
1

Intrusion Recovery Systems: A survey
David R. Matos, Member, IEEE, Ibéria Medeiros, Member, IEEE, Miguel L. Pardal, Member, IEEE

Miguel Correia, Member, IEEE

Abstract—Many computing services need to be accessed
through the Internet, which makes them inherently exposed to
a large number of cybersecurity threats. Several attacks are
thwarted by intrusion prevention mechanisms, but with the size
and complexity of current systems, an attacker can break in
sooner or later. Attackers can exploit a system vulnerability or
steal user access credentials. Once the intrusion occurs, it is very
likely that the state of the system is corrupted by the attacker.
The classical solution against these corruptions is to keep regular
backups to allow the reversal of the effects of intrusions. However,
changes to the state made since the last backup are permanently
lost. This situation has led to the development of work on
intrusion recovery systems that revert the effect of attacks on the
state of the system without losing legitimate changes. We present
a survey of the literature in the area, explaining the different
approaches and suggesting open directions for future research.

Index Terms—Intrusion Recovery, Integrity, Databases, File
Systems, Web Applications, Cloud Computing

Recovery (which includes return and renewal of health)
is a re-gaining - regaining of a clear view.

— J.R.R. Tolkien. On Fairy Stories
I. INTRODUCTION

INTRUSION RECOVERY aims to reverse the effects of
undesired operations that modify the state of an application.

This is a broad definition because state and application can
refer to different things. The state of a database will consist of
data records that can have relationships between themselves,
while the state of a file system is comprised of its files and
folders. Although the term intrusion refers to illegal activity
that breaks the integrity of a system [1], an intrusion recovery
mechanism can also be used to reverse accidental operations
caused by legitimate users. In other words, intrusion recovery
techniques can also be used for general data recovery.

A cautionary note: computer security is about ensuring
several properties, e.g., confidentiality, integrity, and availabil-
ity [1]. Intrusion recovery is concerned with state integrity,
not confidentiality. Undoing the effects of an attack that
steals data, and breaks confidentiality is usually infeasible.
So, intrusion recovery is focused on fixing the state, i.e.,
recovering integrity.

A. Security mechanisms

Organizations try to be aware of security risks that come
from the Internet and other sources. After risks are identified,

David R. Matos, Miguel L. Pardal and Miguel Correia are with INESC-ID,
Instituto Superior Técnico, Universidade de Lisboa - Portugal.

Ibéria Medeiros is with LASIGE, Faculdade de Ciências, Universidade de
Lisboa - Portugal.

organizations select and apply intrusion prevention mecha-
nisms, and they rely on them to prevent attacks or, at least,
to reduce the probability that attacks succeed. Some of these
mechanisms are configured and managed by service providers,
e.g., Cloud Service Providers (CSPs), whereas others can be
deployed by the client organizations. Some of these security
mechanisms include: firewalls that filter inbound traffic and
prevent unauthorized or risky connections from accessing
private networks; access control mechanisms that prevent
unauthorized or unknown users from accessing private content;
and intrusion detection systems that monitor the organization’s
network infrastructure and systems for malicious activity.

A firewall [2] can protect a system connected to the network
against unauthorized access. This kind of mechanism regulates
incoming and outgoing network traffic following a set of
rules. However, a system administrator may fail to configure a
firewall with every necessary rule [3], allowing an attacker to
find a way to illegally access a service or other resources. Once
attackers have access, they may corrupt the users’ data. Even
if all the rules are correctly configured, in some situations, it
is necessary to allow all traffic to certain components of an
application, e.g., the front-end of a web application.

Access control mechanisms [4], [5] regulate which users are
allowed to use the computing resources. These mechanisms
are responsible for identifying, authorizing, and authenticating
users, allowing system administrators to audit and manage
access records. Such mechanisms are only effective against
attackers when they are correctly configured and managed. If
an attacker gains access to a user’s credentials by, for example,
stealing his computer, he will be able to perform an attack and
corrupt data.

Intrusion Detection Systems (IDS) [6], [7] monitor activ-
ities, e.g., network traffic or operations in logs, to identify
malicious actions. If an IDS suspects that an attack is un-
derway, it notifies the system administrator so that he can
trigger the appropriate countermeasures. Some activities may
be falsely reported to the system administrator, the so-called
false positives. Moreover, there may be attacks that are not
detected, the false negatives.

An evolution of IDSs are Security Information and Event
Management (SIEM) systems [8], which analyze activity
alongside other sources and filter possible attacks from false
positives and become aware of false negatives. The combi-
nation of these mechanisms provides the Security Operation
Center (SOC) team with information for them to identify
malicious activities, i.e., attacks, and indicators of attack (IoA),
that detects an intent of an attack, or indicators of compromise
(IoC), that detects when the security of the network has been
breached, allowing them to take appropriate countermeasures.
When some attack does get through, the system administrator

MP
Note
@article{Matos_2024_TechRxiv_IntrusionRecoverySurvey,

title={Intrusion Recovery Systems: A survey},

url={http://dx.doi.org/10.36227/techrxiv.172296768.82082288/v1},

DOI={10.36227/techrxiv.172296768.82082288/v1},

publisher={Institute of Electrical and Electronics Engineers (IEEE)},

author={Matos, David R. and Medeiros, Ibéria and Pardal, Miguel L. and Correia, Miguel},

year={2024},

month=aug

}

2

needs to repair the system, which includes applying security
patches, re-configuring the network, and reverting the cor-
rupted data to the most recent version existing prior to the
attack.

These security mechanisms make attacks less likely to
succeed and compromise the state of the system. However,
despite these mechanisms, malicious users may still be able
to intrude systems, e.g., by exploiting a vulnerability or poor
configuration [9], and, once an attacker gains access, he
may corrupt data. Data corruption may result in significant
losses for organizations. Ransomware is a serious problem.
We mention Wannacry [10] that successfully infected more
than 230,000 systems and resulted in an estimated loss of
$4 (USD) billion. According to Accenture [11], the most
expensive impact of a cyber-attack is information loss due
to data corruption, which represents 43% of the total costs of
the attack. Although cyber-attacks remain the leading cause
of data loss incidents – 55% of the total incidents in 2017 –
overall, human error caused even more data corruption [12].
Therefore, it can be argued that services that are capable
of reversing the effects of intentional and accidental state
modifications are always useful for organizations.

B. Intrusion Recovery

Intrusion recovery involves the tasks that need to be per-
formed to reverse the effects of an attack that caused data
corruption in the system state. It plays a critical role in inci-
dent handling and response process after an incident occurs.
According to [13], [14], recovery is the third action, after
preparation and detection, that needs to be taken to restore
the attacked system. Some intrusions may not aim to cause
data corruption but rather leak sensitive data. The works
discussed in this paper do not target this attack vector. The
goal of the presented papers is to provide mechanisms that
allow one to restore the affected data. More specifically, tasks
in an intrusion recovery system involve identifying the data
that was corrupted and reverting it back to the state prior to
the attack, while keeping legitimate data intact. To achieve
this state, intrusion recovery mechanisms use a combination
of periodic backups/checkpoints with logs of the executed
operations. Using only backups/checkpoints of the state would
not be a good idea, since they would allow the entire state of
the system to be reverted to some point in time but lose the
effect of later legitimate operations in the process. Intrusion
recovery mechanisms differ from the rollback mechanisms
used in transactional databases in which it is possible to revert
a transaction that was not completed successfully. When an
intrusion occurs, it is not possible to perform a rollback.

There are two distinct ways to perform intrusion recovery:
backward recovery and forward recovery. Backward recovery
involves restoring the system to a known good state that was
previously saved, such as a backup or a checkpoint. Any
changes made to the system after that point are discarded,
and the system is returned to the saved state. This can be a
time-consuming process, as it requires the system to be shut
down and restarted, but it ensures that the system is restored
to a consistent state.

07/01/2022, 10:18

Page 1 of 1about:blank

S1
T1

T2

T3

T4

S2
T1

T2

T3

T4

T5

T6

T7

S3
T1

T2

T3

T4

T7

Backward Recovery

Checkpoint

Forward Recovery

Fig. 1: Restoring a system to a previous backup vs recovery
(S1, S2, S3 are states; T1 to T7 are operations).

Forward recovery, on the other hand, involves continuing
to operate the system after a failure has occurred, using some
form of error correction or redundancy to compensate for the
failure. This approach is often used in systems that cannot
afford to be shut down, such as real-time systems or critical
infrastructure. In forward recovery, the system is designed to
detect and correct errors as they occur, so that the system
can continue to operate without interruption. While forward
recovery can be more complex to implement than backward
recovery, it can also be more resilient to failures, as the system
can continue to operate even when errors occur.

