
Journal Pre-proof

6, 2024
FingerCI: Writing Industrial Process Specifications
from Network Traffic

Filipe Apolinárioa, Nelson Escravanaa, Éric Hervéb, Miguel L. Pardalc,
Miguel Correiac

aINOV-INESC INOVAÇÃO, R. Alves Redol 9, Lisbon, 1000-029, Portugal
bAlstef Group, 104 Bd de la Salle, Boigny-sur-Bionne, 45760, France

cINESC-ID, Instituto Superior Técnico, Universidade de Lisboa, R. Alves Redol
9, Lisbon, 1000-029, Portugal

Abstract

Critical infrastructures (CIs) are often targets of cyber-attacks, requiring
accurate process specifications to identify and defend against incidents. How-
ever, discrepancies between these specifications and real-world CI conditions
arise due to the costly process of manual specification by experts.

This paper introduces FingerCI, a method for automatically generat-
ing CI process specifications through network traffic analysis and physical
behavior modeling. By defining a Specification Language that integrates
with existing systems, FingerCI extracts industrial process specifications
without infrastructure changes or downtime. The specifications include a
behavior model that validates physical correctness.

We evaluated FingerCI on a digital twin of an airport baggage handling
system, achieving 99.98% fitness to observed behavior. Our method improves
cybersecurity and fault detection with high accuracy.

Keywords: cyber-physical systems, network profiling, process mining,
critical infrastructures, specification-based intrusion detection systems

Email addresses: filipe.apolinario@tecnico.ulisboa.pt (Filipe Apolinário),
nelson.escravana@inov.pt (Nelson Escravana), eric.herve@alstefgroup.com (Éric
Hervé), miguel.pardal@tecnico.ulisboa.pt (Miguel L. Pardal),
miguel.p.correia@tecnico.ulisboa.pt (Miguel Correia)

Preprint submitted to International Journal of Critical Infrastructure Protection (IJCIP) September 1

MP
Note
@article{Apolinario_2024_IJCIP_FingerCI,

title = {FingerCI: Writing industrial process specifications from network traffic},

journal = {International Journal of Critical Infrastructure Protection},

volume = {47},

pages = {100725},

year = {2024},

issn = {1874-5482},

doi = {https://doi.org/10.1016/j.ijcip.2024.100725},

url = {https://www.sciencedirect.com/science/article/pii/S1874548224000660},

author = {Filipe Apolinário and Nelson Escravana and Éric Hervé and Miguel L. Pardal and Miguel Correia},

keywords = {Cyber–physical systems, Network profiling, Process mining, Critical infrastructures, Specification-based intrusion detection systems},

abstract = {Critical infrastructures (CIs) are often targets of cyber-attacks, requiring accurate process specifications to identify and defend against incidents. However, discrepancies between these specifications and real-world CI conditions arise due to the costly process of manual specification by experts. This paper introduces FingerCI, a method for automatically generating CI process specifications through network traffic analysis and physical behavior modeling. By defining a Specification Language that integrates with existing systems, FingerCI extracts industrial process specifications without infrastructure changes or downtime. The specifications include a behavior model that validates physical correctness. We evaluated FingerCI on a digital twin of an airport baggage handling system, achieving 99.98% fitness to observed behavior. Our method improves cybersecurity and fault detection with high accuracy.}

}

1. Introduction

Critical Infrastructures (CIs) [50], including those in energy, transporta-
tion, and water distribution, are typically managed through an Industrial
Control System (ICS) architecture [47]. Such an architecture has three lay-
ers: supervisory, control, and physical. The supervisory layer manages the
system, whereas the other two implement the industrial processes. The con-
trol layer comprises devices such as Programmable Logic Controllers (PLCs),
which operate industrial equipment, i.e., the physical layer. Given that most
control layer devices must work continuously and without interruption with
a projected lifespan of more than 15 years [14], many devices used in CIs con-
tain legacy code. This implies that their maintenance tends to be expensive,
as it involves engineers with unusual expertise and tools that have stopped
being supported.

These maintenance challenges lead to obsolete or missing and difficult
to create specifications of the control system behavior [48]. The lack of
specifications prevents the use of Specification-Based Systems (SBSs). For
example, with increasing exposure of CIs to cyber-physical attacks [12, 33,
52], the lack of specification makes it harder for CI operators to identify
faults caused by these attacks and their effect on industrial processes. In
contrast, the existence of a specification of the behavior of the control layer
allows the use of a Specification-Based Intrusion Detection System (SBIDS)
[32, 31], a type of SBS that can detect when the behavior deviates from a
specification. Specifications also allow for quality of service monitoring [10]
and the implementation of digital twins [14, 3].

There are a few methods for inferring specifications, but they usually
require collecting logs from all devices involved [54, 58, 29, 53, 40, 41, 39].
This is not practical in CIs due to three challenges: (1) accessing control layer
devices that usually are on a restricted network; (2) preprocessing different
formats of data logs to be analyzed by process discovery methods; and (3) the
nonexistence of logs in many control devices (due to old software), leading
to incomplete process models.

This article proposes FingerCI, which addresses these challenges rely-
ing only on network traffic. FingerCI is a semi-supervised approach that
constructs a specification, or fingerprint, of a CI system based on network
traffic inspection. This specification represents the normal behavior of the CI
system. The fingerprints produced by FingerCI have the important charac-
teristic of being understandable to experts, who can verify and modify them

2

if needed. FingerCI performs network reconnaissance based on protocol
dissection to interpret the CI network protocols and extract a network model
of the CI. The information gathered is further analyzed using process discov-
ery techniques [53] to find the expected sequencing of CI network activities.
Moreover, data is analyzed using physical behavior modeling to infer the
conditions for activities to occur. Automated construction of system specifi-
cations from network traffic inspection also raises the technical challenge of
defining a specification language that identifies the CI process information
in a format that can link information present on multiple network protocols.
The language defined in this work provides the missing link that allows cur-
rent process discovery and behavior analysis to extract the features to model
the CI process. This work addresses this challenge and shows the feasibility
of its approach with FingerCI, which leverages the proposed language in a
semi-supervised method.

