
An edge-based smart network monitoring system
for the Internet of Vehicles

Naercio Magaia
COPELABS, Universidade Lusófona

Lisbon, Portugal
School of Engineering and Informatics

University of Sussex
Brighton, UK

0000-0002-6613-1666

Pedro Ferreira
Instituto Superior Técnico

Universidade de Lisboa
Lisbon, Portugal

pedro.m.a.ferreira@tecnico.ulisboa.pt

Paulo Rogério Pereira
INESC-ID/INOV

Instituto Superior Técnico
Universidade de Lisboa

Lisbon, Portugal
prbp@inesc.pt

Abstract—The Internet of Vehicles (IoV) is the future of
transportation. It will be present everywhere and will have
a huge impact on our lives. However, there are plenty of
aspects to consider while studying these networks, such as
data dissemination, cybersecurity threats and vulnerabilities. For
an IoV to work efficiently, data needs to spread through it
efficiently. However, the dynamics of vehicular environments
due to frequent node mobility and nodes’ misbehavior poses
many challenges to efficient data dissemination. Therefore, a deep
learning-based monitoring system that is capable of detecting
anomalies in the network and identifying known misbehavior
is proposed. Performance evaluation shows that the monitoring
system can identify well-known attacks with a very high success
rate. Besides, the algorithm is also capable of detecting other
types of misbehavior without labeling them.

Index Terms—Internet of Vehicles, Network Monitoring, Deep
Learning, Edge

I. INTRODUCTION

The Internet of Vehicles (IoV) is becoming the next transfor-
mation in the world of transportation. Its main goal is safety,
comfort, and prompt delivery of the vehicles’ occupants with
minimum impact on the environment [1]. With this goal in
mind, there are several applications for this technology, such
as management of network traffic, reduction of traffic jams,
alert users about any hazard, and call for specific help and
send information about the victims in case of an accident [2].

These goals can only be achieved through communication
among IoV objects (i.e., vehicles, pedestrians, Road Side Units
- RSUs) and public networks. However, for the IoV to work
at its full potential, a huge amount of data has to be able to
spread throughout the network. The dissemination of this data
leads to numerous cybersecurity threats and vulnerabilities,
which can lead to data breaches where the attacker gathers
data from other nodes to perform threats that can impact the
environment itself. To detect these attackers, a monitoring
system, e.g., Intrusion Detection System (IDS), a system to

This work was supported by H2020-MSCA-RISE under grant No
101006411, by Portuguese national funds through FCT, Fundação
para a Ciência e a Tecnologia, under project UIDB/50021/2020 and
UIDB/04111/2020, and by Portuguese national funds through FITEC-
Programa Interface, with reference CIT “INOV-INESC Inovação-
Financiamento Base”.

detect any anomaly or intrusion, can be deployed on the
network. Due to the amount of data and possible vulnerabilities
most networks or systems are exposed to, many monitoring
systems use nowadays Machine Learning (ML) techniques.

Most of the IoV challenges have also appeared in other
fields of study, such as the Internet of Things (IoT), given the
similarities between these two areas. The same architecture
schema is being used to model both IoV and IoT, splitting
them into three layers: Vehicles (Things), Edge, and Cloud [3].
The Vehicles layer is mainly responsible for data collection
and actuation to control the physical world. Most devices in
this layer are resource-constrained in terms of computational
power, storage, and energy. The Edge layer is introduced to
help end devices. First, computation-intensive tasks can be
offloaded to edge devices. Second, the edge layer can mask
communication heterogeneity among end devices and connect
them to the Internet. Third, edge devices help manage end
devices. At last, the Cloud layer is utilized to store, process,
and analyze the collected data and provide the additional
support needed by many applications [4].

A monitoring system needs to be flexible enough to work
everywhere and adapt to every city, village, or any other place
it might be deployed. It has to learn to accomplish all goals it
was designed to achieve. By considering the above, and due to
the generated amount of data, an ML-based monitoring system
is desirable. However, such systems may require considerable
computational power and a short response time. To comply
with such requirements, one could use the computational and
storage power closer to the end-users, i.e., at the edge of the
IoV network.

