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Abstract—The Internet of Vehicles (IoV) is undoubtedly at the
core of the future of intelligent transportation. It will prevail over
the road ecosystem, and it will have a huge impact on our lives
throughout the provision of seamless connectivity among diverse
transportation means. For the network to operate efficiently,
the data needs to be quickly spread throughout the network,
which requires low computational and bandwidth overheads.
However, the dynamics of vehicular environments due to frequent
node mobility poses many challenges to realize efficient data
dissemination. This work addresses this type of problem by
proposing a novel clustering algorithm at the edge of the network
and an efficient message routing approach, which is known
as Group’n Route (GnR). Both mechanisms resort to machine
learning and graph metrics that reflect the social relationships
between the nodes. Our performance evaluation reveals that
the clustering algorithm yields stable results with varying road
scenarios, which are becoming an advisable approach in the
presence of mobile IoV nodes. Also, the designed routing protocol
achieves two orders of magnitude smaller overhead and almost
double the delivery rate when it is compared to traditional
routing protocols, which thereby justify that the combination of
our two proposed clustering and routing methods are a plausible
alternative to support IoV communications in real-world setups.
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I. INTRODUCTION

THE Internet of Vehicles (IoV) aims to fully use in-
formation and communication technologies in order to

achieve the coordinated development of humans, vehicles, and
environments, which can alleviate traffic congestion, enhance
transportation efficiency, and enhance the existing road capac-
ity [1].

IoV is becoming the next transformation in the world of
transportation. Its main goals include safety, comfort, and
the prompt delivery of the vehicles’ occupants with mini-
mal impact on the environment. Keeping this goal in mind,
there are several applications for this technology, such as the
management of network traffic, the reduction of traffic jams,
alerting users about any hazards, calling for specific assistance,
and sending information about the victims in case of accidents
[2]. The only way these goals can be achieved is through
wireless communication among vehicles, pedestrians, Road
Side Units (RSUs), and public networks. However, for the
IoV to work at its full potential, a large amount of data has to
be able to spread throughout the network. The dissemination
of this huge amount of data leads to many challenges.

Most of the IoV challenges have also appeared in other
fields of study, such as the Internet of Things (IoT), given the
similarities between these two areas. The same architecture
schema is being used to model both IoV and IoT by splitting
them into three layers, which include Vehicles (Things), Edge,
and Cloud [3]. The Vehicles layer is mainly responsible for the
data collection and actuation in order to control the physical
world. Most devices in this layer are resource-constrained
in terms of the computational power, storage, and energy.
The Edge layer is introduced to help end devices. First,
computation-intensive tasks can be offloaded to the edge
devices. Second, the edge layer can mask the communication
heterogeneity among the end devices and connect them to
the Internet. Third, edge devices assist with managing end
devices. Finally, the Cloud layer is utilized to store, process,
and analyze the collected data and provide the additional
support that is needed by many applications [4], [5].

One of the main differences between IoV and IoT is the
existence of RSUs, which are stationary units with a lot
more computation capacity than the vehicles, which act as
intermediaries between the latter and the Cloud. They are one
of the main components of the Edge layer. Edge computing,
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which are computations at the edge, in conjunction with
Machine Learning (ML), have turned into a powerful tool
for the local decision-making, which is also known as Edge
Learning (EL). The EL concept is based on the idea that
storage and computation resources should be used at the edge
of the network instead of uploading all the data that is collected
by the edge devices, such as the vehicles to the cloud, which
provide a low-latency, reliable, and intelligent service [6].

However, the dynamics of vehicular environments due to
frequent node mobility create many challenges for efficient
data dissemination in IoV [7], [8]. The time duration of each
vehicle communication link is usually exceedingly limited due
to these elevated dynamics. IEEE 802.11p uses a low mobility
distributed coordination function (DCF) mechanism, so it is
not adequate for vehicular scenarios [9]. The fairness problem
that is caused by the different movement speeds of the nodes
in the V2I scenarios is another issue, because they do not have
equal possibilities of channel access [10].

In order to address the latter issue and guarantee stable
and reliable communication between the nodes, we propose in
this paper a novel clustering algorithm and message routing
protocol leveraging EL and social relations among nodes,
which are stable in dynamic networks.

The contributions of this paper are summarized below.
• A novel clustering algorithm at the edge of the network

that leverages the social relation among nodes.
• An edge-assisted message routing protocol that uses

social metrics and efficient forwarding strategies for
connected vehicle networks.

• It is illustrated that both the clustering algorithm and the
routing protocol achieve good performances in vehicular
networking environments through extensive simulations.

The remainder of this paper is structured as follows. Section
II presents the related work. In Section III, the design and
implementation of the proposed solution are presented. Sec-
tion IV presents the performance evaluation and discussion.
Finally, Section V presents the concluding remarks.

II. RELATED WORK

Routing on vehicular networks is not a trivial task. Different
characteristics, such as the number of vehicles on the network,
routing protocols, channel loss, and collisions may directly
influence the packet loss and the delivery ratio [11]. However,
different studies have already presented a performance com-
parison of routing protocols, which is described in detail in
[12]–[14].