Figure 1 presents two different approaches to restore data
that was corrupted by an attack. In the figure, the state of the
system evolves from S1 to S2 after executing the operations
T5, T6, and T7. The problem is that operations T5 and T6
are malicious, corrupt the state of the system, and need to be
reverted. One possible approach, called backward recovery,
consists in reverting the entire system state back to S1. This is
possible since a backup was performed before the attack. This
discards the effects of the malicious operations T5 and T6. The
problem is that transaction T7 is also discarded. A preferable
solution would be to only undo the effects of the attack. This
approach is called forward recovery which, in this example,
would only discard the effects of operations T5 and T6 while
keeping the effects of the transaction T7 and reaching the state
in S3.

An intrusion recovery system can be used to achieve the
desirable state S3 of Figure 1, in which the effects of malicious
operations are reverted and the legitimate one is kept [15]–
[19]. Intrusion recovery systems work by recording in a log
every operation that affects the state of the application. With
this log, a system administrator can select unintended actions
that were caused by the attack and use the intrusion recovery
system to undo them. In other words, intrusion recovery
mechanisms aim to revert the damage intentionally caused by
attackers or accidentally by authorized users, while keeping
intact data created and modified by legitimate users. These
mechanisms assume that attacks have already occurred and
that it is necessary to revert their effects on the state of the
system. This assumption is realistic given that even adopting
intrusion prevention techniques will reduce the probability of

3

attacks to be successful, and attackers may always discover
new ways to exploit the system.

In terms of how recovery is performed, there are different
approaches, but in general all of them rely on a combination
of checkpoints and message logs. Checkpoints are copies of
the state of the application that can be used to revert the
application back to a previous point in time. Message logs
record operations that can be re-executed on a checkpoint to
reconstruct the state of the application until the present time.
For file systems, there is an alternative approach that uses
several versions of each file – multiversioned file systems –
that allow corrupted files to be reverted to previous versions
without affecting the remaining file system.

Recovery occurs after the effects of an intrusion are
recorded in the state of the system and made available to
external users. It is not possible to ensure that no user saw
the effects of the intrusion before recovery was complete.
This problem of external inconsistency cannot be completely
avoided [20], but it can be managed. One possible solution
consists of using compensating or explanatory actions to
inform the user about the inconsistencies he may experience.

This survey provides an overview of the state-of-the-art in
intrusion recovery systems. We group the systems into five
sets:

1) Generic applications – the original work in the area,
which presented intrusion recovery mechanisms that can
be used with different types of application (Section III);

2) Virtual machines – systems that take advantage of the
virtualization platform to perform snapshots and log
system calls (Section IV);

3) Multiversioned file systems – systems that allow recov-
ering file systems by leveraging versioning (Section V);

4) File systems with selective re-execution – systems that
also allow recovering file systems that, instead of ver-
sioning, employ a selective re-execution approach (Sec-
tion VI);

5) Web and cloud applications – systems for recovering
web applications, including those provided as cloud
computing services (Section VII).

II. METHODOLOGY

In this paper we present a systematic review of the literature
on intrusion recovery. We follow the review process steps
proposed in [21]. The steps are described in detail in the next
sections.

A. Research questions

The research questions we aim to answer in this paper are
the following.

• RQ1: How much research has been published on intrusion
recovery in the last 25 years?

• RQ2: What are the target systems of the Intrusion Re-
covery solutions that were proposed?

• RQ3: What kind of intrusions do these works aim to
recover from?

• RQ4: What are the limitations of current intrusion recov-
ery systems?

TABLE I: Selected journals and conference proceedings.
The number of publications is shown for each source.

Source Acronym Type Nr.
USENIX Annual Technical Conf. ATC Conf. 1
Symp. on Operating System Principles SOSP Conf. 4
IEEE Network Operations and Management Symposium NOMS Conf. 1
Annual Computer Security Applications Conf. ACSA Conf. 2
ACM SIGOPS Symp. on Operating Systems Principles SIGOPS Conf. 1
Symp. on Operating System Design & Implementation OSDI Conf. 2
International Conf. on Dependable Systems and Networks DSN Conf. 2
ACM SIGOPS/EuroSys European Conf. on Computer Systems EuroSys Conf. 1
ACM/IFIP/USENIX International Middleware Conf. Middleware Conf. 2
International Symp. on Network Computing and Applications NCA Conf. 1
Conference on Distributed Computing Systems CDCS Conf. 1
IEEE Transactions on Dependable and Secure Computing TDSC Journal 1
IEEE Transactions on Cloud Computing TCC Journal 1
IEEE Transactions on Knowledge and Data Engineering TKDE Journal 1

• RQ5: How can we compare the performance of these
intrusion recovery mechanisms?

With RQ1 we wanted to establish a time frame in which the
research on intrusion recovery can be somehow comparable. In
our research, we collected studies from the last 25 years. This
allowed us to consider different types of systems (from email
servers to blockchain applications). With RQ2 we wanted to
identify the different types of systems that are targeted by the
intrusion recovery mechanisms. This allowed us to categorize
the selected studies and perform an apples-to-apples compar-
ison between the systems. With RQ3 we wanted to define
what an intrusion is in the context discussed systems. In our
research, we noticed that the definition of intrusion depends
on the target system. For example, in a web application an
intrusion can be an HTTP request while in a database an
intrusion can be a SQL statement. This question is answered in
each of the categories that we identified. With RQ4 we wanted
to know the limitations of the existing intrusion recovery
mechanisms, as this can help to extent the current state-of-the-
art. With RQ5 we wanted to compare the existing solutions.
This comparison can only be made with system in the same
category; as such, we answer this question in each category.

B. Research process

Our research process was a manual search in a selection
of conferences and journals related to the field of intrusion
recovery. Our criteria was selecting publications from the
last 25 years. The selection of conferences and journals is
presented in Table I. In the table, the first two columns refer
to the publication name and acronym, the third column refers
to the type, and the fourth column refers to the number of
intrusion recovery publications discussed in this paper.

C. Data collection

We collected two different metrics: a) performance metrics,
and b) research impact metrics. For a) for each study we
collected the following metrics: performance overhead, mean
recovery time, and storage overhead. These three metrics
were commonly evaluated in the different intrusion recovery
systems, allowing us to compare the different approaches. For
b) we collected the citation number of each paper over time.

4

III. RECOVERY IN GENERIC APPLICATIONS

The mechanisms presented in the following sections assume
that users interact with the system by executing operations,
which, in turn, modify its state. Users with malicious intent
may execute illegal operations that will modify the state of
the application by exploiting vulnerabilities or by accessing
the system on the other users’ behalf. These illegal operations
are intrusions that the system administrator wishes to reverse.
Normal users may also accidentally execute unintended op-
erations, and, although these are not intrusions, in the sense
that they were not purposely executed, they should be undone
from the state of the system.

A. The three R’s approach

The three R’s approach [22] consists of a technique that
provides a system-level undo operation, offering the possibility
to roll back unintended actions performed by human operators,
viruses, hacker attacks and unpredictable problems that are
detected too late to be contained. The motivation behind this
work is the fact that human operator error has been the
leading cause of outages [23]–[25] and the fact that it takes a
considerable amount of time to reverse the effects of the error
and restore the service. The authors of the article defend that
future systems should be designed from the beginning with
recovery mechanisms similar to the undo operations found
in widely used applications, such as word processors and
spreadsheets.

The mechanism works in three steps: rewind, repair, and
replay. In the rewind step, the system state is reverted to
a backup prior to the error. In the repair step, a system
administrator applies the required corrections to the system:
applying a software patch to the system, omitting erroneous
operations, or fixing a bug in the code. In the replay step, the
undo system reexecutes every user operation since the backup,
allowing the corrections added in the repair step to be executed
as well.

The three R’s approach is capable of undoing human
operator errors. For that, it is necessary to record the executed
operations at the user level. The proposed architecture consists
in having a proxy intercepting every user-level operation so
they can be recorded in an operation log and a time-travel
storage unit is then responsible for making periodic backups
in order to allow rewinding the system to a previous point in
time.