Nonetheless, the following aspects should also be consid-
ered: (i) what if the algorithm stops working? (ii) what if the
algorithm does not share with the vehicles the correct data?,
and (iii) what if some nodes act in a way that may harm the
others? These problems may occur if the network is attacked.

Aiming to address the latter, in this paper, we propose a
Deep Learning (DL) based monitoring system at the edge
layer to detect any anomaly and classify node behaviors in the
network, helping mitigate the impact of misbehaving nodes.

The remainder of this paper is structured as follows: Section



II presents related work. Section III presents system and mis-
behavior models. In Section IV, the smart monitoring system is
presented. Section V presents performance evaluation. Finally,
Section VI presents concluding remarks.

II. RELATED WORK

Even with the protective measures implemented by the
different security mechanisms and protocols, attackers are
one or two steps ahead in exploiting vulnerabilities, which
highlights the constant need for optimized solutions.

IDSs appeared in conventional computer networks to give
an additional layer of security to the strategies employed by
network administrators. Utilizing IDSs as a security tool en-
ables to constantly analyze network packets, verifying whether
they correspond to previously defined attack signatures [5].

Vehicular environments’ characteristics, such as different
types of communications, high mobility, and node density,
pose challenges for the utilization of IDSs. The choice of
IDSs as security tools presents two distinct learning oppor-
tunities for network administrators: (i) the protection of the
messages exchanged between different entities (i.e., vehicles,
RSUs, among others) that use Vehicle-to-Everything (V2X)
communications, besides identifying the occurrence of attack
attempts, and (ii) in dynamic IoV scenarios, checking which
vehicle service has the highest attacks incidence is an impor-
tant feedback for future decision-making on how to improve
security measures as well as learning the methodology for
carrying out attacks.

Kumar and Chilamkurti [6] have used a Learning Automata
(LA) to capture vehicle characteristics and the Markov Chain
Model (MCM) to represent vehicle states. The authors pro-
posed an IDS to identify any anomalies that may occur in
the network based on a parameter called Collaborative Trust
Index (CTI). Aloqaily et al. [7] proposed the identification
of Probing, User to Root, Remote to User, and denial-of-
service attacks (DoS) in electric vehicular networks for Smart
cities using an IDS. Liang et al. [8] proposed an IDS for
the identification of False Information and Sybil attacks.
The detection algorithm consists of a neural network called
GHSOM.

Malhi and Batra [9] developed a generic framework for the
identification of anomalies in vehicular networks. The threats
identified in their study were distributed DoS (DDoS) and
masquerade attacks, which cause network unavailability and
send false information to the “victim vehicles”, respectively.

Loukas et al. [10] used an automated car to test an IDS
developed with DL algorithms. To solve the performance
capacity problem of the automated car, cloud computing was
used to process the collected data.

On-road messages’ exchange increases management and
classification complexity, as the network infrastructure grows
to make new services available. On the other hand, the creation
of new services or their increase can mean the appearance of
new security breaches, requiring the development of practical
security tools to protect the network and vehicles [11]. Data
capture and inaccessibility of information are problems that

extend to systems connected to the Internet. Some solutions
using ML/DL algorithms for threat identification (e.g., botnets,
DDoS, black hole, and spoofing attack) are listed in the
following.

Garip et al. [12] proposed an adaptive detection mechanism,
called SHIELDNET, to identify botnets on the network. For
the identification of DDoS attacks (i.e., brute force, TCP-SYN,
UDP, and HTTP floods), Nie et al. [13] used Convolutional
Neural Network (CNN) for the development of a data-driven
IDS, i.e., a hybrid IDS that is signature-based and anomaly-
based, to identify the DDoS attack in the exchange of messages
between On-Board Units (OBU) and RSUs. Alheeti et al.
[14] proposed an IDS that uses Artificial Neural Networks
(ANNs) and fuzzified data to identify and correct the black-
hole attack problem in vehicles with the auto-driving system.
Kosmanos et al. [15] developed an IDS for the identification
of spoofing attacks in electric vehicles. In addition to using
ML, it also makes use of Position Verification using Relative
Speed (PVRS) to optimize the results obtained.