Existing solutions highlighted relevant problems with rout-
ing protocols, so vehicular networks still have problems in
regards to high latency, packet loss, and high-energy consump-
tion [15], [16]. Seeking to solve the high-latency problem,
Abbas and Fan [17] proposed a clustering-based reliable
low- latency multipath routing scheme in vehicular networks.
The proposed solution uses a cluster head (CH), which is
defined based on the link reliability, to manage all nodes’
communication. The reliable low-latency routing scheme used
the Ant Colony Optimization (ACO) method to reduce the
latency, which is due to high mobility nodes. However, it does
not consider RSU placement to improve cluster formation.

Qi et al. [18] proposed a solution for routing information to
reduce delay on vehicular networks, so-called Traffic Differ-
entiated Clustering Routing (TDCR) mechanism in a Software
Defined Network (SDN)-enabled hybrid vehicular network,
such as Dedicated Short-Range Communication (DSRC) and
Cellular Vehicle-to-Everything (C-V2X). TDCR relies on the
vehicles’ position and speed, which are reported to the base
stations, and a CH is then selected. Furthermore, the proposed
solution uses a heuristic algorithm to achieve a near-optimal
solution. A cluster formation is based on dynamic metrics,
which renders them unstable over time, as opposed to using
the social relations between pairs of vehicles, which can be
more stable.

Nowadays, different technologies may be used in conjunc-
tion with vehicular networks. For example, Edge Computing
(EC) is a promising technology that helps reduce network and
device resource consumption. In [19], the use of Mobile Edge
Computing (MEC) in order to cope with the application issues,
which are raised by high energy consumption in the Internet of
Things (IoT), is investigated. Moreover, the proposed solution
provides low-latency processing of visual data and offload
decision-making. To allow distributed learning for vehicle
routing decisions, Lin et al. [20] used centralized cloud com-
puting to process the transmitted data. Also, an architecture
for software-defined Internet of Vehicles (SDIoV) is proposed
using edge intelligence technology, which uses a distributed
multi-agent reinforcement learning model in order to make
real-time vehicle routing decisions, such as the Distributed-
Learning-Based Vehicle Routing Decision algorithm, which
is based on the asynchronous and parallel behavior of edge
devices. Furthermore, the SDIoV solution uses vehicles as
terminal devices to start the learning process for routing
decisions, and it uses the RSUs as edge nodes to respond to
vehicle requests and cloud services. Nonetheless, no message
aggregation approach is used to reduce the control overhead
by making routing decisions at the edge. In addition, these
types of learning models often end up highly biased to
the scenario that is being tackled given the variability of
the vehicular environment. Furthermore, they demand large
training transients, which hinder their generalization and use
in practical vehicular settings

Zhou et al. [21] proposed a secure data sharing method
to manage smart vehicles’ access control by using identity-
based encryption and a cyber-attack detection method using
deep learning techniques to analyze the anomalies in the traffic
and filter out the malicious packets of 6G-enabled VANETs.
Implementing appropriate security measures in such networks
is challenging because of the large amount of data generated,
the limited computation power and network compatibility.
Nevertheless, Edge learning in 6G-enabled networks can ad-
dress such limitations.

Groups of vehicles can generate an entire ecosystem, and
they have social characteristics, such as the drivers’ behavior
and the vehicles’ mobility. Qi et al. [22] used a semi-Markov
model in order to perform pattern prediction that was aimed at
“the future state transition direction according to the current
state,” such as vehicle movement and position by applying the
SDN-Enabled Social-Aware Clustering approach for VANET-
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TABLE I
DISTRIBUTION OF RSUS

1 node centre (0*radius)
5% of the RSU circle (1*radius)
10% of the RSU circle (2*radius)
15% of the RSU circle (3*radius)
20% of the RSU circle (4*radius)
25% of the RSU circle (5*radius)
25% of the RSU circle (6*radius)
rest circle 7*radius

based 5G. Moreover, the clustering process occurs based on
the vehicle social pattern and the CH, which is selected based
on the inter-vehicle distance, the relative speed, and other
facets. By exploiting the social patterns prediction model to
enhance the stability of the clusters, the CH selection is based
on dynamic metrics, such as distance and speed, which again
yield unstable cluster formations as exposed above.

Furthermore, Paranjothi et al. [23] proposed a message
authentication using social networks in VANET (MAvanet).
The main strategy for the message authentication uses a Quick
Response code (QR code) technique to allow only sending and
receiving vehicles to read the content of the message, which
involves performing QR encryption and decryption, respec-
tively. In the encryption phase, the sender vehicle verifies the
receiver’s ID and location. Once the message is successfully
verified, it is encoded using the Reed-Solomon algorithm with
error setting correction level. In the decryption phase, to solve
the QR code security issues, an authenticating method was
used to verify the sender’s ID at the receiver end. The proposed
system only supports V2I communications.

Moreover, applying the clustering approach in vehicular
networks is a known technique for routing [24], [25]. The
proposed solutions aim to reduce delay, packet loss, and
network and device resources consumption, but these problems
are still present in these type of networks.