An experimental evaluation of the proposed solution was conducted us-
ing a digital twin of a Baggage Handling System (BHS), on the simulation
platform that the actual BHS providers1use to test their systems on contrac-
tual operating conditions. FingerCI provided fast - only took 12 seconds
to fingerprint a capture of eight hours of network traffic - and correct - with
99.98% fitness - specification models that capture the CI in a format that is
understandable by experts. FingerCI specifications were integrated with an
SBIDS, the Business Process Intrusion Detection System (BP-IDS) [32, 31],
and a commonly used specification-based process management system called
Multi-Perspective Process Explorer (M-PE) [36]. The integration with SBSs
did not require software changes to accommodate FingerCI specifications.
The experiments show accurate detection of anomalies in the BHS operation.

The main contributions of the paper are:

• Definition of a Specification Language that identifies the CI process
information based on network data. This specification language builds
on top of existing popular graph specification languages and can be
integrated with existing specification-based systems.

• The design of FingerCI to extract industrial process specifications

1BHSs provider companies are few and specialized, with little research released to the
public due to their security sensitivity. Research focusing on airport security is commonly
considered classified information. For example, this article required validation before sub-
mission for publication was cleared [15].

3

from network traffic. FingerCI can write specifications by inspecting
network traffic, in a passive way, without requiring changes to the in-
frastructure and downtime of the CI systems. The specifications gener-
ated include behavior models that provide the necessary state variables
to validate CI physical correctness. These models when integrated with
existing specification-based systems can be used to monitor the CI and
determine invalid physical states.

• Integration of FingerCI with two SBSs (BP-IDS and M-PE)2 for im-
proved cyber security and fault detection. This integration shows the
added value of FingerCI in writing specifications for the CI, reducing
input needed from experts with accurate detection results and a low
false-positive rate.

2. Literature Review

Critical Infrastructures have been subjected to a wide range of cyber-
physical incidents [22, 23]. These attacks circumvent cybersecurity protec-
tions, compromise control layer devices and perform unauthorized operations
over the physical layer. Such attacks typically exploit unpatched IT vulnera-
bilities on supervisory equipment. Once compromised, the malware performs
privileged operations over ICS physical assets. Notorious examples of such
malware attacks are Stuxnet[16] and CrashOverride [28]. In most cases, se-
curity incidents targeting CIs are constructed by abusing legitimate actions
to compromise physical devices to an invalid state (e.g., continuously turning
off physical equipment to cause denial of service, or altering equipment con-
figuration, like equipment operation speed, to compromise quality of service
and safety). Determining when these legitimate actions are abused typically
requires a tight security specification.

Several works have proposed SBSs to secure CI control layer devices.
Some SBSs model the conditions for the secure operation of physical devices,
e.g., unmanned aircraft systems [37] and medical systems [38]). Others spec-
ify how network communications should be exchanged between ICS compo-
nents (e.g., Modbus [20], PCOM [44]). Some model power grid components,

2A previous short paper [4] briefly addresses the architecture and integration with BP-
IDS. Contributions 1 and 3 are new, and 2 and 4 are improved with the methodology and
integration with another detection system (M-PE). This work also adds important process
model validation, performance evaluation, and lessons learned.

4

such as advanced metering infrastructures [6] and automatic generation con-
trollers [49]). Another SBS models railway train movement updates and
positional tracking using business processes [32, 31]. Although SBSs are im-
portant for protecting CIs from control-layer cyberattacks, they demand the
laborious work of enumerating all system state conditions, a task that de-
mands expert knowledge to avoid flaws in the specification. FingerCI aids
in inferring the CI security specification based on network traffic to prevent
CI invalid states.

FingerCI is related to specification mining [2]. Specification mining in-
fers system models based on observations, e.g., on system logs [18], traces
[8], or network communication [7, 57]. FingerCI combines two specifica-
tion mining areas: procedure analysis and fingerprinting. This combination
enables a reliable specification that explains how control layer operations
influence the physical behavior of the CI.

Procedure analysis techniques can be divided into invariant rules and
process discovery approaches. Invariant rules [18, 46, 59] reflect the behavior
of the system that is always verifiable when the system behaves correctly.
These rules are generated in two steps. First, extraction of features of the
environment based on the values reported in the CI sensor and actuator
logs. Second, estimation of invariant rules based on the acceptable ranges
of sensor and actuator values. These rules can be obtained based on find-
ing maximum and minimum values [59, 46], or based on machine learning
estimators [18]. Some works discover invariants that correlate sensor and
actuator values to represent a holistic CI state according to a threshold of
support and confidence [18, 46, 34]. Process discovery identifies sequences
of activities based on logs and creates a process specification based on these
sequences [40, 41, 39, 57]. FingerCI favors process discovery since it offers a
more understandable specification model. However, FingerCI goes beyond
current approaches that apply process discovery to critical infrastructures.
Most of these approaches model the process based on logs stored in control
units (which are difficult to access in a real CI) [40, 41, 39]. Some process
discovery approaches use network traffic to construct the process [57] but
offer a minimal view of the industrial process since they cannot parse CI pro-
tocols. FingerCI dissection rules offer a novel in-depth feature extraction
mechanism capable of parsing a wide range of CI protocols and offer process
discovery over network data. In the evaluation, we show FingerCI process
discovery applied in a CI to create understandable process models.