B. An implementation of the three R’s approach

An implementation of the three R’s approach is Operator
Undo [15]. It offers the undo operation in e-mail systems so
that a system administrator can revert unintended actions. The
system architecture is similar to the one presented in [22] with
the addition of a Control UI that serves as an interface for sys-
tem administrators. Figure 2 presents the system architecture
of Operator Undo. In the figure, the time-travel storage and
the service application (the blue components) belong to the
application (with some minor modifications) that is protected
by the mechanism. The undo proxy, control UI, undo manager

and the timeline storage (the green components) are from
Operator Undo. The proxy, used to intercept user requests,
is specific to the application it is wrapping. This allows the
proxy to identify and register operations at the user level,
making it possible for the administrator to select and undo
user operations, instead of storage level operations. While the
proxy adopts the same protocol as the application, to identify
the user-level operations, the remaining components of the
system assume a generic interpretation for the operations. This
allows porting Operator Undo to different kinds of systems by
requiring only the proxy to be modified.

The implementation of Operator Undo in an e-mail service
was made without code modifications to the e-mail server;
instead, the components of Operator Undo are set up to
wrap the e-mail server. The compensation operations that
deal with the inconsistencies observed by the user, such as
missing e-mail messages, are solved by informing the users
that maintenance was done. The time-travel storage performs
automatic backups hourly, which are converted into daily
backups at the end of the day. This allows one to rewind the
system to at most a day prior to the intrusion, before repairing
and replaying the verbs.

Most of the works presented in this survey share some
similarities with the papers presented in this section.

C. The Response and Recovery Engine

The Response and Recovery Engine (RRE) [26] is an
automated cost-sensitive intrusion response system that uses
game theory to model the security battle between itself and
an attacker. It employs a multistep, sequential, hierarchical,
nonzero-sum, two-player stochastic game approach to evalu-
ate various security properties of individual host systems in
a network. RRE leverages attack-response trees (ARTs) to
consider inherent uncertainties in intrusion detection system07/01/2022, 10:25

Page 1 of 1about:blank

Undo
Proxy

Service
Application

Undo
Manager

Time-travel
Storage

User

Verbs

Control

Timeline
Storage

Control
UI

Fig. 2: System architecture of Operator Undo [15]

5

(IDS) alerts when estimating system security and deciding on
response actions. It converts ARTs into partially observable
competitive Markov decision processes to find the optimal
response action against the attacker. RRE has a two-layer
architecture, consisting of local engines and a global engine,
to deal with security issues of different granularities. It uses
a fuzzy control-based technique to support network-level in-
trusion response, allowing network security administrators to
define high-level network security properties through easy-to-
understand linguistic terms. RRE extends the state-of-the-art
in intrusion response by accounting for planned adversarial
behavior, inherent uncertainties in IDS alert notifications, and
the ability to define high-level network security properties. It
has been demonstrated to be computationally efficient for rel-
atively large networks and practical for critical infrastructure
(e.g., power grid) networks.

IV. INTRUSION RECOVERY IN VIRTUAL MACHINES

Some intrusion recovery mechanisms take advantage of the
capabilities of virtualization to log system-level operations and
provide recovery at the system level. The following works
explore the problem of intrusion recovery in servers that
run in virtual machine appliances, i.e., pre-configured virtual
machines that run on a hypervisor.

The intrusion recovery systems presented in this section al-
low to revert unintended actions that occur in a virtual machine
(VM). This includes every unintended operation that causes
modifications to the state of the virtual machine. The works
presented in this section make the following assumptions:

• State: is contained in a file system that is managed by
the hypervisor and is isolated from the host file system;

• Interface: users interact with the virtual machine through
an hypervisor, the user’s actions can be described in the
form of system calls that may or may not modify the state
of the virtual machine;

• Intrusion: is any operation that is performed in through
the hypervisor that generated system calls that cause
modifications to the state of the virtual machine;

• Recovery: is done by reverting the files that were modi-
fied and deleting any file that was created by the intrusion.

A. Tracking intrusions through the operating system

There are solutions that are able to track intrusions in the
operating system. In this section we discuss BackTracker [27],
Bezoar [28], and SHELF [29].

1) BackTracker: Backtracker [27] is a tool that analyzes
how an intrusion propagates through the operating system
to perform adequate recovery measures. Backtracker helps
system administrators identify the sequence of steps that occur
in an intrusion. It works backwards from the detection point,
i.e., it starts from the state in the file system that alerts the
administrator of the intrusion, and identifies a chain of events
that could have led to the erroneous state. During runtime,
EventLogger collects logs of events in the system. When a
system administrator wishes to analyze a detection point, a
graph generator – GraphGen – creates dependency graphs with
the chain of events that cause the state modification.

BackTracker does not provide recovery mechanisms to
revert the effects of intrusions, but a forensic tool that helps
system administrators analyzing the trace of events of an
intrusion in the system. This tool can be used together with
a file system recovery mechanism to effectively eliminate the
effects of an attack.

2) Bezoar: Bezoar [28] is an operating system and
application-independent intrusion recovery system that is ca-
pable of tracking the effects of intrusions and recovering the
entire state of the system while imposing low overhead on the
virtual machine.

To start the re-execution of legitimate operations and recover
the system, the administrator needs to identify the source of
the network by selecting the network source identification in
the memory unit. Then, for each operation in the log, Bezoar
compares the network source of the operation with the one
pointed out by the administrator. If they are different, then
they are executed since they did not originate from the network
intruder. If they are equal, then the operation is not executed
and the system starts a semi-replay phase. In this phase,
the algorithm presented in [22] is executed, i.e., a selective
reexecution of the legitimate and non-tainted operations. When
every valid operation in the log is executed, the system enters
a new valid state in which the intrusions have never occurred.

3) Online recovery with quarantined objects: Bezoar pro-
vides online recovery by performing recovery concurrently
with the normal execution of the system. This technique
maintains availability during recovery, however, it fails to con-
tain the propagation of the intrusion. A system that recovers
the effects of an intrusion, avoiding having it infect other
legitimate files in the system is SHELF [29].

SHELF maintains a cumulative clean state of the system
for applications and files affected by the intrusion, allowing
them to resume execution with the most recent version prior
to the attack. SHELF uses taint tracking techniques to assess
the damage caused by the intrusion and quarantine methods
to contain infected files, allowing uninfected process and files
to be available to the users.

SHELF was implemented on top of a light-weight virtual
machine, performing most of its functionality at the hypervisor
layer. This provides a transparent execution environment for
the users and imposes minimal interference to the guest
system. It works in three phases: normal phase, when it logs
operations and performs state recording for the system objects;
damage assessment phase, when it determines the infected
objects taking into account the dependencies; and recovery
phase, when infected object are quarantined and reverted to
the latest, non-infected, versions.

V. INTRUSION RECOVERY IN FILE SYSTEMS

Intrusion recovery in a file system can be done by reverting
the affected files to the latest legitimate version. This technique
imposes two requirements: one, the file system keeps multiple
versions of files; and two, attackers cannot tamper with the
previous versions of the files. The file system also needs to
manage multiple versions of the files.

The intrusion recovery systems presented in this section and
in Section VI allow to revert unintended actions that occur in

6

a file system. To this end the works presented in this section
make the following assumptions:

• State: is a set of files and folders that are hierarchically
structured, with every object being dependent (i.e., lower
in the hierarchy) to a folder or the root of the file system;

• Interface: users interact with the file system by executing
file system operations. The following operations are ex-
pected in the following works: read, create, update, delete
and move;

• Intrusion: is an unintended file system operation that
creates, modifies or deletes a file or folder from a file
system;

• Recovery: is done by restoring the files and folders
that were modified or deleted and deleting any files and
folders that were created by the intrusion.

A. Elephant File System

The Elephant File System (EFS) [30] retains every version
of each file, allowing users to revert unwanted operations by
recovering a previous copy of the affected files. By keeping
previous versions of the files in a secure storage, a user is able
to revert any type of attack that corrupts his data.

In order to recover corrupted files, the file system has to
satisfy two requirements: first, users should be able to undo
changes to recent versions; and second, it is important to keep
a long-term history of important files.

EFS allows users to define landmarks of versions, but it also
implements an automatic mechanism to do so. This strategy
protects users against their own mistakes. The automatic
mechanism works as follows: in the short-term, every version
of the file is kept, then an automatic routine cleans up the
versions that should not be necessary for the user because
they are too similar. In other words, in a short time frame,
every version is important for the user, but the longer it passes,
the less important closer versions are to the user. For older
versions, only the most recent version of each batch of updates
should be relevant for the user. This allows the automatic
routine to propose intermediate versions to be discarded.