MMEC technology has been used to create geo-clustering
for the reduction of resource consumption [26]. Han et al. [27]
used EC technology for the CH selection on the Internet of
Medical Things (IoMT). Collecting data on IoV can generate
a relevant data source. The most straightforward approach to
clustering only takes into account the geographical location of
the nodes, which mostly occur without any consideration of
the role of every node (vehicle) in the relational dynamics of
the network.

III. DESIGN AND IMPLEMENTATION

A. Network Architecture

This section describes the IoV network architecture. It
covers the types of network nodes, the communication that
is used, and the RSU placement.

1) System Model: Figure 2 presents the proposed IoV
network that is composed of three layers, which include
Vehicles, Edge, and Cloud. There are mainly two groups of
nodes: mobile and stationary. In the first group, there are cars
and buses in the Vehicle layer. In the second group, there are
the RSUs in the Edge layer. It is assumed that all the nodes
are equipped with a wireless interface that uses an 802.11p

(a) Automatic placement option

(b) Manual placement option

Fig. 1. Distribution of RSUs.

Wireless Access in Vehicular Environments (WAVE) interface
[28] with a transmission range of 100 m and a transmission
rate of 10 Mbps in order to connect to each other. In addition,
each vehicle is also equipped with a more powerful wireless
interface that can only be used to connect with the RSUs.
This interface has a transmission range of 250 m, and the
same transmission rate.

Mobile nodes can offload data to the nearest RSU to be
processed. Once the computation is finished, the output will
be sent through other nodes in the direction of the desired
node. Nevertheless, the RSUs are all connected through the
Edge, and, thus, some data can be shared between them.

2) RSU Placement: RSUs are stationary nodes that are
placed near road intersections [29]. Two options were consid-
ered when the number of RSUs was decided and their position.
In the first option, the user only chooses the number of RSUs
and a position. From this position, concentric circles with an
increasing radius are created, and the RSUs are distributed
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Fig. 2. The proposed IoV network.

among them, which are shown in Table I.

The circles are divided according to the number of nodes
that are assigned to each. A position for each RSU is then
computed. With these coordinates, a check is made for a
valid position in their proximity, and the RSU will assume
the valid location when it is found. If there are not any valid
map positions, the RSU will be placed in a 7th circle. An
example of this distribution is shown in Figure 1(a) with 50
RSUs centered in RSU 0, which has the transmission range
marked in black.

It was noticed during the evaluation of this option that some
important points and routes were not covered by this model.
Therefore, a different approach was needed in order to take
the latter into account. The map was consequently analyzed,
and the RSUs were placed one by one in strategic locations,
which included the main road interceptions and access to the
city points of interest, such as the city center. An example of
this option is shown in Figure 1(b).

This RSU distribution only used a portion of the total
number of RSUs to cover all the city, and it presents much
better results. However, this option requires prior knowledge
about the city. Therefore, the first distribution option suffices
for a simple setup. The second approach could be transformed
into an optimization problem with more data, which reduces
the number of nodes and improves the network performance.

Fig. 3. Simple example with only 2 dimensions P and Q.

B. Edge Learning based Clustering

Our goal in this study is to cluster the IoV nodes. It
is assumed that mobile nodes move in completely different
directions.

There are countless ways to cluster nodes in a network,
and clustering them based on their position is the most trivial
method. However, this leads to a network stability problem.

For instance, consider that at a given time, a picture of all
cars in a big metropolis, such as Lisbon was taken, and they
were assigned to clusters according to their positions based
on that picture. How different would these clusters be if the
photo was taken 1 minute later?

In light of the above scenario, a more stable metric should
be considered, such as the nodes’ social relationships. Now,
consider that every time node i connects with node j, their
social strength is increased. This metric decreases if node i
and node j do not connect during a given period. It is also
assumed that every node updates its social relationship metric
periodically, such as every hour. Thus, nodes can be clustered
according to the similarity of their relationships, which is
explained below.

Each node has a data structure with a social strength
between it and each one of its contacts. An example of a
network with nodes P , Q, S, and T is is provided. The
corresponding data structure is shown below, where QP is
the social strength between nodes Q and P in node Q’s data
structure.

Node Q Node P
QP = 0.5 PP = 1
QQ = 1 PQ = 0.5
QS = 0.3 PS = 0.7
... ...

These nodes can be represented in a Euclidean space with
N dimensions, where each dimension represents the relations
with a given node, which is shown in Figure 3. Therefore, the
similarity between the nodes will be measured by the distance
between them in this Euclidean space.

Let xi be an embedding for node i, and xn
i (i.e., the n-

th component of xi for all n = 1, . . . , N ). The Euclidean
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Fig. 4. Simple Euclidean space with 3 RSUs.

distance is given by:

di,j = d(xi,xj) =

√√√√ N∑
n=1

(xn
i − xn

j )
2, (1)

from which it follows that dQ,P is the similarity between nodes
Q and P .