The fingerprinting performed by FingerCI to construct network and

5

behavior models is related to mechanisms applied in IDSs. Some sensor fin-
gerprints are based on estimating errors in sensor measurements (e.g., power
grid sensors [18]). Other sensor fingerprints are based on physics formulas
(such as the power system formula [33]). Other sensor fingerprints measure
clock skewness in sensor readings (e.g., electronic control units, ECUs, mes-
sage transmissions [9]). Others extract statistics of sensor values (like aver-
age and standard deviations of ECUs [26] or water control systems [1]. Some
control-layer messages can be fingerprinted by measuring the time taken by
the mechanical actuators to perform actions [19]. FingerCI behavior mod-
els are based on physical fingerprinting since they represent the physical
state conditions for the execution of the CI process. The mixture of process
discovery with physical fingerprinting is part of the novelty of FingerCI.

Caselli et al. present an alternative specification mining system [7]. That
system builds specifications based on documentation specific to the BACnet
protocol, while FingerCI is based on the assumption that there is no up-
to-date documentation, something that we have observed many times in real
CIs, so it takes information from the network. FingerCI also addresses
a more difficult challenge: obtaining the specification of a critical process.
This requires modeling the sequence of operations and their correct behavior,
whereas [7] provides neither since its detection rules do not profile operations.

Table 1 compares FingerCI with the related work. Our method sup-
ports the most common industrial protocols, including MODBUS, Profinet,
or IEC 61850. It can be easily expanded to accommodate proprietary pro-
tocols such as aviation-specific protocols, like the IATA RP1745 [24] (see
Section 6). The FingerCI behavior model is also novel because previous
works that employed process discovery techniques for anomaly detection only
evaluated the causal relationship between activities based on their execution
[54, 58, 29, 53, 40, 41, 39]. The behavior model complements the specification
by adding valid conditions for activities to occur, e.g., the state of variables
or devices. The behavior model is constructed based on PLC network traffic
and is vital to validate the operation of each process. For each system vari-
able, the behavior model specifies: the expected value before the industrial
process operation is performed (i.e., operation precondition), and the value
after the operation is carried out (i.e., operation postcondition). This novel
behavior model extends the previous work [7] that attempted to construct
behavior specifications automatically, since the previous work only identified
attacks that performed unauthorized operations or changed parameters on
devices, whereas the FingerCI behavior model can identify attacks that can

6

even perform authorized operations on CI devices to leave the system in an
invalid physical state. Although validation was performed on the Aviation
domain, the application of FingerCI in other ICS-based domains should be
straightforward (see Section 7.2 for more details on generalizability).

Method
Procedure
Analysis

Fingerprinting Data Source Protocol
Application
Sector

[18] Invariant Physical Device None Energy

[40, 41, 39] Process - Device None Energy

[57] Process - Network TCP/IP ICT

[46] Invariant Physical Device None Transportation

[59] Invariant Physical Device None Energy

[7] Invariant Network Network BACnet ICT

FingerCI Process Network & Physical Network Multiple Transportation

Table 1: Comparison of FingerCI with related work.

3. FingerCI

This work aims to create a fingerprint representation of the processes
and devices present in a CI. FingerCI inspects traffic and captures the
interactions between CI devices.

As shown in Figure 1, FingerCI operates in four stages. The first
builds a registry of CI operations (Ro) by annotating packet captures us-
ing an expert-defined ontology. The second stage builds a network model
(Mn) containing identification rules based on regular expressions (REGEXP)
that identify CI operations and devices in Ro. The third stage creates a
process model (Mp) using process discovery techniques; the model represents
the sequence of activities in Ro. The fourth stage creates the behavior model
(Mb), composed of rules that reflect the correct conditions for the activities
to occur on Ro. With these three models – network, process, and behav-
ior models –, SBSs can, for instance, identify operations and detect process
faults.

7

Stage 3:
Constructing the

Process
Model

Stage 2:
Constructing
the Network

Model

Stage 4:
Constructing the

Behavior
Model

Network
capture

 IDSICS Router Alarm

Stage 1:
Registry

of CI
Operations

Mn - Network model
(identification rules)

Mp - Process model
(activity sequence)

Mb - Behavior model
(activity conditional rules)

Figure 1: Example of FingerCI fingerprinting a CI network and feeding an
IDS with the specification.

3.1. Assumptions
FingerCI considers two assumptions: (a) it is possible to record all crit-

ical operations using network packet captures; (b) packets are not encrypted
in a way that prevents their inspection.

Regarding assumption (a), the location(s) where the network packet cap-
tures are obtained have to be those where the SBS will be introduced. For
example, if the SBS is an SBIDS, the locations to capture the network traffic
should be those where the SBIDS sensors will be placed.

About assumption (b), we are interested in the case where the tool ana-
lyzes CI network traffic. In particular, we consider that it has access to the
traffic of critical systems that work directly with the physical equipment of
the CI (i.e., control layer devices) and perform operations that change the
physical behavior of the CI (e.g., change the state of a lever or a valve). To
profile the physical behavior of the CI, FingerCI assumes it is capable of
accessing deciphered network traffic so that the physical state can be tracked
before and after critical operations are performed. Assumption (b) is satis-
fied by a large range of CI systems, as most data on ICS control layers is not
encrypted (they are mostly composed of legacy systems protected by firewall
and access control). If ciphered communications should also be fingerprinted,
we assume that the CI can decipher network communication while recording
the network capture. This assumption is reasonable as the organizations that
will deploy FingerCI will typically have full control of their infrastructure,
so also access to the cryptographic keys necessary to decrypt the traffic when

8

recording the packet capture3.