Most state-of-the-art solutions were proposed for traditional
vehicular networks, i.e., VANETs, hence not being suitable
for IoV. Our proposed approach is generic in the sense that
if enough training data is provided, it can also detect DoS,
DDoS, black hole attacks, among others. In addition, the
huge amount of data generated by IoV objects brings new
challenges. ML-based solutions become more computationally
demanding, hence the need for computation at the edge of
the network. Such challenges require constant search for
optimized solutions, easy configuration, and adaptation to
ensure that human lives are not at risk due to different security
problems.

III. PRELIMINARIES

A. System Model

The proposed IoV network is composed of three layers,
namely Vehicles, Edge, and Cloud. There are mainly two
groups of nodes: mobile and stationary. On the first group,
at the Vehicle layer, there are cars and buses. On the second
group, at the Edge layer, there are the RSUs.

Mobile nodes can offload data to the nearest RSU to be
processed. Once the computation is finished, the output will
be sent through other nodes in the direction of the desired
node. Nevertheless, RSUs are all connected through the Edge,
and, thus, some data can be shared between them.

B. Misbehavior Model

There are plenty of behaviors or malfunctions that may have
a huge impact on the network [16]. Therefore, the following
behaviors were implemented. The identity (id) spoofing attack
corresponds to a node that successfully identifies itself as
another one or tries to have a different role in the network. The
sybil attack occurs when a node, i.e., the attacker, subverts the
reputation system by creating a large number of pseudonymous
identities and uses them to gain influence in the network.
The node not working behavior consists of a node dropping
or simply not sending any of the messages it receives. In



Fig. 1. The monitoring flowchart

addition, the node may have a malfunction on its 802.11p
communication interface. Therefore, it can only communicate
with RSUs. These actions were implemented on the three
different types of nodes, namely RSUs, cluster heads, and
normal nodes.

IV. THE SMART MONITORING SYSTEM

This section describes two DL approaches, namely misbe-
havior (or anomaly) detection and misbehavior identification,
which run at the Edge layer. The first algorithm uses data from
each node and infers its misbehavior probability. If the output
is high, it will indicate the most probable behavior, as shown
in the flowchart of Figure 1.

It is important to mention that the objective of this work
is only to detect and, if possible, to identify the malicious
behavior. Its aims is to help the network manager by providing
alerts. It is not intended to affect any node or the network itself
directly.

A. Misbehavior Detection

The data provided to the algorithm are the: (i) type of
node (e.g., normal node, cluster head, or RSU), (ii) ego in
the network, (iii) number of nodes in range, (iv) number of
messages received (v) number of messages sent, (vi) buffer
size, (vii) node location, and (viii) social strength with its three
strongest connections. Please note that the location is provided
as Cartesian coordinates (X, Y).

This data is stored in blocks of three arrays that form a 2D
array that contains the data of a given node at three different
times. The number of samples in each block of data is limited
to three to consider the node’s past without having a huge
impact on the algorithm’s performance. Therefore, the input
format is 9× 3.

All data used is sent by the vehicles to the Edge every time
they communicate with an RSU. By not sharing their data, it
means that they did not interact with the Edge. Consequently,
their role in the network will be less important, and the impact
of their actions will be lower.

This data enters a convolutional autoencoder [17], [18] that
uses the convolution property to simulate data dependency
over time. The algorithm aims to encode the input data into
a smaller space than the original and then, from the encoded
data, decode it to restore the original input. The performance of
the algorithm is measured by the mean squared error between
the input and the output data. Therefore, the goal of the
algorithm is performing a robust data analysis, thus, building
a robust anomaly detector.

Fig. 2. An example of the kernel(3x2) and stride(1) on a 9x3 array

Fig. 3. Architecture of the Convolution Auto Encoder

The autoencoder used is formed by convolutional layers.
These layers receive a 3D input and convolve it with a set
of kernels, or filters, and apply an activation function to the
filter outputs, which in this case is a Rectified Linear Unit
[19]. Each kernel has localized support in the first two spatial
coordinates and a full range on the depth on the input (third
coordinate). It will compute the value of each neuron of the
next layer according to this paradigm.

All layers of the algorithm have the same parameters, a
kernel of 3× 2 and a stride of 1. The kernel can be seen as a
filter, where its size is the filter size. The amount of the filter
shift is given by the stride.