By considering that RSUs also store their social strengths,
if the Edge merges all these data, it could be presented as a
Euclidean space with N dimensions, where N is the number
of RSUs, and each node would be represented by its social
strength, which is shown in Figure 4. Node A has never
connected with RSU 2, and node B has already connected
with all RSUs.

Based on this representation, which takes into consideration
the algorithm complexity, for a number of mobile nodes
that is much higher than the number of stationary ones,
which is suitable for live computation, the K-Means algorithm
(Algorithm 1) is used to compute the clusters. This algorithm
will run a predefined number of iterations each time it is called.
The number of iterations is a balance between the resource
consumption and the algorithm accuracy.

The occupation of all clusters will be checked just after K-
Means finishes, and if one or more of the clusters are empty,
their centroid will be placed over a point of the largest cluster,
and the algorithm will run a few more iterations. There will
then be no empty clusters, and their sizes will be balanced.

Once all the nodes are divided into clusters, the edge
will choose the Cluster Head (CH), which is a node that
represents the cluster and gathers all the cluster’s messages,
to deliver them elsewhere in the network, which reduces the
network overload. The CH selection is based on two metrics
that include (i) the similarity between each node and the
centroid that represents the cluster and (ii) the ego betweenness
centrality of each node in the network. The similarity value
varies between 1 and 0. However, the value that represents
the ego does not. Thus, a logistic function is used in order
to map the ego and the similarity values, which is called the
normalized ego, and it is illustrated in Figure 5. The ego metric
concerns the centrality of a node in a graph of all the nodes
and their connections. This function is chosen, because only a

Algorithm 1: The K-Means Algorithm

begin
numCluster ←− k (number of clusters)
for 1 : numCluster do

create centroid
for each node do

minDist =∞
for each centroid do

dist←−
distance between node and centroid

if dist < minDist then
minDist←− dist
assign node to centroid

for each centroid do
centroid position←−
mean position of nodes assigned to centroid

Fig. 5. Function to map the ego.

small percentage of the nodes have an ego that is larger than
7.5, which should be considered to be the CH. The CH is node
i, which has metric mi and produces the lowest value.

mi = 2 · ĉEBCi + di,centroid. (2)

where ĉEBCi
is the normalized ego and di,centroid is similarity

between i and the centroid.
Eq. (2) gives extra weight to the ego metric in order to

increase the importance of a smaller normalized ego over the
similarity to the centroid.

The main disadvantage of this approach is that when a node
does not connect with an RSU for a significant time, it gets
closer and closer to the origin of the Euclidean space. If this
happens with a significant number of nodes, a cluster will
contain inactive nodes that do not have any relations between
them. Therefore, if the distance between the representation of
the node and the origin of the Euclidean space is two orders
of magnitude below the clustering threshold, which represent
the nodes that do not get in contact with an RSU for a long
time, these nodes will not be eligible for clustering, and they
are considered nodes without a cluster.

Figure 6 shows an example of a network that is composed
of 30 RSUs, which are marked with a blue colored label,
and 56 vehicles, which are marked with a colored label, that
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Fig. 6. Nodes divided into clusters.

represent one of the 5 clusters the vehicle belongs to, which
are colored using red, yellow, black, pink, and cyan. Each
RSU has one circle around it that represents its transmission
range. Each vehicle has two circles around it that represents
the transmission ranges of their wireless interfaces. The CH
vehicles are marked with red transmission circles, whereas the
other nodes are marked with green transmission circles.

C. The Routing Protocol

It is essential to fully use the information and communi-
cation technologies in order to achieve the coordination of
humans, vehicles, and the environment, which was previously
mentioned. Therefore, a reliable and efficient routing algorithm
is mandatory, and it should comply with the IoV paradigm that
is presented above. The following aspects need to be taken into
account while designing it.

First of all, it is assumed that the messages are carried
through the nodes and not the edge. This is important. The
RSUs can communicate among themselves, but they mainly
share network state data. In regards to the impact of clustering
with routing, some constraints are in place to ensure that
CHs are preferably the connection point between the clusters
and the RSUs. Nonetheless, if two nodes are within the
communication range and one node has a message for the
other node, the message will be delivered even if they belong
to different clusters.

Our routing protocol, which is called Group’n Route (GnR),
was built upon [29] leveraging on its routing metrics and
forwarding policies. The following routing metrics are con-
sidered: the inter-contact time, average separation period,
similarity to the destination (Sim), ego betweenness centrality
(EgoBC), and the mean time to encounter (MTTE). The inter-
contact time metric is estimated for each pair of nodes using
an exponential weighted moving average to update the values,
which are based on the previous data. The average separation
period is represented by the mean time to encounter.

Our protocol also uses three forwarding policies: direct
single copy, direct multi copy, and limited multi copy. In the
first policy, each message can only be sent from one node to
another node without the sender keeping a copy. While on
the second one, all the nodes keep copies of all the messages
that pass through them. Finally, the last policy has a limited
number of times a message can be copied.