3.2. Background
The design of FingerCI was inspired by a case study of an airport Bag-

gage Handling System (BHS). BHSs guarantee that bags placed at check-in
counters are routed to the correct destinations, typically airplanes, but also
implement safety measures, so they are critical infrastructures for air travel.
BHSs offer three main services: baggage tracking, screening, and sortation.
Baggage tracking services keep track of bags on the conveyor by collecting
real-time bag location data. Baggage screening services ensure that bags pass
through security evaluation procedures and that suspicious bags are filtered
into a designated unclear chute to ensure flight safety. Baggage sortation
services decide the correct route for the bags to reach their destination based
on bag check-in, flight information, and screening results. We show through-
out the article that FingerCI is adequate to generate a specification that
includes the three BHS services.

DAE8FC

chute
location

Sortation

Airline
Flight1

EDS

Flight 2

Airline
Flight2

Scale

Flight 1

Scale

Scre
en

ingCheck-
in

b

ATR
Bag Unit Loading Device

(ULD) Flight 2
Unit Loading Device

(ULD) Flight 1

BHS Physical layer

Baggage
Handler

Airport Operation Systems (AOS)

AODB

Baggage Handling System

Sortation unit Programmable
Logical

Controllers
(PLCs)

Figure 2: Architecture of a BHS system. On the left in blue the airport digital
systems, on the right in yellow group the physical components involved in

baggage handling. Blue boxes a1 to a4 correspond to Figure 3 industrial process.

As shown in Figure 2, BHSs are connected to Airport Operation Databases
(AODBs)4. From there, BHSs obtain flight departure schedules and baggage
check-in information. BHSs are also connected to airport physical equipment

3For example, Wireshark allows users to provide decryption keys to record packet
captures over ciphered data https://wiki.wireshark.org/HowToDecrypt802.11

4https://dcs.aero/airport-operational-data-base-aodb/

9

to identify bags and their position, validate their security screening status,
and change the flow of the bags to ensure the correct route. BHSs detect new
bags introduced or removed from conveyors and keep track of the bags. The
control units identify bags based on their tag with Automatic Tag Readers
(ATRs). Explosive Detection Systems (EDSs) screen bags for explosives. Fi-
nally, control units alter the bag trajectory to ensure the correct route, using
bag sorters (e.g., diverters and pushers).

No

Bag Reached Destination?

YesBag Check-in

Bag
Recognition

Bag
Screening

Bag
Sortation

Bag on
unclear chute

Bag on Flight

Figure 3: Industrial process representation of BHS activities.

The BHS activities for routing bags to their destination can be modeled as
the industrial process described in Figure 3 using Business Process Modeling
Notation (BPMN) [13]. In BPMN, operations are represented by activities
(rectangles), which can be connected by an arrow (→) indicating a sequence.
BPMN can also represent decision paths in the sequence of activities, using
gateways (diamonds). Parallel gateways (diamonds with a + sign) repre-
sent paths that occur in any order. Exclusive gateways (diamonds with ×)
represent alternative paths based on predictable conditions. Loop gateways
(diamonds with ⟲) represent paths that can occur multiple times.

The first BHS activity (a1) begins when the bags are checked in and in-
serted into the conveyor; this initiates the bag tracking. The next activities
happen in parallel (+ gateway) and correspond to the ATR recognizing the
bag (a2a) by scanning its tag, and the EDS screening the bag (a2b) and en-
suring the BHS screening service. After the two parallel activities have been
performed, the sortation unit proceeds to route the bag to the expected bag
destination by issuing movement orders to control units operating the con-
veyors. This is reflected in the loop gateway (⟲) ‘Bag reached destination?’
and its inner activity ‘Bag Sortation’ (a3). When sortation is finished, bags
are routed to one of two possible locations depending on their screening re-
sults. This choice between activities is modeled using the exclusive gateway
(×). Bags with unclear screening results go to the unclear chute (a4a). Bags
with clear results go to the flight (a4b).

Formally, a process is modeled in the language Lp : a,→,×,+,⟲. The
diagram of Figure 3 can be represented using the process notation [29]: →
(a1,+(a2a, a2b),⟲ (a3a),×(a4a, a4b)). The sequences of activities (arrows in the

10

figure) are represented as →, and the gateways (diamonds in the figure)
are described as parallel +, exclusive ×, and loop ⟲. This work uses the
Lp notation to model specifications of industrial processes extracted from
network traffic.

3.3. Stage 1: Operation Registry
The first stage aims to identify the CI operations and store them in a

registry, Ro, used in the subsequent stages to build the specification. During
the first stage, FingerCI functions as a network analyzer tool that dissects
CI communications, i.e., captures packets and extracts Ro entries according to
predetermined acceptance criteria. These acceptance criteria are specified by
experts and consist of dissection rules γ that extract events (e) from packets.
Ro is then composed of a series of steps that reference: CI operations data
(eo), industrial process data related to the operation (ep), and the operation
CI behavior (eb).

Other approaches require the participation of persons who are experts in
the specific CI where they are deployed [32, 31, 40, 41, 39, 9, 26, 21, 25, 60],
whereas ours only requires experts in the protocols, independently of the
CI. Depending only on the protocol reduces manual effort because once γ is
defined for a given network protocol, it can be shared and reused in multiple
CIs, thus reducing the amount of redundant effort each CI needs to do to
construct their specification. This idea of supporting a γ sharing community
for CIs is realistic as it is similar to that in place in the TShark tool [11],
which, for example, supports the MODBUS protocol through a plugin that
is used by many energy CIs.