B. Self-Securing Storage

S4 [31] is a self-securing storage server that allows system
administrators to analyze the effects of intrusions and recover
from them by reverting files to previous versions. It uses a log-
structured object system to keep versions of the stored objects
and a journal-based structure for the versions of the metadata.

An history pool keeps previous versions of files that can
be restored through a copy forward operation that copies a
previous version to the current one. Old versions of the files are
only kept for a specific time window called detection window,
after which the old versions are garbage collected and cannot
be recovered.

The S4 system uses a client daemon that translates file
system requests to S4 requests. This allows S4 to be deployed
in an existing file system without modifying the code of the file
system. S4 provides a multiversioned object storage feature to
existing network-attached storage servers. The recorder logs
during normal execution allow the system administrator and

users to analyze and revert unintended actions. The recovery
approach is based on reverting the affected files to previous
versions, as opposed to re-executing legitimate operations.

C. An intrusion recovery plugin for file systems
In some organizations, it is complex and costly to update

or completely substitute existing systems. This can happen
because of: licensing, lack of know-how or complexity of
the infrastructure. This is a problem for system administrators
who want to be able to recover their systems from intrusions.
One solution for this problem is the Repairable File Service
(RFS) [32].

RFS adds a repair feature to an existing Network File Server
(NFS). RFS provides roll-back features that allow any file
to be reverted to previous versions and keeps track of inter-
process dependencies to determine the damage caused by an
intrusion. During normal operation of the file system, RFS
records write operations and inter-process dependencies to
a log. When undesired operations need to be undone, RFS
selectively rolls back the affected and contaminated files.

RFS provides two possible recovery approaches: forward
recovery, which works by rolling back the system state to the
most recently cleaned snapshot and selectively re-executing
legitimate operations; and backward recovery, which works by
undoing contaminated operations until the system is cleaned
using undo records which are operations that revert the file to
the previous version.

D. Intrusion recovery in cloud file storage
Cloud storage offers an API that is accessible through the

Internet that allows applications to access it the same way they
access network file systems. Cloud storage services or systems
are managed by a CSP, meaning that the file owners do not
have access to modify the file system. This makes the process
of recovering from intrusion complex, as it is not possible to
implement, for example RFS.

RockFS [33] is a recovery system for cloud-backed file
systems that allows to recover files that were affected by
intrusions. RockFS assumes a system architecture in which
the cloud file system can be composed of a single cloud or a
cloud-of-clouds [34]. This second model consists in a cloud
service that is supported by a set of clouds.

RockFS relies on file versions provided by the backend
cloud storage service(s). It protects data confidentiality before
the CSP using a combination of secret sharing [35] and erasure
codes [36] to split the logs in several cloud providers. RockFS
also needs to deal with the fact that the attacker may try to
tamper with the logs (e.g., removing the trace of his attack)
and, that if that happens, they should not be used to recover
the file system. To do so, RockFS uses a mechanism called
Forward Secure stream integrity [37] that links every entry of
the log using secret keys and hashing, making it possible to
detect when a single entry of the log was deleted or modified.

VI. INTRUSION RECOVERY IN FILE SYSTEMS WITH
SELECTIVE RE-EXECUTION

In the previous section we presented works that explore mul-
tiversioned file systems. These systems allow administrators to

7

recover from intrusions by reverting affected files to previous
versions. Another technique that can be used in file systems
consists in adopting the three R’s approach, i.e., reverting the
state or affected files to a previous point in time, repair the
system and replay every legitimate operation. The following
works perform intrusion recovery in file systems using this
approach.

A. Tracking intrusions using taint techniques

One technique used to track the effects of intrusions in the
system is by marking the affected files and propagating the
mark throughout every file that shares a relation with it. This
technique is called tainting, and the marked files are called
tainted. In a file system, in order to apply the taint tracking
technique, it is necessary to monitor files and processes and
keep track of the operations in which they interact. One system
that does this is Taser [16].

Taser uses taint tracking techniques to mark processes and
files when they are read and written, creating a dependency
graph. This allows to isolate intrusion operations from legiti-
mate ones and keep the effects of legitimate users’ operations
in the system even if they depend on tainted operations.

Taser allows to perform recovery with two different algo-
rithms: simple redo that executes the legitimate operations on
top of the snapshot of the entire file system; and a selective
redo that first checks if the non-tainted objects are legitimate;
if so, it only reverts the affect files to the version present in
the snapshot and only re-executes the legitimate operations
that affect these objects.

B. Quarantining untrusted files

While Taser is capable of tracking the effects of intrusions
and recovering from them, it does so at the cost of keeping logs
of every executed operation in the system. This can be costly
in many systems and given that only some processes may be
responsible for intrusions, keeping logs of every operation is
a waste of space. A different approach would be to keep logs
only of the operations that can be performed by an attacker.
One way to achieve this it by having isolation environments
for suspect files and processes. This way the logger would only
monitor operations from the suspect and isolated, environment.
One system that adopts this approach is Solitude [38].

Solitude is an application-level isolation and recovery sys-
tem that, besides simplifying the intrusion recovery process,
also limits the effects of attacks by using a restricted privi-
lege isolation environment to run untrusted applications. This
strategy is different from common file systems that share the
same namespace between every user and process in the system.
Instead, Solitude uses its own file system, called IFS, that uses
a copy-on-write technique to provide an isolation environment
for each untrusted application. If a user detects that an ap-
plication is malicious, he can discard the application’s IFS
environment without losing valid legitimate data from other
users and applications in the file system.

Recovery starts when the user selects the file from the
IFS and the synchronization commit as a starting point for
recovery. Then, the recovery process generates the tainted

dependency graph. The affected files are manually verified to
ensure the correctness of recovery. Then the files are rolled
back to an untainted state, which is marked in a snapshot right
before the commit of IFS. Finally, every operation that affected
the files is re-executed until the before moment commit,
marked by the user as the intrusion, was done.

C. Configurable recovery algorithms

Back to the Future allows malware removal and, as a result,
repairs the system by undoing the effects of the malware while
keeping every valid effect caused by legitimate operations
intact. The framework uses sandbox environments to bound
the scope of untrusted processes in the system. These untrusted
processes are defined by the user.

Back to the Future provides two approaches to recover from
intrusions: a basic approach and a refined approach. The basic
approach works by monitoring every operation in the system
and, after an intrusion is detected, undoing all the logged write
operations of every process (trusted and untrusted) and redoing
all the logged operations for the trusted processes. The refined
approach avoids undoing and redoing write operations that do
not need to be recovered. This approach is motivated by the
fact that it is only be necessary to undo untrusted operations
when they occur after trusted operations since, according to
the authors, trusted process legitimates the file by writing on
it.

D. Intrusion recovery using selective re-execution

Retro [39] is an intrusion recovery system for desktops and
servers. During normal operation, Retro logs user’s operations
in an action history graph, which describes in detail the
system execution of operations triggered by users. When a
system administrator detects an intrusion he selects the faulty
operation (or operations) issued by the attacker, for example, a
TCP connection or an HTTP request, and starts recovery. Retro
performs recovery using selective re-execution, in other words,
it rolls back the state of the system to a point in time prior to
the intrusion, then it re-executes every valid operation in the
log. The system administrator is responsible for dealing with
any conflict that arises during recovery. This way the effects
of the intrusion are wiped out of the system while every valid
state modification remains intact.

After rolling back the system state to a point in time
previous to the intrusion, the recovery starts. First, malicious
operations in the action history graph are replaced by benign
ones. For example, a faulty operations that consists in ap-
pending data to an existing file then is replaced with a similar
operation that appends zero bytes to that file. Second, Retro
re-executes the operations in the action history graph, ignoring
those that maintain the same state after execution.

VII. INTRUSION RECOVERY IN WEB AND CLOUD

Most web applications (web apps) store their state in
databases and cloud storage offerings. It is common to find
web apps that use a single database and the file system to
store their state. For example, most Wordpress [40] sites have

8

an architecture similar to the one presented in Figure 3, in
which the code of the application runs in an Application Server
and the state is distributed between the database and the file
system.

Intrusion recovery systems that are designed for web appli-
cations allow to revert unintended actions that occur in the
application level. To this end, the works presented in this
section make the following assumptions:

• State: is in a database in the form of records, documents
or a different data structure. It can also be stored in a file
system in the form of files and folders;

• Interface: users interact with by executing HTTP re-
quests which may cause modifications to the state;

• Intrusion: is an unintended HTTP request that was
issued by an attacker or by a legitimate user that caused
modifications to the state;

• Recovery: reverts the state of the application that was
corrupted which includes database and file system;

A. Intrusion recovery through transaction support

Database Management System (DBMS) allow to store the
state of applications in a structured form. Applications interact
with DBMS by executing transactions using a Structured
Query Language (SQL). The intrusion recovery systems pre-
sented in this section were designed to analyse the semantic
of the DBMS in order to revert the effects of intrusions.