The Routing Algorithm: Each node runs the Routing Rules
algorithm (Algorithm 2) in order to select which of the nodes
in range can receive messages. With this set of nodes, the
Basic Routing algorithm (algorithm 3) runs to check if the
other node is preferable compared to the current node.

The connection between RSUs is only used to share (i) what
is the closest node to the destination and (ii) what is the RSU
with the highest ego betweenness centrality. This information
will be used to forward messages in the direction of the best
RSU or to the most central one when the destination node has
never made contact with any RSU. This connection is never
used to send messages from one RSU to another.

In addition to the Routing Rules algorithm and to avoid
routing circles, the messages are not transferred to a node that
has already seen them.

The following aspect is also considered by our routing
approach. When the limited multi copy policy is used, there
are times that instead of just forwarding the message, the
message carrier just replicates it to the other node. The
goal is to replicate messages to the nodes with a higher
probability of meeting the destination node. However, the
decision to do this is based on the type and cluster of the
message carrier. If the node is an RSU or it is from the
same cluster of the destination node, it always replicates the
message. Furthermore, if the similarity between the carrier of
the message and the destination is higher than a threshold,
the message is also replicated and transferred. Otherwise, the
node will just transfer it.

IV. PERFORMANCE EVALUATION

A. The Scenarios

The proposed IoV network was implemented using the
ONE simulator [30]. The following simulation scenarios were
considered:
• Helsinki Wworkday (HW): This scenario consisted of 56

nodes that are divided into 5 groups, which included
home, office, and meeting spots that followed the work-
day movement (WDM) model. The WDM simulates the
usual movement of a person that spends the night at home
and then goes to work for 8 hours. After that, there are
a few meeting points, which replicate stores, cinemas,
restaurants, and other places where people may go after
work. There are also 2 buses for each of the 8 routes
available on the scenario. The cars’ buffers vary from
64 to 256 MB, whereas all the buses have 256 MB. In
addition, there are also 30 RSUs.

• Helsinki Fast Movement (HFM): This scenario uses the
same number of nodes with the same configurations as the
previous scenario. However, the shortest path movement
is used instead of the WDM. This movement model
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Algorithm 2: Routing Rules

begin
if destination cluster = mycluster or destination node has no cluster then

if the destination node has a cluster then
run basic routing algorithm only with nodes from the same cluster and RSU

else
run basic routing algorithm with all nodes

else
if current node is a cluster head then

send the message only to RSU
else

if current node is a normal node in a cluster then
using the basic routing algorithm considering nodes in the same cluster, RSU
or the cluster head

else
if current node is a RSU then

use the basic routing algorithm to send the message in the direction of the RSU
that has the highest social strength with the destination node
if it is already the best RSU send the message to a node from the same cluster as
the destination
if the destination has never connected with a RSU send to a node that has already
connected with the destination node or in the direction of the most central RSU

else
if current node does not have a cluster then

use the basic routing algorithm to send the message considering all nodes

Algorithm 3: Basic Routing Algorithm

begin
for all node′s connections do

otherNode←− nodeconnected
if
currentNode MTTE < otherNode MTTE
or

currentNode Sim < otherNode Sim then
send the message to the otherNode

else if
currentNode Sim == otherNode Sim
then

if currentNode EgoBC ∗
currentNode MTTE <
otherNode EgoBC ∗otherNode MTTE
then

send the message to the otherNode

assigns a set of points of interest to each group of nodes,
and they go from one point of interest to another in
random order. With this movement model, each node
would only stay in the same spot for a few minutes, which
increases the average movement of the mobile nodes and
reduces the time the network takes to converge.

B. Network Architecture Evaluation

Two RSU placement implementations were made, which
is mentioned in Section III-A. One implementation is where
the user gives the number of RSUs and the central position,
and the remaining RSUs are placed automatically. The other
implementation is where the positions were assigned one by
one. In order to compare these approaches, the following
metrics are considered: (i) the average number of nodes that
are seen per RSU, (ii) the number of RSUs that never had
contact with the other nodes, and (iii) the frequency of the
contacts. The first metric indicates how close the average of
the RSUs is to the center of the network neighboring graph.
An RSU with a high number of nodes is seen as having
more connections than the other. The second metric shows
the number of RSUs that never made contact with a node,
such as an RSU that has not contributed to the network at the
time when the data was acquired. Finally, the frequency of the
contacts shows on average how close the RSUs are from the
crowded areas.

The following tests were made on the HW scenario. All
the simulations were run several times, and the results below
refer to the average that was obtained with a 95% confidence
interval.

A study that regards the number of RSUs that are needed
for the auto-placing approach is first performed. The goal is to
find where the bottleneck point for this problem occurs as well
as the minimum number of RSUs that are needed in order to
obtain the best results. Five different simulation configurations,
which included 20, 30, 40, 50, and 60 RSUs, were analyzed
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Fig. 7. Average number of nodes seen by the RSUs over time.