Figure 2 presents an example of an array of 9×3×1 neurons
with a kernel and stride with the same parameters as used in
the algorithm after the first iteration. The blue represents the
area covered by the kernel, and the lighter blue the area that
was already covered.

At each iteration, the kernel analyzes the data it is covering
and computes a single value to represent it. In the end, the
data is reshaped according to Eq. 1, which has to be applied
to both dimensions.

output vol =
(input vol − kernel size)

stride
+ 1 (1)

The encoder consists of two convolution layers that trans-
form the input data into five neuron arrays of 7× 2 and then
three arrays of 5 × 1. Then, the decoder is two layers of the
reverse function with the same parameters, as shown in Figure
3.

To conclude, in the algorithm used (see Figure 3), each
neuron of the second layer is computed based on the first layer
neurons covered by a kernel (3 × 2) that shifts one position
(i.e., a stride) every time it is applied. In this case, the depth of
the first layer is just one. Therefore, the kernel only considers
six neurons each time. However, for the other layers, as their



depth is higher than one, the kernel covers more neurons. For
example, at each iteration between layer 2 and 3, 30 (i.e.,
3× 2× 5) neurons are considered.

A library called DeepLearning for Java [20] is used to
implement this neural network. It is trained in a different
program (please refer to Section V-B for more information).
Only the testing part runs at the same time as the simulations.
As mentioned before, the algorithm issues a score that is the
mean squared error between the input and the output, and
values closer to zero represent nodes whose behavior is closer
to the normal. When this score is higher than a threshold,
the node is labeled as misbehaving. This threshold is adjusted
during the simulation to be adapted to each case. Its initial
value is the highest score obtained while testing the algorithm.
The mean score of this test as its relation with the highest
score will also be stored and will be used as a guideline to
the update of the threshold. During the simulation, every time
the algorithm runs, the mid value is adjusted, as shown in
equation 2.

avg score = avg score ∗ 0.9 + new score ∗ 0.1 (2)

Then, the relation obtained during testing is applied to this
average and the threshold is afterwards updated.

B. Misbehavior Identification

Besides misbehavior detection, the Edge should also be able
to label misbehavior actions. Therefore, when the previous
algorithm raises a flag, the data is forwarded to a new neural
network.

This DL algorithm has the same input as the previous one
but is now a classification problem. It has only five different
outputs: Sybil attack, node not working, identity spoofing,
normal behavior, and new unknown behavior.

It starts with a convolution layer to simulate the dependency
of data over time and consists of three dense layers and a
softmax function to discern the labels. The choice of the
number of layers and the number of neurons is a balance
between the flexibility of the network, as with more layers, the
network can synthesize a wider variety of nonlinear functions
with fewer neurons, and the difficulty to train given that a
deeper (i.e., more layers) and denser (i.e., more neurons)
network requires more computation (see Figure 4).

The data set used to train this network is divided into the
training and the validation data sets. This model uses the
validation set to implement the early stopping, i.e., a technique
used to ensure that the network is not over-fitted to the trained
data. Another aspect to be taken into account is the fact that the
network cannot be trained to detect new unknown behaviors,
as that would be a paradox. Therefore, the neural network
is trained to label the four known behaviors, and when the
confidence in the result is low, the behavior is classified as an
unknown one. The output of this algorithm is an array with
four positions, one for each label that represents how confident
is the network in assigning the label to the data set. The sum
of the four positions of the array is always one. Therefore,

Fig. 4. Behavior identification neural network

given a data set, if the confidence is not higher than 0.5 for
any label, the data can be labeled as unknown behavior.

V. PERFORMANCE EVALUATION

A. Simulation Model

The proposed IoV network was implemented on the ONE
simulator [21]. It is assumed that all nodes are equipped
with a wireless interface using an 802.11p Wireless Access
in Vehicular Environments (WAVE) [11] with a transmission
range of 100 m and a transmission rate of 10 Mbps, to
communicate with each other. In addition, each vehicle is
also equipped with a more powerful wireless interface that can
only be used to communicate with RSUs. This interface has a
transmission range of 250 m but with the same transmission
rate.