1) Recovery from malicious transactions: Ammann et
al. [19] proposed an intrusion recovery framework designed
to be built on top of an off-the-shelf Database Management
System (DBMS).

Dependencies between transactions are taken into account
by the recovery algorithm, which marks every transaction with
some dependencies to a bad transaction also as bad. These
dependency rules help the recovery process in two ways: first,
it does not require a good transaction that does not depend on
any bad transaction to be undone and re-executed; and second,
only the effects caused, directly or indirectly, by the intrusion
are undone.

The recovery algorithm works by analyzing the logs for-
ward, from the intrusion point, and marking every suspicious
transaction. Then, the algorithm does backwards to undo every

07/01/2022, 10:31

Page 1 of 1about:blank

Application Server

SQL / NoSQL
Database

File System

queries

assets

files

records

Fig. 3: Example of a Web application with a Database and a
Filesystem.

marked transaction. The recovery algorithm can be executed
in a coldstart, which requires the database to be halted during
recovery, or with a warmstart, which repairs the database
concurrently with the user’s transactions. For the warmstart
approach every transaction is submitted to a scheduler which
prioritizes the undo transactions over the user’s operations.

2) Data recovery for web applications: Akkuş et al. [41]
present a recovery system for web apps that use databases to
store their state. It was designed for web apps that follow a
layered architecture, i.e., presentation, logic and state.The sys-
tem is composed of a proxy that logs application-level requests
and two components that analyze data before recovery.

When an administrator selects one or more initial requests
that cause the intrusion, the analyzer traces the dependency
graph. By using a taint-based interpreter, the system is ca-
pable of associating the application-level requests with the
corresponding database queries.At the user level, the system
collects information available in the session cookies, which
allows the administrator to identify which user caused which
actions.

Recovery is done by executing compensating operations
to the application state. The compensating transactions are
calculated by computing a reverse query that when executed,
reverts the database row to the previous value. These compen-
sating transactions are executed in reverse order in the database
undoing, version by version, every undesired update.

3) NoSQL Undo: The previous works [19], [41] allow to
recover web applications that use SQL databases (DBs) to
store their state. This type of DB is used by a considerable
share of web applications [42], however, NoSQL databases are
an alternative to SQL databases. NoSQL DBs provide a dif-
ferent interface and a different data model. NoSQL Undo [43]
was designed to be used without requiring modifications to
the source code of the database or application using it. It
leverages the logging mechanism of the database to perform
recovery after the fact, i.e., it is not necessary to setup NoSQL
Undo before running the application instead, when a system
administrator finds a vulnerability he can install NoSQL undo
to revert the affected documents.

NoSQL undo provides two recovery mechanisms: full re-
covery and focused recovery. Full recovery works by reverting
the entire database to the most recent snapshot prior to the
intrusion, then NoSQL Undo reconstructs the entire database
without re-executing the operations caused by the intrusion.
This method requires the entire database to be offline during
recovery. The focused recovery mechanism works by recon-
structing the documents affected by the intrusion, allowing the
database to be online during recovery.

4) Warp: The classic system model of web applications
assumes the existence of a database in which the entire state
of the application is stored. Data in the database is produced
by statements that are generated by an application server that
receives HTTP requests. In other words, attackers perform
malicious HTTP requests that will result in one or more
malicious database queries that need to be undone. One system
that adopts this model is Warp [44].

Recovery in Warp starts when the administrator applies a
security patch to the application’s code. Then Warp rolls back

9

the system to a checkpoint prior to the time the administrator
wants to apply the patch and replays every action that hap-
pened after the checkpoint. Warp reuses two components from
Retro [39]: the action log and the repair controller. Besides
these components, it also includes a browser with an extension,
a versioning database, an HTTP log, an application runtime
and a manager that is attached to the repair controller.

Warp uses a time travel database that allows re-executing
only a portion of the total number of database queries in the
log, and it allows recovery while the application is online
serving users. For recovery Warp does not revert an entire
table, instead it is only reverts the affected rows. The time
travel database stores every version of every row in the
database. This allows to rollback the affected rows and re-
execute queries in the same version as the original execution.

B. Recovery in microservices applications

The previous works presented in this section assume a
system model in which the web application is running in an
isolated environment. Although this may be true for many
web applications, in some cases this system model does not
apply. Some web applications need to interact with external
web services during their execution. In this kind of system,
intrusions may propagate through several services requiring
the recovery process to repair every affected service.

1) AIRE: Aire is one system that assumes this system
model in which the application may be distributed to ex-
ternal web services [45]. Aire was designed for applications
composed of interconnected web services. Aire runs in each
web service gathering information about the received and
sent requests in order to track dependencies across services.
Aire performs recovery locally by rolling back the state and
selective re-executing every valid operation. Once it finishes, it
propagates the recovery actions to the dependent web services.
Aire performs the repair in a distributed manner, as opposed to
having a central coordinator managing the web services. This
is because of the distributed nature of this kind of application
and the fact that during recovery some services may be down,
which would delay a centralized recovery process. Instead,
each service executes recovery immediately and queues the
recovery messages to be propagated when the target services
are online.

2) 𝜇Verum: 𝜇Verum is an intrusion recovery service de-
signed for microservices applications [46]. It recovers the af-
fected services by executing compensating operations. 𝜇Verum
can be deployed progressively, meaning that developers can
start with a subset of microservices and gradually extend it
to the entire application (if necessary). Recovery is guided
by a dependency graph that traces the user’s request from
the moment it reaches the application, passes through every
microservice it invokes until it leaves the application. Recovery
is done while the application is running, not requiring it to be
offline during this process.

One characteristic of 𝜇Verum is that it requires the de-
velopers to write the compensating transactions that will be
executed during recovery. This allows the recover process to be
more suited for particular instances, e.g., when some specific

10/12/2021, 17:14 cloud-arch

https://whimsical.com/cloud-arch-VpHR9y3jrVHMKPsoigTUZK 1/1

PaaS

Load Balancer

Container

User

Application

User

Application

User

Application
PaaS

APIs

Container

PaaS

APIs

User

Application

User

Application

Container

PaaS

APIs

User

Application

Database Access and Replication Middleware

DBMS DBMS DBMS DBMS DBMS

SaaS

Application Application Application Application Application

IaaS

Storage Services Services Services Infrastructure Services

Infrastructure Manager

Virtualization Layer

Operating System

Virtualization Layer

Virtualization Layer

Operating System

Virtualization Layer

Virtualization Layer

Operating System

Virtualization Layer

Virtualization Layer

Operating System

Virtualization Layer

Fig. 4: Simplified architecture of a cloud showing the three
models: SaaS, PaaS, IaaS.

operations need to be executed during recovery like notifying
the user that he may experience some inconsistencies in the
application.

C. Recovering web applications in the cloud

The cloud computing model facilitates how administrators
deploy their applications, but also limits the functionality
of the application servers. There are different flavours of
the cloud that aim to provide services for different ends.
In [47] the authors present three cloud computing models:
the Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Figure 4 presents
an example of the architecture of a cloud composed of these
three computing models. In the figure, the computing models
are stacked, i.e., the IaaS provides virtual machines (VMs) for
the PaaS which, in turn, provides an execution environment
for applications that are provided in a SaaS mode.

1) Shuttle: In the Platform-as-a-Service model, the system
administrator has access to an execution environment with
automatic scaling capabilities. One limmitation is that the
administrator cannot modify the execution environment. This
complicates the process of setting up an intrusion recovery
mechanism, since most of them require heavy and system
specific modifications in order to work. An intrusion recovery
system that was build with this limitation in mind is Shut-
tle [48].

Shuttle works in two modes: normal operation and re-
covery. In normal operation, the application serves the users
while Shuttle collects operation logs and performs periodic
checkpoints of the application’s state. These checkpoints are

10

07/01/2022, 10:36

Page 1 of 1about:blank

Application
Server
Application

Server
Application

Server

Queries

NoSQL
Queries FS

Operations Files HTTP
Requests

Files

API
Requests

SQL
Database

NoSQL
Database

File
System

Cloud
Storage

External
Webservice

Fig. 5: Example system architecture of a web application with
multiple data repositories.

created without interrupting the application. To do so, Shuttle
employs a copy-on-write strategy in which an object is only
replicated when it is being written. In recovery, Shuttle creates
a branch of the application loaded with a snapshot of the
application created before the intrusion. It then re-executes
the valid requests in this branch while the application still
continues to serve users.