Fig. 8. Percentage of RSUs that never had contact with other nodes over
time.

by keeping this in mind.
1) RSU Network Coverage: The first test measured the

RSU network coverage by counting the number of contacts
with different vehicles each RSU had, which is shown in
Figure 7. This metric measures how well the RSUs are
positioned. The highest values represent a network where the
average RSU have multiple contacts with different vehicles.
Therefore, they are placed next to the main roads. Moreover,
if there are a lot of RSUs located at places without any
movement, the average will also be lower.

Figure 7 shows that the network coverage was similar for all
the simulations. There are 56 nodes, but the average number
of nodes seen by each RSU is only 12. This is due to the
movement model that was used, which assigns a routine to
each mobile node. Thus, there is a high probability of a node
moving only on a part of the map, which leads to not making
contact with many RSUs. In regards to the results that are
obtained for each configuration, using only 30 RSUs presented
the best results. This is explained by the fact that having a
reduced number of RSUs, less of them have zero contacts and
some were placed closer to optimal positions.

2) Average Number of Mobile Nodes seen by RSUs: The
percentage of RSUs that never had contact with other nodes
over time is measured to identify how many RSUs are being
used as well as the nodes that do not contribute to the

Fig. 9. Frequency of RSU contact over time.

network. The corresponding results are shown in Figure 8
using a logarithmic scale. The percentage of RSUs that never
had contact with the other nodes is below 10% for all the
simulations after 7 hours. Figure 8 shows a higher percentage
of RSUs for the test with 20 nodes. However, 10% of 20 is
just 2 nodes. In addition, the relation between the values of
the simulations for 30, 40, and 60 nodes should be noticed,
because they are close.

3) Frequency of contacts: The frequency of contacts made
by each RSU was also measured. Figure 9 shows the data for
all the different configurations that were tested. The higher
the frequency, the better the RSU position is. Therefore, if the
average frequency is high, the RSU is at an optimal position.
It should be noted that the variation in the values obtained to
the frequency of contacts is due to the movement model that
was used. The results illustrate, which are shown in Figure
9, that the configurations with the best frequencies are with
50 and 30 RSUs. For these scenarios, the average number of
nodes that are seen by each RSU is the same. However, in
regards to the percentage of RSUs that is placed in irrelevant
places, which is shown in Figure 8, the results for 30 nodes
are similar to the results with 60 RSUs, which is only beaten
by 50 by a small margin.

The frequency of contacts for the scenarios with 30 and 50
nodes presented the best results. The number of nodes that
had the best performance was for 50 nodes. Nevertheless, the
results were similar and the deployment is less expensive when
30 nodes are used.

4) Further analysis of configuration with 30 RSU: Figure
10 presents a comparison of the cumulative number of nodes
seen by each RSU over one day for the two RSU placement
approaches that were studied, which included automatic place-
ment and manual placement. As shown, the average number of
nodes that made contact with each RSU always increased for
both implementations. However, when the nodes where hand
placed in strategic locations, the average number of nodes that
were seen by each RSU was always 30% higher than it was
for the automatic approach.

In regards to the number of RSUs that never had contact
with a mobile node, Figure 11 shows a comparison between
the values of the two approaches per hour. In the first analysis,
a tendency to zero can be seen for both placement approaches.
However, when the nodes were placed automatically, the RSUs



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

Fig. 10. Average number of nodes seen by 30 RSUs over time.

Fig. 11. Number of RSUs that never had contact with other nodes over time.

needed more than 24 hours to reach that value. On the other
hand, when the nodes were placed in strategic locations, zero
is reached in only 4 hours.

Figure 12 presents a comparison between the two ap-
proaches in regards to the average number of contacts per hour
that were made by each of the RSUs. This figure shows the
main differences between the two techniques and the impact of
choosing optimal locations. When the RSUs are hand placed,
the frequency of contacts is more than twice as high compared
to using the auto placing approach. The RSU placement can
consequently have a major influence on the network.

In summary, the RSUs have a huge impact on the network’s
performance, and they should be accessible to the highest
number of mobile nodes that are possible. Moreover, the
complexity and deployment costs of several IoV applications
are conditioned by the number of RSUs.

C. Edge-based Clustering Evaluation

The IoV network nodes were grouped into clusters aiming to
cover as many nodes as possible and creating clusters that were
as stable as possible, which was previously stated. In addition,
the higher the number of clusters, the more specific is the
information that a cluster gives about its nodes. Nevertheless,
the size of each cluster shall be taken into consideration, that

Fig. 12. Frequency of RSU contacts over time.

Fig. 13. Number of nodes eligible for clustering over time.

is, the number of clusters shall be much lower than the number
of nodes.

In order to evaluate the performance of the proposed al-
gorithm, the number of nodes eligible for clustering and the
number of cluster changes per hour were measured. Each
simulation was conducted several times with different seeds,
and the results presented refer to their average for statistical
confidence.

In regards to the number of nodes that are covered by the
algorithm, it is important to mention that only the nodes that
already made contact with an RSU are known by the Edge
and are eligible for clustering.

