. The network manager concluded that the solution
to having good quality videoconference might be using
differentiated services technology in the company’s network.

B. Scenario with DiffServ

The Differentiated Services architecture [1] aggregates
traff ic with similar QoS requirement in traff ic classes that
share the same per-hop-behavior (PHB) throughout the
network. The border nodes implement packet classification

and traff ic conditioning functions, including metering,
marking, shaping, and policing.

The EF (Expedited Forwarding) PHB [8] offers rigid QoS
guaranties and may be used to implement services that
require bounded delay and guaranteed bandwidth. Examples
of these include circuit emulation, voice and video services.
The AF (Assured Forwarding) PHB [9] on the other hand,
offers limited QoS guarantees and may be used for
applications such as Web access. The best-effort (BE) packet
forwarding of current Internet is maintained for low priority
and background traff ic.

Policies are used to classify the user traff ic into the
available PHBs according to the QoS requirements for each
user application. This is achieved by marking the traff ic with
the correct differentiated services code point (DSCP) for each
application (port number and transport protocol), user
(source or destination address or network), and time of day.
Mechanisms such as COPS (Common Open Policy Service)
[10] may be used to distribute such policies.

The network manager configured the videoconference
traff ic to use the EF traff ic class, and the remaining
applications to use the BE traff ic class. The videoconference
source had its traff ic conditioners configured with a 128
Kbps rate profile, which is the required transmission rate.

The packet schedulers were configured as shown on figure
2. The EF queue weight is 5, and the total weights 10,
assuring that 5 tenths of the bandwidth are available for EF
traff ic. The scheduling mechanisms used by the DiffServ ns
patches [4] is the Weighted Deficit Round Robin. In this
mechanism, the unused bandwidth of a traff ic class is divided
among the other traff ic classes proportionally to their
weights.

Discard Probability

Average queue size

1.0

0.0
maxmin

Pmax

Fig. 7 RED packet discard ratio

The AF and BE queues have a random early detection
(RED) [6] mechanism to detect and avoid congestion. This
mechanism adjusts the packet discard probability as shown
on figure 7. Its purpose is to start discarding some packets
before the queue overflows, so that the TCP protocol detects
the packet loss and reduces the transmission rate, thus
reducing the probability of queue overflow. The average
queue size is calculated by an exponential weighted moving

average to allow some traffic bursts. To allow a burst of size
L without packet discard, the moving average weight wq

should be calculated [6] so that the equation is verified:

min
w

w
L

q

L
q <

−−
++

+ 1)1(
1

1

(1)

Additionally, the maximum threshold should be set to
about twice the minimum threshold [6].

The AF queue has two sets of parameters, one to control
the inside profile packet discard, and a more aggressive one
to control outside profile packet discard. This is a RED
mechanism with in/out bit (RIO). The parameters used in the
simulation are shown on figure 2. These parameters allow
183-packet bursts in the AF class, and 227-packet bursts in
the BE class without packet discard.

The simulation of the previous subsection was repeated
with this DiffServ configuration. Again, simulation events
were added to put line Linha1 down from time 60 to 90
seconds, and to increase its routing cost from 1 to 4 from
time 120 to 150 seconds. The new results are shown on
figures 8-11. The code produced by the Network Modeler
application and fed to ns is shown in appendix. This code
uses a separate library with most of the support functions. In
this way, the code produced includes mostly parameter
definitions and object instantiation.

The statistics obtained show that this configuration gives
about 28 ms delay and 2 ms jitter with no packet loss for the
videoconference traffic. These results are excellent for the
videoconference application, even though line Linha1
remains heavily loaded.

Fig. 8 Delay and jitter for traffic generated by client 0, Pop1

Fig. 9 Delay and jitter for traffic received by client 1, Pop1

Fig. 10 Statistics at Pop1

Fig. 11 Load for line LinhaPop1

Even when line Linha1 goes down, forcing the
videoconference traffic to go through the other two lines, the
results remain excellent. The network manager concluded
that by using differentiated services in his network, he could
have enough quality of service to support the new
multimedia applications.

IV. CONCLUSION
The Network Modeler application, described in this paper,

allows drawing, configuring and simulating differentiated
services networks, permitting a user to assess the quality of
service being obtained by network applications and also the
network performance.

The Network Modeler is an easy to use network design and
testing tool, especially useful for learning and testing
different network configurations.

Some topics were left for further work. The POP needs
some enhancements to allow specifying individual
destinations for each traffic source. A bandwidth broker to
perform connection admission control should be developed.
Additionally, an enhanced policy mechanism should be
studied. A possibility is [11] that could be integrated into the
Network Modeler application.

V. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.
Weiss, “An Architecture for Differentiated Services” , IETF
RFC 2475, December 1998.
[2] Bruno Afonso, Daniel Gomes, “Simulação e Gestão de
Redes” , Instituto Superior Técnico, Lisboa, Portugal,
Relatório Final, Manual de Utili zador, Manual de
Desenvolvimento, Trabalho Final de Curso, 2000.
[3] UCB/LBNL/VINT Network Simulator (version 2).
http://www.isi.edu/nsnam/ns/
[4] DiffServ additions to NS. http://www.teltec.dcu.ie/
~murphys/ns-work/diffserv/index.html
[5] John K. Ousterhout, Tcl and the Tk Toolkit, Addison-
Wesley, 1994. ISBN: 0-201-63337-X.
[6] Sally Floyd, Van Jacobson, “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, 1(4):397-413, August 1993.
ftp://ftp.ee.lbl.gov/papers/early.pdf
[7] UCB/LBNL/VINT Network Animator. http://www.isi.
edu/nsnam/nam/
[8] J. Heinamen, F. Baker, W. Weiss, J. Wroclawski,
“Assured Forwarding PHB Group” , IETF RFC 2597, June
1999.
[9] V. Jacobson, K. Nichols, K. Poduri, “An Expedited
Forwarding PHB”, IETF RFC 2598, June 1999.
[10] J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, “The
COPS (Common Open Policy Service) Protocol” , IETF RFC
2748, January 2000.
[11] Paulo Pereira, Djamel Sadok, Paulo Pinto, “Service
Level Management of Differentiated Services Networks with
Active Policies” , in ConfTele’2001 proceedings, Figueira da
Foz, Portugal, April 2001.

VI. APPENDIX
This appendix shows the ns code produced by the Network

Modeler application for the scenario described in section III-
B.

set fichNAM /home/dhgo/tfc2000/Cenario1/TFC-
Cenario1.nam

set directoria /home/dhgo/tfc2000/Cenario1
source /home/dhgo/tfc2000/networkmodeler/main.tcl
set end 300
source /home/dhgo/tfc2000/elementos/Router.tcl
$ns rtproto Session
source /home/dhgo/tfc2000/elementos/pop.tcl
POP set pop_nodes 3
POP set packetsize 1000
POP set telnetPacketsize 1000
source /home/dhgo/tfc2000/elementos/Linha.tcl
Linha set ef_weight 5
Linha set af_weight 4
Linha set be_weight 1
Linha set ef_length 30
Linha set af_length 120
Linha set be_length 180

Linha set qweight 0.0020
Linha set maxPAfIn 50
Linha set maxPAfOut 10
Linha set minAfIn 30
Linha set minAfOut 15
Linha set maxAfIn 60
Linha set maxAfOut 30
Linha set maxPBe 20
Linha set minBe 45
Linha set maxBe 90
set Router1 [newNode "Router1"]
set Router2 [newNode "Router2"]
set Router3 [newNode "Router3"]
set Linha1 [new Linha "Linha1" Router1 Router2 2.0Mb

0.0050 1.0 1]
set Linha2 [new Linha "Linha2" Router1 Router3 2.0Mb

0.0050 1.0 1]
set Linha3 [new Linha "Linha3" Router2 Router3 2.0Mb

0.0050 1.0 1]
newPOPnode popNode(0) "Pop1"
set pop(0) [new POP "Pop1" $ns 0 128kb 1 300 2 0 1.0 1.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 10Mb 64kb 64kb 1]
newPOPnode popNode(1) "Pop2"
set pop(1) [new POP "Pop2" $ns 1 128kb 1 300 12 0 1.0 3.0

1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 10Mb 64kb 64kb 1]
newPOPnode popNode(2) "Pop3"
set pop(2) [new POP "Pop3" $ns 2 128kb 1 300 12 0 1.0 3.0

1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 10Mb 64kb 64kb 1]
set LinhaPop1 [new Linha "LinhaPop1" popNode(0) Router1

2.0Mb 0.0010 1.0 1]
set LinhaPop2 [new Linha "LinhaPop2" popNode(1) Router2

2.0Mb 0.0010 1.0 0]
set LinhaPop3 [new Linha "LinhaPop3" popNode(2) Router3

2.0Mb 0.0010 1.0 0]

$Linha1 downLink 60 90
$ns at 120 "$Linha1 setCost 4.0"
$ns at 150 "$Linha1 setCost 1.0"
$ns at 0 "$pop(0) start 1.0 300"
$ns at 300 "$pop(0) stop"
$ns at 0 "$pop(1) start 1.0 300"
$ns at 300 "$pop(1) stop"
$ns at 0 "$pop(2) start 1.0 300"
$ns at 300 "$pop(2) stop"
$ns at $end "$Linha1 mostraStat 1"
$ns at $end "$Linha1 mostraStat 2"
$ns at $end "$pop(0) mostraStat 1"
$ns at $end "$pop(0) mostraStat 2"
$ns at $end "$pop(1) mostraStat 1"
$ns at $end "$pop(2) mostraStat 1"
$ns at $end "$LinhaPop1 mostraStat 1"
$ns at $end "$LinhaPop1 mostraStat 2"
$ns at [expr 1 + $end] "end"
puts "SIMULATION STARTED"
$ns run