The Helsinki workday (HW) scenario consisted of 56 nodes
divided into five groups of home, office, and meeting spots
following the working day movement (WDM) model . WDM
simulates the usual movement of a person spending the night
at home, then going to work for eight hours and after that,
there are a few meeting points replicating stores, cinemas,
restaurants, and other places where people may go after work.
There are also two buses for each of the eight routes available
in the scenario. Cars’ buffers vary from 64 to 256 MB;
meanwhile, all buses have 256 MB. In addition, there are also
30 RSUs.

B. Training data

All data used to train this neural network has been collected
during several simulations with different parameters such as
the number of nodes, movement models, or message size, to
build a model as flexible and accurate as possible.

The simulations were performed by dividing the nodes into
three groups: RSUs, buses, and vehicles. Considering that the
movement of the buses and the position of the RSU are always
the same, only the movement pattern of the vehicles was
changed.

The simulator used has data concerning typical home, office,
and meeting locations in Helsinki, divided into eight groups.
In the majority of the simulations, the WDM movement model
was used as it simulates daily routines.



During the simulation, RSUs would write their data into a
file every hour, and the data concerning the other nodes was
written when they encountered RSUs.

C. Results

Network monitoring consists of two different algorithms:
(i) one that detects anomalies and (ii) the other that tries to
identify them.

This evaluation consisted of several simulation runs where
some nodes were programmed to misbehave and the Edge
tried to detect them. Every time the first algorithm detected
an anomaly, the data also passed through the second one to
classify the behavior.

The following metrics were considered for evaluating the
algorithms: true positive, false positive, true negative, and
false negative. A true positive is when an attacker is correctly
labeled. A false positive is when a normal behavior is classified
as misbehaving. A true negative is when a normal node is
labeled correctly. A false negative is when an attacker is
mislabeled.

Before using the smart monitoring system on a real simu-
lation, the algorithms were trained and tested. Their training
consisted of uploading a data set and the algorithms updated
their weights to best perform on the given data. The training
data was obtained from several simulations runs with different
parameters. The misbehavior detection took approximately 6
minutes to train while the misbehaviour identification took 2
minutes.

After the training, the algorithms were tested with a set of
already known data (independent from the training set). The
first algorithm was trained to extract the main features of a
data set, and based on those, replicate the input data. During
its evaluation, the algorithm was capable of reproducing the
input data with and, in the worst case, only a mean squared
error of 0.2. The second algorithm was tested with 150 data
samples.

In the following, attackers behave maliciously from the
beginning until the end of the simulation. Their data is
monitored every time they contact an RSU, and the algorithm
does not consider any prior label given to nodes. Instead of
testing a node based on all its history, the tests only take
into consideration the data sample acquired at each moment.
Therefore, they are presented below for different attack situ-
ations. Usually, each simulation has five misbehaving nodes,
and during the simulation time, each node is inspected by the
algorithm 20 to 30 times, depending on its movement patterns.

1) HW scenario: First, the misbehavior detection algo-
rithm is used to monitor a network where all nodes behaved
normally. In this case, 1500 tests were performed over 106
nodes. From these tests, 117 were considered as a potential
anomaly. However, the latter, the second algorithm labeled 108
as normal behavior. This indicates that from 1500 samples,
only 9 were false positives, i.e., only 0.6%.

Considering that each node’s attack signature, i.e., each
node’s behavior, is the same at the beginning of the simulation,
if the algorithm is applied, all nodes would have the same

Fig. 5. Evolution of classification metrics for the id spoofing attack

classification. Over the simulation, the signatures become
more and more distinct. Therefore, in the first instance, the
time that the systems need to warm up, i.e., the difference
between the signature of a normal and an attacker node, is
studied. With this objective, several simulation runs focusing
on the first hours of the simulation were performed for the
first two behaviors (i.e., Sybil and id spoofing) with distinct
parameters. Here, the evolution of the true positives, false
positives, and false negatives were analyzed and once the
values of the true positives were higher than the values of false
negatives and false positives, it indicated that the system has
warmed up and the algorithm were ready to run. For instance,
Figure 5 presents the metrics’ evolution for the id spoofing
attack.