3.3.1. CI network packet structure
A network packet (n) encapsulates different protocols, containing several

protocol fields (n : nf1, nf2...nfn). Most CI-specific communication protocols,
like Profinet [17], are application layer protocols encapsulated on top of TCP
or UDP. Therefore, FingerCI first identifies the packet fields nf using the
published protocol specification, e.g., IETF RFCs (Request For Comments)
for IT network protocols and International Air Transport Association Reso-
lution (IATA) manuals for airport-specific network protocols. The nf fields
are thus identifiers of portions of the packet. They may refer to operation
data eo, namely, identifiers of the CI devices involved in the operations, (e.g.,
IP addresses, MAC addresses), services (e.g., network ports), and operation
identifiers. The operation identifiers are typically found on CI application

11

network protocols and can be found, for example, on IATA baggage han-
dling messages. According to IATA RP1745 [24], such messages can be of
two types: Baggage Source Messages (BSM) that describe baggage check-
in operations; or Baggage Process Messages (BPM) that describe sortation
and screening operations. Since multiple airport systems can send BSM and
BPM, it is also necessary to include the source and destination of the oper-
ation. For example, IATA BSMs are typically sent from AODB (source IP
address, nfsrc) to BHS sortation units (destination IP address, nfdst). Fin-
gerCI uses eo data for building the network model during the second stage.

The nf protocol fields may also refer to the industrial process to which the
operation belongs (ep). Such fields are typically found as transaction identi-
fiers in the CI network application protocol. The intuition behind the use of
these fields is that most CI equipment interacts through transactions, where
a set of operations are performed to meet a given goal. Given the uniqueness
of the transaction identifiers used in CI systems, they are good candidates for
inferring process instances during process discovery. For example, in BHSs,
operations reference a bag tag, which can be a way to sequence the indus-
trial process operations. Other CIs also have transaction codes for industrial
processes. For example, in rail transportation, train movement operations
can also be sequenced using the train’s ID [31]. FingerCI uses ep during
the third stage to create the process model.

nf fields may also refer to the physical behavior of the CI when the op-
eration is executed (eb). Such fields are typically found as values in the CI
network application protocol. The intuition behind using these fields is that
some CI operations occur based on physical conditions. For example, recall-
ing the BHS example from Section 3.2, the decision gateway ×(a4a, a4b) to
send bags to the unclear chute (a4a) or load them to a plane (a4b) depends
on a condition. This condition results from the bag screening, which can be
observed on a baggage process message (BPM) with a location code found
in the nfbpm field and with a screening message code nfscrcode [24]. Behavior
data can thus be divided into two categories: identifiers of CI physical assets
(ebid) and the physical state value of those assets (ebvalue

). In this example,
the nf field that references the bag tag should be used as an ebid identifier,
while the ebvalue

values should be the fields indicating the status of the bag
(i.e., checked in, cleared, or uncleared). FingerCI uses eb data during the
fourth stage to construct the behavior model.

12

3.3.2. Extracting the registry of operations
FingerCI uses the dissection rules γ that correlate the network packet

fields for identifying Ro. Dissection rules receive a network packet n con-
taining a collection of packet fields nf and produce an event e containing
operation data eo, process data ep, and behavior data (identifier ebid and
value ebvalue

). The correlation is given by the intersection (∧) for describing
data that should be extracted from multiple fields and by the disjunction (∨)
to express multiple ways to obtain data. Dissection rules can be written in
negative form (¬). FingerCI dissection rules are expressed according to the
language Ln :→,¬,∧,∨, eo, ep, eb, ef , γ. A dissection rule using Ln for Figure 3
a3 is expressed as:

γ(n) :





nfsrc ∧ nfdst ∧ nfbpm ∧ nfscrcode → eo

nftag
→ ep

nftag
→ ebid

nfclear
∨ nfunclear

→ ebvalue

(1)

This formula for γ(n) means that a given network packet n will be considered
a well-formed screening packet (according to IATA RP1745) (1) if it contains
the fields n⃗f (nfsrc , nfdst , . . .), and (2) if they allow extracting the data items
eo, ep, ebid , ebvalue

. These items are: a) operation data eo (a pattern that identi-
fies the screening operation, in this case, the IPs and BPM message ID); b)
process data ep (an identifier of the process the message belongs to, e.g., a
bag tag in this scenario); c) behavior data eb∗ , composed of c1) an identifier
ebid (the object used to validate the operation, in this case, the bag tag),
and c2) a value ebvalue

(the value used for that validation, in this case, the
screening status, cleared or not).

Dissection rules are not CI-dependent, but vendor/version-dependent.
That is, most CIs use contractor systems that are installed and maintained
by the manufacturer. To maximize revenue, the same system is usually found
in similar CIs. In this case, dissection rules applied to a particular CI sys-
tem (e.g., BHS) can be applied to other CIs where the system is deployed
(different airports or even transports, like rail or boats). As such, if the
manufacturer constructs the dissector for the communications sent/received
from their devices, multiple CIs that use the devices can have the FingerCI
fully automated in their infrastructure. An example of a successful dissection
rule-sharing community is Wireshark, where a dissection rule created for a
SCADA system (which commonly uses S7 protocol) is useful for CIs, and
research communities, among other interested parties.

Therefore, at this stage, FingerCI makes use of a collection of expert-

13

defined dissection rules γ : γ1, γ2, ..., γn for classifying packets. Packets that
match any of the γ functions are considered relevant to the other stages,
while non-matching packets are discarded. eo and ep should be specific enough
not to have collisions between operations and processes described by other
dissection rules, but should also cover the complete execution of the oper-
ations described in the network capture. Given this selection’s complexity,
FingerCI delegates this decision to the expert.