To recover, Shuttle allows the administrator to select from
full replay and selective replay. Full replay requires every
legitimate request in the log that occurred after the last backup
to be re-executed. In selective replay Shuttle only re-executes
the legitimate requests that affect the data that was modified
by the attack.

2) Rectify: Shuttle requires some modifications to the
source code of the application in order to recover from intru-
sions. In some scenarios, this is not possible, e.g., when the
web application was developed by a third party. An intrusion
recovery system that solves this problem is Rectify [49]. Like
Shuttle, Rectify was designed to recover web applications
that are deployed in a PaaS. Rectify uses machine learning
models to correlate the HTTP requests with the corresponding
database statements.

Rectify works in three distinct phases: learning phase,
normal phase and recovery phase. In the learning phase
Rectify executes endpoints of the web application and trains
the machine learning models. In the normal phase Rectify
collects every HTTP request and database statement that gets
executed by the application and logs them in two distinct
logs. In the recovery phase Rectify uses the machine learning
models to find the database statements that were caused by the
malicious request and executes the compensating operations to
undo the damage caused by the attack.

3) Sanare: Sanare was designed to recover web applica-
tions that use more than one repository to keep their state.
Figure 5 represents a web application that uses several data
repositories to keep its state: one or more databases, a file
system, cloud storage, and external web services.

Sanare logs the operations that are executed in the different
data repositories with agents that understand the semantics of
the data repository to which they are attached. These agents
filter and log every operation that gets executed in the log.

Matchare, the algorithm that is responsible for finding the
operations that are caused by an HTTP request, uses several

Deep Convolutional Neural Networks [50], to find matches
between HTTP requests and database statements, file system
operations, and web services requests. Matchare needs to train
one model for each data repository. This is required because
each data repository has its own semantic and features.

4) MIRES: The previous works presented in this section
assume that the application is based on the Platform-as-a-
Service model. This requires application developers to setup
the database and servers hosting the application. There is
an alternative computing model called Backend-as-as-Service
(BaaS) [51] that allows developers to access several backend
services in a cloud, such as user authentication, database,
push notifications, and storage. This gives the benefits of auto
scaling to cope with unpredictable demands and requiring less
development effort. For this computing model, MIRES [52] is
an intrusion recovery system designed for applications that use
a BaaS to store the state.

MIRES provides two different types of recovery: admin-
istrator recovery, which allows a system administrator to
undo any transaction in the system; and user recovery, that
allows a user to revert an operation he has executed in the
application. During recovery, MIRES locks the database to any
write operation, only allowing read operations. The recovery
process starts by finding dependencies, i.e., every operation
that reads data that is created by a malicious operation. Once
the dependencies are collected, MIRES unlocks the database
and reconstructs the tampered documents. It does this by
executing a focused recovery algorithm, similar to the one
used in NoSQL Undo [43]. During recovery, the users can
interact with the application except access the documents that
are being reconstructed.

VIII. EXPERIMENTAL RESULTS

The intrusion recovery systems discussed in this paper are
evaluated by executing a workload in a prototype. There are
some metrics that are commonly collected in the different
systems. In our research, we noticed that, for almost every
intrusion recovery system, the authors calculate three metrics:
a) performance overhead, b) Mean Time to Recover (MTTR),
and c) storage overhead. Using these metrics, our aim is
to compare the systems discussed and answer the research
question RQ5 presented in Section II-A. In the following
sections we present the experimental results of the works
discussed in this paper group using these three metrics.

A. Performance overhead

The performance overhead of an intrusion recovery system
consists of the downgrade, performance-wise, of intercepting
and/or logging the operations for future recovery purposes. In
Table II we present a collection of some performance values
we collected from the papers discussed. The overhead was
calculated as a percentage range relative to the decreased
performance (T) or additional latency (L). We were able to
collect these values for every paper discussed, except for [19]
which did not include these numbers in their experimental
evaluation. Also, for [15] the authors did not include the
normal execution time for comparison, making it impossible

11

to compute a percentage. For the remaining systems, there is
a performance overhead that varies from 0% (negligible) to
500%. This disparity in these values is related to the target
systems for which these intrusion recovery mechanisms are
aimed. For example, the largest overhead is in the file system
group because the intrusion recovery mechanisms interfere
with the file system to append the required meta-data for
future recovery. Some systems, such as [16], [27] provide
an overhead close to 0% due to some techniques, such as
parallel logging, that allow the application to serve the clients
concurrently with the logging mechanism.

TABLE II: Performance overhead of the different recovery
approaches. The overhead is in percentage range and it refers
to the decreased performance (T) or additional latency (L) for
each request.

System Target system Overhead
Operator Undo [15] Email systems 62ms - 484ms (L)
Backtracking [27] VMs 0% - 9% (L)
Bezoar [28] VMs 40%(T)
SHELF [29] VMs 7.5% - 65% (L) / 12.4% - 21.4% (T)
EFS [30] File systems 1,5% - 24% (L)
S4 [31] File systems 1% - 3% (T)
RFS [32] File systems 4% - 5% (T)
Taser [16] File systems 0.6% - 7.4% (T)
Back to the Future [53] File systems 12% - 52%(L)
Solitude [38] File systems 1% - 500% (L)
Retro [39] File systems 53% - 227%(T)
RockFS [33] Cloud FSs 11% - 26% (L)
Amman et al. [19] DBs -
NoSQL Undo [43] NoSQL DBs 6%-8% / 20%30% (T)
Akkus et al. [41] Web apps 3.99% / 4.12% (T)
Warp [44] Web apps 24% - 27% (T)
Aire [45] Web apps 18,5% - 30,35% (T)
Shuttle [48] Web apps 13% - 16% (T)
Sanare [54] Web apps 12% - 17% (T)
Rectify [49] Web apps 14% - 18% (T)
MIRES [52] BaaS 15% - 23% (L)

B. Mean Time to Recover

The Mean Time to Recover (MTTR) is the average time it
takes to recover a set of one or more operations. In Table III we
present the collected MTTR values from the papers discussed.
As we can see in the table, this metric is not as broadly
calculated as the performance overhead. This is explained
by the fact that the recovery process differs for the different
target systems. By analyzing the values in the table it is clear
that it is not possible to compare the MTTR between the
different recovery mechanisms. Some papers calculate this
metric taking into account the number of operations that are
being reverted, while others calculate the time it takes to
revert a set of files. Another characteristic that hampers the
comparison is that each system is evaluated with a different
scale. For example, some systems [16], [32] perform this
experiment in a time frame (one day of system logs) while
other systems [39], [43]–[45], [48], [49], [52], [54] perform
this experiment with a set of operations. In this latter group
we calculated the MTTR for a single operations (last column
of the table); this allows for some comparison between the
different system (although not a fair comparison since there
are several variables to take into account such as, computing

power, cold start delay that affects the calculation and other
aspects related with the target systems).

TABLE III: MTTR of the different recovery approaches.
System Target system MTTR Batch MTTR

(batch) size (unit)
Operator Undo [15] Email systems 590s (rewind) 10,000 (users) -
Backtracking [27] VMs - - -
Bezoar [28] VMs - - -
SHELF [29] VMs - - -
EFS [30] File systems - - -
S4 [31] File systems - - -
RFS [32] File systems 9m - 20m 1 day -
Taser [16] File systems 20s - 330s 1 day -
Back to the Future [53] File systems - - -
Solitude [38] File systems - - -
Retro [39] File systems 4.7s 10,000 (ops) 0.3s
RockFS [33] Cloud FSs 40s 100 (files) 2s
Amman et al. [19] DBs - - -
NoSQL Undo [43] NoSQL DBs 150s - 200s 10,000 (ops) 1s / 700s
Akkus et al. [41] Web apps - - -
Warp [44] Web apps 3,538s 2,093 1.69s
Aire [45] Web apps 84.06s 5,444 16ms
Shuttle [48] Web apps 544s - 1,717s 1,000,000 0.5ms - 1.7ms
Sanare [54] Web apps 90 - 340s 10 - 60 1.8s - 6s
Rectify [49] Web apps 960s 1,000 12s
MIRES [52] BaaS 55s 1,000 1s

IX. RELATED APPROACHES

This section mentions two different areas of research that
are, in some sense, related to intrusion recovery.