During these tests, the classification metrics started to
stabilize after 3 hours. Therefore, 10800 seconds is chosen
as warm up time.

a) Sybil Attack: For the Sybil attack, several simula-
tions were performed varying the attacker movement model
seed and the number of replicas it creates. Among all these
runs, the misbehavior detection algorithm analyzed 597 attack
situations, and from these 407 were labeled as having an
anomaly and sent to the misbehavior identification algorithm
that labeled all 407 as Sybil attacks. This means that once the
anomaly detector flags an attacker, the misbehavior identifier
labels this attack correctly. In addition, this false negative rate
(approx. 32%) derives from the similarity of an attacker with
a node with an important role in the network, i.e., a node
with high ego betweenness centrality. Moreover, during this
study, a total of 8000 nodes were monitored, and only 16 were
mislabeled as Sybil attackers, which leads to a false positive
rate of only 0.22%.

During this analysis, it was concluded that when the at-
tackers create more replicas, it is easier to detect them. The
false negatives are significantly higher when testing with three
replicas than with the most used configuration, with five
replicas.

b) Identity Spoofing: Regarding the id spoofing attack,
when a node identified as an RSU contacts the Edge and is not
registered as an RSU, the monitoring system already knows
that something abnormal is occurring. Therefore, it will always



run the misbehavior identifier.
During the testing period, the algorithm runs the data of

18000 tests, from which 389 were attack situations, and 370
were labeled as attackers. In addition, during these tests, there
were 100 false positives, i.e., nodes with normal behaviors
being labeled as attackers.

c) Node Not Working: The difference between a node not
working and a node whose role in the network is not important
is small. A node that at a given time stopped working and
a node that went to an isolated area and cannot connect to
any one, result in a similar behavior. This behavior was not
tested on RSUs, hence if one of these nodes was not working,
it would not communicate with the Edge. Therefore, it is
assumed that the Edge is able to detect this anomaly without
the algorithm.

Regarding the results obtained, the true positive rate was
only around 50% for the node not working behavior. As
mentioned before, this behavior has a signature similar to the
normal behavior and even when the anomaly detector captures
these nodes, it is not guaranteed that the behavior identifier
will not label it as a normal node with a normal behavior.
To have a greater certainty about this behavior, it is advisable
to wait for at least one more iteration on the algorithm and
check if the classification stays the same. On the other hand,
the false positive rate on this behavior, just like on the others,
is close to zero. In a total of 5000 evaluations, only 33 were
misclassified as a node not working.

VI. CONCLUSIONS AND FUTURE WORK

This article proposes a DL-based monitoring system that is
capable of detecting anomalies in the network and identifying
known misbehavior. This system takes advantage of the Edge
layer and the location of the RSUs to comply with the
IoV paradigm. It consists of two different DL algorithms,
namely the misbehavior detection, which detects anomalies in
the network, and misbehavior identification, identifying these
anomalies.

In the HW scenario, which was used for training, the
monitoring system was able to detect and identify 68% of
the Sybil attacks, 95% of the id spoofing attacks, and 52%
of the nodes not working. This result obtained for the nodes
not working was because this behavior was similar to that
of a node in an isolated area. The misbehavior identification
algorithm was able to correctly classify all the Sybil attackers
that were sent by the misbehavior detection algorithm.

Continuously training the monitoring system with live data
aiming to adapt it better to the network it is monitoring is
left for future work. Saving nodes’ classifications aiming to
analyze the evolution of their behavior over time is also left
for future work. The latter will increase the certainty of a given
classification by comparing it with the previous ones.

REFERENCES

[1] N. Magaia, G. Mastorakis, C. Mavromoustakis, E. Pallis, and E. K.
Markakis, Eds., Intelligent Technologies for Internet of Vehicles, ser.
Internet of Things. Cham: Springer International Publishing, 2021.

[2] L. Silva, N. Magaia, B. Sousa, A. Kobusińska, A. Casimiro, C. X.
Mavromoustakis, G. Mastorakis, and V. H. C. de Albuquerque, “Com-
puting paradigms in emerging vehicular environments: A review,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, pp. 491–511,
2021.