Figure 13shows that during the first two days, the nodes
start making contact with RSUs, which leads to an increase
in the number of nodes that are covered. The most significant
changes occur in the morning and in the evening, which is
when the nodes are supposed to move between home, office,
or meeting spots. The values are much more stable during
work time. This behavior needs to be taken into account when
studying the stability of the algorithm. However, there are a
few times that the value decreases, which is not illustrated in
Figure 13. This is explained by a node that did not make
contact with an RSU, and its relationship decayed below
the clustering threshold. These nodes are excluded from the
algorithm, and they were not assigned to any cluster.

In order to further analyze the clustering algorithm, a cluster
change metric is defined where all cluster changes count as
one: (i) when a node does not have a cluster and joins one,
and (ii) when a node changes from one cluster to another.
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Both situations only count as one cluster change. In the
simulation with only one cluster, all the nodes that are eligible
for clustering belong to the same cluster. Therefore, all the
changes will be from the nodes that were added to the cluster
set. In addition, the number of clusters is varied between one
and eight, which is based on the total number of nodes in the
network.

In Figure 14, each color represents a different simulation
configuration, and each vertical bar shows the sum of the
nodes that had a cluster change during each hour. For example,
during the second hour, there was a total of 65 cluster changes,
but there was just an average of 7 changes when using two
clusters. It can be observed that there are not any cluster
changes counted in the first hour. This is because all the
changes in this period were nodes that made first contact with
the RSUs.

To give a clearer image of when the network starts to
converge, an average of all these simulations was done, which
can be seen in Figure 15. In this figure, all the cluster changes
are represented, which include nodes that connect for the first
time with an RSU and the nodes that change from one cluster
to another. This is why there are values during the first hour
of the simulation.

Figure 15 also shows that it takes an average of six to seven
hours to reach a stable point. Furthermore, with the increase
in the number of clusters, a decrease of the stability can be
seen, which is shown in Figure 14. However, it can also be
seen that even for the less stable configurations, the number of
changes per hour tend to be less than 1 after 48 hours, which
shows that the approach that was developed leads to a stable
clustering solution.

Furthermore, the stability of clustering based on proximity
is also analyzed. The goal is only to give a comparison with
the most trivial approach to the problem. Therefore, only a
superficial analysis is done. The contacts that a node had here
during two consecutive time slots were compared, and the
number of changes were counted. During the first slot, the
number of changes was 11, which then dropped to 8, and every
time the node moved the values were similar. When the node
was not moving, these values were near 1. Nevertheless, these
values are just for one node, which means that it represents
only 1/50 of the cluster changes. Therefore, the difference
between the stability of the social based approach and this
approach is evident

D. The Routing Protocol Evaluation
In order to evaluate the performance of the proposed proto-

col, which is the GnR, the following metrics were considered:
delivery probability, which is the probability of a message
reaching its destination, the overhead ratio, which is excessive
messages being exchanged, the average latency, which is the
delay between the creation of a message and its delivery to
the destination, the average hop count, which is the number of
nodes that are needed to deliver a message, and the average
buffer time, which is the time that a message stays in the buffer
of a node.

As it was seen in the previous section, it takes almost 8
hours for the network to converge. Most nodes stay still for

long periods of time using the WDM. Therefore, the HFM
with 30 hand placed RSUs was chosen for this study instead
of using the HW scenario, As a result, all the nodes were
eligible for clustering after one hour, and the relations between
the housing, working, and meeting locations were preserved.
Nevertheless, the clustering algorithm was chosen to run with
6 clusters considering the number of nodes in the network as
well as the results that were obtained in the previous section.

To evaluate this algorithm, the following tests were per-
formed for different forwarding policies. One test specifically
used the direct single copy policy (DSCP) and two tests used
the limited multi copy policy (LMCP) with 6 and 10 message
copies [29]. The results are presented in Table II.

The discussion below focuses on the delivery rate and the
overhead ratio of each solution. The results in II are according
to what is expected, because an increment of the number
of copies leads to a boost of the delivery rate. However,
this increment also had a negative impact on the overhead.
The overhead increased 55%, whereas the delivery rate only
increased 3% by comparing the gain of having 10 over 6
copies.

Therefore, the routing algorithm that used the LMCP with
six copies was chosen for GnR. This evaluation is performed
by comparing its delivery rate and the overhead ratio with
four different routing protocols, which include Epidemic [31],
Prophet [32], BubbleRap [33], and ePRIVO [29].

The following tests were performed under the same circum-
stances in order to compare the forwarding policies. All the
tests were run several times with different seeds to generate
pseudo random movements, and all the results presented are
the averages. All the simulations included both vehicles and
RSUs. However, the RSUs had a different behavior in our
routing protocol than the other nodes of the other routing
protocols. The only difference between them is the buffer size
and the movement, as the RSUs are static.

In the first instance, the delivery rate of each protocol is
compared. As shown in Table III, all protocols have delivery
rates between 45 and 93%. Prophet had the best performance,
followed by GnR, ePRIVO, Epidemic and BubbleRap.