A related research line is often designated reversible com-
puting [55]–[58]. This area focuses on the study of invert-
ible primitives and physical reversibility. Some examples of
applications in this field of study involve reversible logic
circuits, reversible Turing machines, and reversible cellular
automata. Although this field explores the reversibility of
computing operations, such mechanisms are not suitable for
the computing models approached in this survey, i.e., file
systems, databases, web applications, and the cloud. These
works do not aim to revert the corrupt state; instead, they focus
on generating reversible operations. Given this difference,
these works are not discussed in this survey.

Selective re-execution reverts a system state to a previous
point in time and reconstructs it by executing the legitimate

TABLE IV: Storage overhead of saving the log entries for the
executed operations and relevant metadata for recovery in the
different approaches

System Target Overhead Batch Overhead
system (batch) size (unit)

Operator Undo [15] Email systems 206.5MB 10,000 users -
30 minutes -

Backtracking [27] VMs 0.002GB - 1.2GB 1 day -
Bezoar [27] VMs - - -
SHELF [29] VMs 82.7MB 133,308 -

541MB 1,344,712 events -
EFS [30] File systems - - -
S4 [31] File systems 10GB 50 - 470 days -
RFS [32] File systems 260MB 1,863,971 reqs -
Taser [16] File systems 1.9GB - 2.3GB 1 day -
Back to the Future [53] File systems 6KB - 12552KB 1 file
Solitude [38] File systems 30,8GB / 26.1GB 10 / 14 days -
Retro [39] File systems 100GB - 150GB 1 day -
RockFS [33] Cloud FSs 100% 1 file 100%
Amman et al. [19] DBs - - -
NoSQL Undo [43] NoSQL DBs 100MB - 120MB 6,000 ops 16.6KB - 20KB
Akkus et al. [41] Web apps - - 4KB
Warp [44] Web apps - 1 11.05KB
Aire [45] Web apps - 1 5.52KB - 9,24KB
Shuttle [48] Web apps 10,684MB 1,000,000 reqs 106,84KB
Sanare [54] Web apps 17.38GB - 20.24 1,000,000 reqs 17.38KB - 20.24KB
Rectify [49] Web apps 5.13GB - 8.20GB 1,000,000 reqs 5.13KB - 8.20KB
MIRES [52] BaaS 0.11GB - 0.41GB 1,000,000 ops -

12

operations. This approach resembles a line of work known
by operational transformation (OT) [59]–[62]. This technique
aims to maintain data consistency in collaborative applications,
allowing several users to simultaneously work on common
data records using distributed computers connected through
the network. This technique allows, among other operations,
to update, delete, lock edits, and undo operations. The undo
operation has a similar goal to the one used to recover from
intrusions, namely to revert the effects of a previous operation.
However, when intrusions occur, they may propagate their
effects to different data records, requiring a more delicate undo
operation capable of tracking and reverting every data record.
Again, this is related to the topic of the survey, but different.

X. CONCLUSION

In this article we present a literature survey on intrusion
recovery solutions for services and applications that are able
to preserve the legitimate state changes done since the last
backup/checkpoint. This notion was introduced circa 2000
in the context of the three R’s approach [22] and Operator
Undo [15]. We present the two decades of work that followed,
considering the original approach, virtualization, storage sys-
tems, and web applications.

Table V summarizes the recovery strategies adopted by each
recovery system. The intrusion recovery mechanisms appear in
the first column, the target system for the recovery mechanism
is in the second column, the third, fourth and fifth columns
correspond to the adopted recovery strategy employed by the
mechanism. The sixth column presents how the mechanism
deals with external inconsistencies observed by the user, the
seventh column indicates if the mechanism is capable of
recovering the system without requiring it to be offline, and,
finally, the last column indicates if the intrusion recovery
system is capable of starting a recovery process automatically
when it detects an intrusion.

REFERENCES

[1] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan
2004.

[2] B. Cheswick, “The design of a secure internet gateway,” in USENIX
Summer Conference Proceedings, 1990.

[3] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, vol. 37, no. 6, pp. 62–67, 2004.

[4] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE Communication Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[5] M. Gasser, Building a Secure Computer System. Van Nostrand
Reinhold, 1988.

[6] D. E. Denning and P. G. Neumann, “Requirements and model for
IDES - a real-time intrusion detection expert system,” Computer Science
Laboratory, SRI International, Menlo Park, CA, Tech. Rep., 1985.

[7] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion
detection systems,” Computer Networks, vol. 31, no. 8, pp. 805–822,
Apr. 1999.

[8] D. R. Miller, S. Harris, A. A. Harper, S. VanDyke, and C. Blask,
“Security information and event management (SIEM) implementation
(Network Pro Library),” 2010.

[9] “OWASP Top 10 2021,” https://owasp.org/Top10/, 2021.
[10] S. Mohurle and M. Patil, “A brief study of Wannacry threat: Ransomware

attack 2017,” in International Journal of Advanced Research in Com-
puter Science, vol. 8, no. 5, 2017.

[11] Varonis. (Nov. 2018) 60 Must-Know Cybersecurity Statistics for
2018. https://www.varonis.com/blog/cybersecurity-statistics/. Accessed:
Jul. 27, 2021.

[12] Info Security. (2018) 2017: Worst Year Ever for Data Loss
and Breaches. https://www.infosecurity-magazine.com/news/
2017-worst-year-ever-for-data-loss/.

[13] P. Cichonski, T. Millar, T. Grance, K. Scarfone et al., “Computer security
incident handling guide,” NIST Special Publication, vol. 800, no. 61, pp.
1–147, 2012.

[14] M. J. West-Brown, D. Stikvoort, K.-P. Kossakowski, G. Killcrece, and
R. Ruefle, “Handbook for computer security incident response teams
(csirts),” Carnegie Mellon Software Engineering Institute, Tech. Rep.,
2003.

[15] A. Brown and D. Patterson, “Undo for operators: Building an undoable
e-mail store,” in Proceedings of the USENIX Annual Technical Confer-
ence, 2003, pp. 1–14.

[16] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The Taser intrusion
recovery system,” in Proceedings of the 20th ACM Symposium on
Operating Systems Principles, vol. 39 (5), 2005, pp. 163–176.

[17] H. F. Korth, E. Levy, and A. Silberschatz, “A formal approach to
recovery by compensating transactions,” in Proceedings of the 16th
International Conference on Very Large Data Bases, 1990, pp. 95–106.

[18] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-Wesley Pub. Co. Inc.,
Reading, MA, 1987.

[19] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious transac-
tions,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 5, pp. 1167–1185, 2002.

[20] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A sur-
vey of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[21] B. Kitchenham, “Procedure for undertaking systematic reviews,” Com-
puter Science Depart-ment, Keele University (TRISE-0401) and National
ICT Australia Ltd (0400011T. 1), Joint Technical Report, vol. 33, 2004.

[22] A. B. Brown and D. A. Patterson, “Rewind, repair, replay: three r’s
to dependability,” in Proceedings of the 10th ACM SIGOPS European
Workshop, 2002, pp. 70–77.

[23] A. Brown and A. A. Patterson, “To err is human,” in Proceedings of the
First Workshop on Evaluating and Architecting System Dependability
(EASY’01), 2001.

[24] P. Enriquez, A. Brown, and D. A. Patterson, “Lessons from the PSTN
for dependable computing,” in Workshop on Self-Healing, Adaptive and
Self-Managed Systems, 2002.

[25] A. Oppenheimer, A. Ganapathi, and A. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and
Systems - Volume 4, 2003.

[26] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE: a
game-theoretic intrusion response and recovery engine,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 395–406,
2013.

[27] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the 19th ACM symposium on Operating System Principles, 2003, pp.
223–236.

[28] D. Oliveira, J. R. Crandall, G. Wassermann, S. Ye, S. F. Wu, Z. Su,
and F. T. Chong, “Bezoar: Automated virtual machine-based full-system
recovery from control-flow hijacking attacks,” in Proceedings of the
IEEE Network Operations and Management Symposium, 2008, pp. 121–
128.

[29] X. Xiong, X. Jia, and P. Liu, “Shelf: Preserving business continuity
and availability in an intrusion recovery system,” in Proceedings of the
Annual Computer Security Applications Conference, 2009, pp. 484–493.