The first stage of FingerCI improves the current specification inference
methods [7, 57]. The first improvement is the abstraction of network fields
that allow γ functions to be compatible with any network packet regardless of
the protocols underlying them. This design allows compatibility with several
protocols for which there is a standard to extract the nf fields. Notorious ex-
amples of supported CI protocols include MODBUS, Profinet, or IEC 618505.
The second improvement is the abstraction found on γ functions. It allows
correlation rules not to be focused on specific network protocols and uses
fields present on the complete stack of protocols. For example, a γ function
can identify BHS operations by correlating the IP address fields found on
the Ethernet protocol with operation codes found in IATA application pro-
tocols. The third improvement is that fingerprints can be created passively
using network captures, thus complying with current CI security practices.
Combining these three improvements offers an innovative way of obtaining
the necessary event data for fingerprinting CI processes.

3.4. Stage 2: Network Model
After the registry of operations Ro has been identified, the second stage

can be executed. In this stage, FingerCI constructs the network model (Mn)
and comprises a set of identification rules based on REGEXP that uniquely
identify the CI operations reported on Ro. FingerCI traverses the registry
of operations to construct the model and produces the identification rules (β)
of CI operations. These rules are created based on network packets identified
by the dissection rules γ during the first stage.

The network model is described by the grammar in Table 2. Following
the grammar structure, Mn is composed of one β rule for each operation.
Each operation representation is then constructed using four main elements:

5The abstraction of nf offers compatibility with the listing of protocols presented in
https://wiki.wireshark.org/ProtocolReference, and others since, for example, IATA
protocols are not currently supported by Wireshark.

14

<β> ::= <γ> | <γ> ; <β>
<γ> ::= <en> , <eo> , <ep> , <eb>
<eb> ::= (<bi> ; <bv>)
<en> ::= <src> - <dst> - <protocols>
<eo,ep,bi,bv> ::= <statement>
<src,dst> ::= <value>

<protocols> ::= <value> | (<value> <condition> <protocols>)
<statement> ::= <nf> | (<nf> <condition> <statement>)
<condition> ::= ∧ | ∨
<nf> ::= [A-Za-z0-9]+ : <value> | ¬ <nf>
<value> ::= [A-Za-z0-9]+ | ([A-Za-z0-9]+ <condition> <value>)

Table 2: Network model grammar definition.

network data en, operation data eo, process data ep, and behavior data eb.
Each element is composed of a statement that includes fields nf described
on the γ dissection rules, and the value observed during the first stage of
the fingerprinting. For example, the identification pattern for the screening
operation is as follows: β → IPA − IPS − IATA, (nfbpm : BPM ∧ nfscrcode : C ∨
U), nftag

: BAG, (nftag
: BAG; (nfbpm : BPM ∧ nfscrcode : (C ∨ U))). en contains IPA

and IPS addresses and the IATA protocol identifier. eo includes the nfbpm and
nfscrcode screening message identifiers. ep is the nftag identifier for the bag. eb is
comprised of the nftag

and nfscrcode that contains the screening result, clear or
unclear. The resulting identification patterns β allow sensors to perform data
collection and identify: packets to monitor using the en data; CI operations
to analyze using eo data; Industrial processes using ep data; and CI state
during the operation using eb data. Using this specification language, we
were able to integrate our specification into two SBSs without modifications
to their software. One, M-PE [36], is widely used in process management,
which shows the compatibility of FingerCI with current SBSs.

3.5. Stage 3: Process Model
Ro also enables FingerCI to build the process model Mp using existing

process discovery techniques. Although process discovery has been applied
to specific network protocols [57], FingerCI adds novelty by supporting
multiple network protocols simultaneously. It solely relies on the operation
data eo and process data ep present in the Mn model.

3.5.1. Preprocessing Ro

To create the process model, FingerCI traverses the registry of CI op-
erations. It uses operation data eo and process data ep to perform activity
extraction. The output generated by this step contains all activities iden-
tified, i.e., executions of operations reported in each event, grouped by the
process instance they belong to, and in chronological order. Table 3 shows
some process instances of the CI process example described throughout the

15

document (Figure 3). The process instances (lines - PI) are organized by the
positions each activity is executed (columns - AP).

Process/Activity AP1 AP2 AP3 AP4 AP5 AP6

PI1 a1 a2b a2a a3 a3 a4a

PI2 a1 a2a a2b a3 a3 a4b

PI3 a1 a2b a2a a3 a3 a4b

Table 3: Process instances (PI) for the BHS example of Figure 3. Lines represent
PI, and columns are activities positions (AP).

FingerCI then proceeds to create a directly-follows graph [54]. This
type of graph (exemplified in Figure 4) represents all process instances in
the log by describing all possible transitions (edges) between activities. The
graph is constructed by parsing the process instances previously identified
and drawing arrows for each transition verified in the graph, starting from
the first activity in the process instance. For example, Figure 4 is the directly-
follows graph that results from the process instances described in Table 3.
The graph starts in a1, since all process instances start on that activity, and,
from that, identifies the transitions. FingerCI then constructs from the
graph a process specification.

3.5.2. Extracting Mp

FingerCI inspects activities and corresponding process instances to cre-
ate a process model (Mp) [54], a generalized specification of a log that sum-
marizes the order in which activities should be executed to achieve process
correctness. This generalization into a process model is achieved using the
inductive miner process discovery technique that studies the relationships
between activities according to the order of occurrence. It constructs the
process model in language Lp : a,→,×,+,⟲.