[3] N. Magaia, P. Gomes, L. Silva, B. Sousa, C. X. Mavromoustakis,
and G. Mastorakis, “Development of mobile iot solutions: approaches,
architectures, and methodologies,” IEEE Internet of Things Journal, pp.
1–1, 2020.

[4] K. Sha, R. Errabelly, W. Wei, T. A. Yang, and Z. Wang, “Edgesec:
Design of an edge layer security service to enhance iot security,”
2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pp. 81–88, 2017.

[5] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig,
and S. Sanguanpong, “SeArch: A Collaborative and Intelligent NIDS
Architecture for SDN-Based Cloud IoT Networks,” IEEE Access, vol. 7,
pp. 107 678–107 694, 2019.

[6] N. Kumar and N. Chilamkurti, “Collaborative trust aware intelligent
intrusion detection in VANETs,” Computers and Electrical Engineering,
vol. 40, no. 6, pp. 1981–1996, aug 2014.

[7] M. Aloqaily, S. Otoum, I. A. Ridhawi, and Y. Jararweh, “An intrusion
detection system for connected vehicles in smart cities,” Ad Hoc
Networks, vol. 90, p. 101842, 2019.

[8] J. Liang, J. Chen, Y. Zhu, and R. Yu, “A novel Intrusion Detection
System for Vehicular Ad Hoc Networks (VANETs) based on differences
of traffic flow and position,” Applied Soft Computing Journal, vol. 75,
pp. 712–727, feb 2019.

[9] A. K. Malhi and S. Batra, “Genetic-based framework for prevention of
masquerade and DDoS attacks in vehicular ad-hocnetworks,” Security
and Communication Networks, vol. 9, no. 15, pp. 2612–2626, oct 2016.

[10] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, and D. Gan,
“Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using
Deep Learning,” IEEE Access, vol. 6, pp. 3491–3508, dec 2017.

[11] N. Magaia and Z. Sheng, “ReFIoV: A novel reputation framework
for information-centric vehicular applications,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1810–1823, 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8574942/

[12] M. T. Garip, J. Lin, P. Reiher, and M. Gerla, “SHIELDNET: An Adaptive
Detection Mechanism against Vehicular Botnets in VANETs,” in IEEE
Vehicular Networking Conference, VNC, vol. 2019-Decem. IEEE
Computer Society, dec 2019.

[13] L. Nie, Z. Ning, X. Wang, X. Hu, J. Cheng, and Y. Li, “Data-
Driven Intrusion Detection for Intelligent Internet of Vehicles: A Deep
Convolutional Neural Network-Based Method,” IEEE Transactions on
Network Science and Engineering, vol. 7, no. 4, pp. 2219–2230, apr
2020.

[14] K. M. Alheeti, A. Gruebler, and K. D. McDonald-Maier, “An Intrusion
Detection System against Black Hole Attacks on the Communication
Network of Self-Driving Cars,” in Proceedings - 2015 6th International
Conference on Emerging Security Technologies, EST 2015. Institute of
Electrical and Electronics Engineers Inc., mar 2016, pp. 86–91.

[15] D. Kosmanos, A. Pappas, L. Maglaras, S. Moschoyiannis, F. J. Aparicio-
Navarro, A. Argyriou, and H. Janicke, “A novel Intrusion Detection
System against spoofing attacks in connected Electric Vehicles,” Array,
vol. 5, p. 100013, mar 2020.

[16] N. Magaia, P. R. Pereira, and M. P. Correia, Cyber Physical Systems:
From Theory to Practice. CRC Press, 2015, ch. Security in Delay-
Tolerant Mobile Cyber-Physical Applications.

[17] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.
2011, pp. 1–19, 2011.

[18] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET), 2017, pp. 1–6.

[19] K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified
linear unit used in deep learning,” in 2015 International Joint Conference
on Neural Networks (IJCNN), 2015, pp. 1–8.

[20] E. Deeplearning4j, “Deep Learning for Java,” 2021. [Online]. Available:
https://deeplearning4j.org/

[21] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for
DTN Protocol Evaluation,” in SIMUTools ’09: Proceedings of the 2nd
International Conference on Simulation Tools and Techniques. New
York, NY, USA: ICST, 2009.