[30] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton,
and J. Ofir, “Deciding when to forget in the Elephant file system,”
in Proceedings of ACM SIGOPS Symposium on Operating Systems
Principles, 1999, pp. 110–123.

[31] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and
G. R. Ganger, “Self-securing storage: protecting data in compromised
system,” in OSDI’00: Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation, vol. 4. USENIX, 2000.

[32] N. Zhu and T.-c. Chiueh, “Design, implementation, and evaluation of
repairable file service,” in Proceedings of the International Conference
on Dependable Systems and Networks, 2003.

[33] D. R. Matos, M. L. Pardal, and M. Correia, “RockFS: Cloud-backed
file system resilience to client-side,” in Proceedings of the 2018
ACM/IFIP/USENIX International Middleware Conference, 2018, p.
107–119.

https://owasp.org/Top10/
https://www.varonis.com/blog/cybersecurity-statistics/
https://www.infosecurity-magazine.com/news/2017-worst-year-ever-for-data-loss/
https://www.infosecurity-magazine.com/news/2017-worst-year-ever-for-data-loss/

13

TABLE V: Recovery strategies for each system.

Recovery System Target Selective Compensating Multiver- External inconsistencies Online Real-Time
re-execution operations sioned recovery Recovery

Operator Undo [15] Email systems X Compensating operations No No
Backtracking [27] VMs X Not mentioned No No
Bezoar [28] VMs X Not mentioned No Yes
SHELF [29] VMs X Not mentioned Yes Yes
EFS [30]. File systems X Not mentioned Yes No
S4 [31] File systems X Not mentioned Yes No
RFS [32] File systems X Not mentioned Yes No
Taser [16] File systems X Compensating operations No Yes
Back to the Future [53] File systems X Not mentioned No Yes
Solitude [38] File systems X Compensating operations No No
Retro [39] File systems X Compensating operations No No
RockFS [33] Cloud FSs X X X Compensating operations Yes No
Amman et al. [19] DBs X Not mentioned Yes No
NoSQL Undo [43] NoSQL DBs X X Compensating operations Yes Yes
Akkuş et al. [41] Web apps X Not mentioned No No
Warp [44] Web apps X Compensating operations Yes No
AIRE [45] Web apps X Parallel recovery (like Git) Yes No
𝜇Verum [46] Web apps X Compensating operations Yes No
Shuttle [48] Web apps X X Compensating operations Yes No
Sanare [54] Web apps X X X Compensating operations Yes No
Rectify [49] Web apps X X Compensating operations Yes No
MIRES [52] BaaS X X Compensating operations Yes No

[34] A. N. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Dep-
Sky: dependable and secure storage in a cloud-of-clouds,” EuroSys’11
Proceedings of the 6th Conference on Computer Systems, pp. 31–46,
2011.

[35] H. Krawczyk, “Secret sharing made short,” Proceedings of the 13th
International Cryptology Conference – CRYPTO’93, pp. 136–146, 1993.

[36] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
C/C++ facilitating erasure coding for storage applications-version 1.2,”
University of Tennessee, Tech. Rep. CS-08-627, vol. 23, 2008.

[37] D. Ma and G. Tsudik, “A new approach to secure logging,” ACM
Transactions on Storage, vol. 5, no. 1, pp. 1–21, 2009.

[38] S. Jain, F. Shafique, V. Djeric, and A. Goel, “Application-level iso-
lation and recovery with solitude,” in Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems, 2008, pp.
95–107.

[39] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion re-
covery using selective re-execution,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, 2010,
pp. 89–104.

[40] A. Brazell, WordPress Bible. John Wiley and Sons, 2011.
[41] İ. E. Akkuş and A. Goel, “Data recovery for web applications,” in Pro-

ceedings of the 40th IEEE/IFIP International Conference on Dependable
Systems and Networks, 2010, pp. 81–90.

[42] J. Lieponienė, “Recent trends in database technology,” Baltic Journal of
Modern Computing, vol. 8, no. 4, pp. 551–559, 2020.

[43] D. R. Matos and M. Correia, “NoSQL Undo: Recovering NoSQL
databases by undoing operations,” in Proceedings of the 15th IEEE
International Symposium on Network Computing and Applications,
2016.

[44] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion
recovery for database-backed web applications,” in Proceedings of the
23rd ACM Symposium on Operating Systems Principles, 2011, pp. 101–
114.

[45] R. Chandra, T. Kim, and N. Zeldovich, “Asynchronous intrusion recov-
ery for interconnected web services,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles, 2013, pp. 213–227.

[46] D. R. Matos, M. L. Pardal, A. R. Silva, and M. Correia, “𝜇verum:
Intrusion recovery for microservice applications,” IEEE Access, 2023.

[47] J. Geelan et al., “Twenty-one experts define cloud computing,” Cloud
Computing Journal, vol. 4, pp. 1–5, 2009.

[48] D. Nascimento and M. Correia, “Shuttle: Intrusion recovery for PaaS,” in
Proceedings of the 35th IEEE International Conference on Distributed
Computing Systems, 2015, pp. 653–663.

[49] D. R. Matos, M. L. Pardal, and M. Correia, “Rectify: Black-box
intrusion recovery in PaaS clouds,” in Proceedings of the 2017

ACM/IFIP/USENIX International Middleware Conference, 2017, p.
209–221.

[50] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 609–616.

[51] K. Lane, “Overview of the Backend as a Service (BaaS) space White
Paper,” in API Evangelist, 2015.

[52] D. Vaz, D. Matos, M. Pardal, and M. Correia, “MIRES: Intrusion recov-
ery for applications based on backend-as-a-service,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2022.

[53] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su, “Back to the
future: A framework for automatic malware removal and system repair,”
in Proceedings of the 22nd Annual Computer Security Applications
Conference, 2006, pp. 257–268.

[54] D. Matos, M. Pardal, and M. Correia, “Sanare: Pluggable intrusion
recovery for web applications,” IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2021.

[55] T. Toffoli, “Reversible computing,” in International Colloquium on
Automata, Languages, and Programming. Springer, 1980, pp. 632–
644.

[56] M. P. Frank, “Introduction to reversible computing: motivation, progress,
and challenges,” in Proceedings of the 2nd ACM Conference on Com-
puting Frontiers, 2005, pp. 385–390.

[57] K. Morita, “Reversible computing and cellular automata—a survey,”
Theoretical Computer Science, vol. 395, no. 1, pp. 101–131, 2008.

[58] A. De Vos, Reversible computing: fundamentals, quantum computing,
and applications. John Wiley & Sons, 2011.

[59] C. Sun and C. Ellis, “Operational transformation in real-time group
editors: issues, algorithms, and achievements,” in Proceedings of the
ACM Conference on Computer Supported Cooperative Work, 1998, pp.
59–68.

[60] D. Sun, A. Xia, C. Sun, and D. Chen, “Operational transformation for
collaborative word processing,” in Proceedings of the ACM Conference
on Computer Supported Cooperative Work, 2004, pp. 437–446.

[61] A. H. Davis, C. Sun, and J. Lu, “Generalizing operational transformation
to the standard general markup language,” in Proceedings of the 2002
ACM Conference on Computer Supported Cooperative Work, 2002, pp.
58–67.

[62] D. Sun and C. Sun, “Context-based operational transformation in dis-
tributed collaborative editing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 20, no. 10, pp. 1454–1470, 2009.

	Introduction
	Security mechanisms
	Intrusion Recovery

	Methodology
	Research questions
	Research process
	Data collection

	Recovery in generic applications
	The three R's approach
	An implementation of the three R's approach
	The Response and Recovery Engine

	Intrusion Recovery in Virtual Machines
	Tracking intrusions through the operating system
	BackTracker
	Bezoar
	Online recovery with quarantined objects

	Intrusion Recovery in File Systems
	Elephant File System
	Self-Securing Storage
	An intrusion recovery plugin for file systems
	Intrusion recovery in cloud file storage

	Intrusion Recovery in File Systems with Selective Re-execution
	Tracking intrusions using taint techniques
	Quarantining untrusted files
	Configurable recovery algorithms
	Intrusion recovery using selective re-execution

	Intrusion Recovery in Web and cloud
	Intrusion recovery through transaction support
	Recovery from malicious transactions
	Data recovery for web applications
	NoSQL Undo
	Warp

	Recovery in microservices applications
	AIRE
	Verum

	Recovering web applications in the cloud
	Shuttle
	Rectify
	Sanare
	MIRES

	Experimental results
	Performance overhead
	Mean Time to Recover

	Related Approaches
	Conclusion
	References