There is an enormous difference between the protocols in
regards to the overhead ratio with values that range between 5
and 2753, which GnR and ePRIVO present the best values by
far. This disparity of values was expected, because Epidemic
and Prophet do not assign any limit to the number of copies.
Epidemic replicates messages to every node it makes contact
with, whereas Prophet replicates messages only to all the
nodes that have a better metric to the destination than itself.
By reducing the overhead, Prophet achieves a better delivery
rate than Epidemic. BubbleRap uses social metrics in order
to replicate the messages to a more central node until a node
that belongs to the community of the destination is met, which
will eventually deliver the messages. ePRIVO and GnR have
a limit on the number of copies, which is 6, that limits the
overhead.

The same tests were also performed using the HW scenario
with 30 hand placed RSUs. This scenario represents a situation
that is closer to reality with less movement, which has less
contacts than the previous scenario.
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Fig. 14. Sum of the average cluster changes over time.

Fig. 15. Average cluster changes over time.

TABLE II
ROUTING POLICY PERFORMANCE FOR THE HELSINKI FAST MOVEMENT (HFM) SCENARIO

Policy Delivery rate Overhead Latency Hopcount Buffertime

DSCP 0.6288 ± 0.077 0.0 ± 0.0 9682 ± 996 1 ± 0.0 9682 ± 996
LMCP 6 0.8172 ± 0.077 5.53 ± 0.65 6225 ± 972 1.8 ± 0.018 4188 ± 522

LMCP 10 0.8486 ± 0.05 8.62 ± 0.59 6343 ± 1367 1.86 ± 0.03 3459 ± 720

TABLE III
ROUTING PERFORMANCE FOR THE HFM SCENARIO

HFM scenario Delivery rate Overhead

BubbleRap 0.45 ± 0.029 453 ± 41
Epidemic 0.78 ± 0.024 2753 ± 142
Prophet 0.93 ± 0.029 1161 ± 38.9

GnR 0.82 ± 0.077 5.53 ± 0.65
ePRIVO 0.78 ± 0.017 4.97 ± 0.11

As seen in Table IV, the delivery rate of the protocols is
reduced, which is due to the nodes having less contacts. This
change emphasizes the best protocols to use. Epidemic and
Prophet had a considerable drop on their metrics, whereas
GnR, ePRIVO, and BubbleRap, which are social protocols,
had a smaller drop on the delivery rate and had similar
overheads.

GnR presented slightly worse results than ePRIVO. This

TABLE IV
ROUTING PERFORMANCE FOR THE HW SCENARIO

HW scenario Delivery rate Overhead

BubbleRap 0.38 ± 0.006 219 ± 8.2
Epidemic 0.31 ± 0.010 1311 ± 190
Prophet 0.45 ± 0.010 350 ± 48

GnR 0.58 ± 0.052 5.79 ± 0.10
ePRIVO 0.64 ± 0.009 5.47 ± 0.11

is due to the fact that one of the main differences between
these algorithms relies on the restrictions to transfer a message.
GnR will only share the messages within its cluster, whereas
ePRIVO shares them with any node with a greater chance to
meet the destination.

In summary, GnR was developed to take advantage of the
IoV architecture. It can be seen as an evolution of ePRIVO to
this paradigm. It presents a similar delivery rate as the other
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standard routing protocols but with a much lower overhead
ratio. In addition, it needs only 1.8 hops on average in order
to deliver a message, whereas the others need 3.0, 4.7, and
3.8 for Bubblerap, Epidemic, and Prophet, respectively.

V. CONCLUSIONS AND FUTURE WORK

There are some aspects to take into consideration when
clustering an IoV network, such as (i) what are the clusters
representing, (ii) the size of the clusters and the network,
and (iii) the stability that the algorithm used will provide.
Clustering based on social strength leads to stable results,
which is advisable in the presence of mobile nodes with some
movement patterns.

Our proposed routing protocol takes advantage of the edge
layer and the location of the RSUs in order to comply with the
IoV paradigm. It divides the network nodes into clusters that
are based on their social relationships, which groups nodes
that will most likely share the same connections.

Two metrics, which included similarity and ego betweenness
centrality, were used for clustering nodes in IoV, and a higher
importance is given to similarity when choosing the cluster
head. The performance evaluation results showed that our
proposed clustering, which is based on social relationships
between the nodes, is an acceptable approach to this problem,
because it provides a stable solution, which is due to the choice
of the RSUs as anchors. It is also robust to an increment
of the number of nodes. In addition, GnR performed better
than the traditional routing protocols, which include Epidemic,
Prophet, and BubbleRap, and it presented comparable results
to ePRIVO, which presented itself as a good protocol for
IoV. GnR had an overhead of about two orders of magnitude
smaller than the traditional routing protocols with a compa-
rable delivery rate for the HFM scenario and about twice the
delivery rate for the HW scenario.

The future research lines are being planned from the find-
ings that are reported in this manuscript. The use of other
clustering algorithms, such as X-Means [32], G-Means [33] or
DBSCAN [34] will be explored as a replacement for K-Means,
which estimates the number of clusters while the cluster
formation is composed, such as without setting it beforehand.
In addition, the RSU placement problem will be addressed as
an optimization problem, which pursues finding their optimal
location by maximizing the coverage and communication-
related metrics.
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