The inductive miner technique [29] creates process models using a divide-
and-conquer approach. It sections the graph into smaller regions according
to patterns. The algorithm is recursively executed on the smaller regions
until sectioning is no longer possible. There is a sectioning pattern for each
Lp operator, →, ×, + and ⟲. As can be seen in the example graph in Figure
4, the inductive miner divides the graph into four sections using the sequence
(→) sectioning pattern (blue lines). The algorithm selects this division since

16

Figure 4: Directly-follows graph (arrows) and inductive miner execution (Mp

regions and colored lines) for Table 3.

all edges passing the blue lines go from a node on the left (predecessor) to
a node on the right (successor). Thus, the result of the main run is Mp :→
(a1,Mp2

,Mp3
,Mp4

), which represents the sequence of operations involved in the
process. The inductive miner analyzes the Mp2

,Mp3
,Mp4

regions separately.
Mp2 is obtained using the parallel (+) sectioning pattern which implies that
edges cross the green line. Mp3 is obtained using the ⟲ sectioning pattern
since the edges move to already visited activities. Mp4 is obtained using the
exclusive (×) sectioning pattern since the edges do not cross the purple line.
As a result, the following process model is obtained Mp :→ (a1,+(a2a, a2b),⟲
(a3a),×(a4a, a4b)). This process model represents the BHS routing bags to their
destination (Figure 3).

3.6. Stage 4: Behavior Model
Process models provide a sequential ordering of activities in a process.

These models act as causal rules for activities (e.g., bag sortation must hap-
pen after bag recognition and screening have finished). However, they do not
provide monitoring rules for an activity to be considered a legitimate action
(e.g., bags can only be routed to the destination flight if they have a clear
screening result). To identify those rules, FingerCI extends process models
with behavior models Mb. Behavior models are novel because they provide
the necessary CI state conditions to validate the correctness of industrial
processes, which is something previous process discovery methods did not
[54, 58, 29, 53, 40, 41, 39]. Figure 5 illustrates the Mb behavior model of the
BHS example being given throughout this article. As the figure shows, Mb

state conditions include the physical state of the equipment (ebvalue
) before

and after executing activities of the process model (i.e., precondition and
postconditions). Furthermore, Mb includes the state conditions for gateway
executions based on the behavior of the inner activities and frequency count-
ing for loop gateway stopping conditions. The resulting conditions remove

17

Pr
oc

es
s No

Bag Reached Destination?

YesBag Recognition
Bag Sortation

Bag on FlightBag Screening

Bag on unclear chute
Bag Check-in

B
eh

av
io
ur

:= := Ø
:=

 := Ø
 := R
 := 1

:=
 := Ø
:= C∨U
:= 1

:=
:= R∧(C∨U)
:= R∧((C∧F)

:= 1|2
:=

 := R∧U
:= R∧U
:= 1

:=
:= R∧C∧F
:= R∧C∧F
:= 1|2 := 1

D
es
cr
ip
tio

n In a new bag
enters the BHS. The

BHS does not
register the bag

physical state before
or during this activity

 and can happen simultaneously.
In the BHS updates the bag physical

state to recognized (R). In the
BHS updates the bag physical state with
screening status: clear (C) or unclear (U)

In the BHS updates the
bag physical state with sortation

order: to flight (F) or to unclear chute
(U). This activity can occur at

most two times inside the gateway.

 and happen alternatively. The bag
must have been routed to unclear chute

before
happens. The bag must have been routed

to correct flight when happens.

 := Ø ∨U)

Figure 5: FingerCI (top-down) process Mp, behavior Mb , description.

the ambiguity of the process model and can be used, for example, by IDSs
as detection rules.

3.6.1. Constructing Mb

The Mb behavior model is obtained based on the registry of operations Ro

that is traversed, and all activity state conditions are registered based on the
physical status of the equipment reported on ebvalue

. Activity preconditions
are the intersection of all the physical equipment states before the activity
occurs (obtained from the ebvalue

of the previously inspected activities). Activ-
ity postconditions are the intersection of the physical equipment states after
the activity occurs (obtained from the ebvalue

fields inside the activity). Given
the activities in different processes, Mb includes as activity state conditions
the disjunction of all preconditions and postconditions seen during activity
executions. For example, in Figure 5, different process executions may refer
to bags with different statuses. Thus, a precondition for a3 is the bag being
clear or unclear.

Aside from inferring activity state conditions, the Mb model also provides
gateway validation conditions. Such conditions include activity frequency
counting and state conditions for validation.

Frequency counting measures the occurrence of all elements inside a pro-
cess. This is important to determine the number of times an activity or
region occurs inside a loop gateway (⟲). The frequency of the loop gateway
inner element is given by the disjunction of the number of times they appear
in each process execution. For example, the sortation activity (a3) of Figure
5 occurs once or twice in a process.

State conditions differ by gateway type. Exclusive gateway (×) condi-
tions are given by the disjunction of their inner element conditions since
their inner regions are executed alternately. For instance, the exclusive gate-

18

way in Figure 5 has the precondition of the bag being cleared or uncleared.
This precondition covers a4a (if the bag is cleared) and a4b (if it is unclear).
Parallel gateways (+) preconditions must ensure all inner regions can be ex-
ecuted. Thus, they are given by the intersection (∧) of the inner element
conditions. For example, the parallel gateway in Figure 5 has the postcon-
dition, R ∧ (C ∨ U). It states that the bag must be recognized by the ATR
(R) and screened (clear or unclear, C ∨ U) after the gateway is completed.
This postcondition derives from a1 postcondition (R) and a2 postcondition
(C ∨ U). Loop gateways (⟲) can be limited by the frequency of the inner
region or may have the physical state of the equipment as a stopping con-
dition. The stopping physical conditions for a loop gateway are given by
the inner element postconditions that stop the loop, i.e., the ebvalue contained
in the postcondition that is not listed as a precondition. For instance, the
loop gateway in Figure 5 has the stopping condition of routing bags to flight.
This condition is listed as an a3 postcondition and not as a precondition. This
gateway is also limited by a3 frequency, once or twice, even if no stopping
condition is reached. For example, in the case that bags go to unclear chute,
a3 is executed twice.

3.6.2. Structuring Mb

<Mb> ::= <section> ; <ep>
<section> ::= <expression> : <frequency>
<expression> ::= <operator> (<branches>) | <activity>
<operator> ::= → | ⟲ | × | +
<branches> ::= <section>;<branches> | <section>
<activity> ::= (<eo>:<eb>)

<eb> ::= (<bi>-<bv>)
<bv> ::= <pre− condition>,<post− condition>
<ep,eo,bi,pre− condition,post− condition> ::= <statement>
<statement> ::= <nf> | (<nf> ∨ <statement>) | (<nf> ∧ <statement>)
<nf> ::= [A-Za-z0-9]+ : REGEXP | ¬ <nf>
<frequency> ::= [0-9]+

Table 4: behavior model is described by the following grammar

The behavior model is given by the grammar in Table 4. The gram-
mar structure, Mb of an ep process comprises nested <section> rules. Each
rule corresponds to Mp sectioning and is constructed using two elements, ex-
pression and frequency. The expression is built over the Mp process model
and corresponds to the inner elements of the sectioning. The frequency is
the number of times that a section can occur. The <expression> has an
Lp operator (→,⟲,×,+) and has either inner sections or activities. Activi-
ties are identified by eo data and respect rules described on eb data. The eo

is the same as the Mn and Mp, but eb is different. The Mb model eb data
contains preconditions and postconditions REGEXP for activity validation.
For example, the partial Mb for the sectioning +(a2a, a2b) is given as follows:
Mb :→ +((a2a : ((∅ − nftag

: R)) : 1) : 1; (a2b : ((∅ − nfscrcode : C|U)) : 1)) : 1. a2a

19

and a2b are simplified eo data (described in Section 3.4)6. nftag
is the bag tag

and nfscrcode is the screening status. Integer values in each section/activity
represent frequency. ∅ represents the absence of a pre-condition, R and C|U
represent the REGEXP for the activity post-conditions. These preconditions
are also expressed in the yellow boxes in Figure 5. The resulting Mb model
allows process fault detection and, in conjunction with Mn and Mp models,
can build an SBS that is configured automatically, such as an IDS. This auto-
matic procedure does not require human experts to write the specifications,
but they may review and modify them.

4. Behavior Model and Conformity Checking

FingerCI monitoring rules are expressed as sequence diagrams that
can be easily audited by CI experts and can be used to configure exist-
ing specification-based systems. FingerCI can help configure SBSs, as their
detection validates the conformity between the data collected from the sen-
sors and the specification. This conformity check can be defined [35] as the
ability to attest whether a log aligns with a specification. A log is said to be
aligned when the sequence of operations reported in each transaction respects
the specification M . Moreover, in the case where behavior detection rules
are included in M , a log aligns only with M if both the sequence and the
behavior rules are respected. The log alignment between the transaction t
reported in log L and the specification M is verified by mapping t operations
to M . The alignment attesting between a transaction t : o′i=1, ..., o

′
i=|T | and

the specification M : oz=1, ..., oz=|M | is as follows:

1. (o′i,→) is a transaction valid move (s) iff oi ∈ t

2. (→, oz) is a specification valid move (r) iff oz ∈ M

3. (o′i, oz) is a valid move (a) iff oz ∈ M ∧ o′i ∈ t ∧ oz = o′i ∧ bz = obi

4. (o′i, oz) is a invalid move (⊗) iff oz ∈ M ∧ oi ∈ T ∧ oz ̸= oi ∨ bz ̸= bi

For example, transaction t1 : a1, a2a = F1, a2b = F1, U, a3 = F1, U, a4b =
F1, U does not align with the specification of Figure 5. All t1 operations

6These activities correspond to the ATR recognizing the bag (a2a) by scanning its tag,
and the EDS screening the bag (a2b).

20

match the specification, except a4b . This non-alignment can be considered
an anomaly (since it violates the safety conditions imposed by the specifica-
tion). To validate the utility of FingerCI specifications, this work created
a prototype of an IDS. This IDS (Figure 1) has sensors installed on the CI
to identify operations using Mn specifications. The operations are then val-
idated by the IDS using process and behavior specifications (Mp and Mn

specification).

5. Implementation

The implementation of FingerCI aims to confirm that it is possible
to extract CI process specifications based on network traffic. It also aims
to confirm that its use requires little human assistance and that it produces
specifications that are detailed enough to configure an SBS. The implemented
prototype integrates FingerCI with BP-IDS [32, 31], an SBIDS that identi-
fies anomalies in CIs. The prototype also integrates FingerCI with a process
management system called Multi-Perspective Process Explorer [36] (M-PE),
which verifies compliance between logs and specifications.

FingerCI

Network
Reconnaissance
Extractor (NRE)

Process Behaviour
Extractor PBE)

Network
Model

Behaviour
Model

Process
Model

Network Sensor
Plugin

IDS

Specification BP-IDS
Operation Registry Extractor (ORE)

Tshark

ORE Post-dissector Plugin

Process Discovery
Extractor (PDE)

ProM
Convert CSV to

XES plug-in

Mine process tree
with Inductive
Miner plug-in

Operation Registry
Extractor (ORE)

M-PE

Multi-Perspective
Process Explorer

Figure 6: Architecture of FingerCI integrated with BP-IDS and M-PE.

The architecture of the prototype is represented in Figure 6. The figure
shows the internal structure of FingerCI and its integration with BP-IDS
and M-PE. FingerCI is implemented has four modules. Each module corre-
sponds to a fingerprinting stage (as described in Section 3). Stage 1 involves
obtaining the Ro registry of CI operations, and is implemented by the Oper-
ation Registry Extractor (ORE) module. ORE dissects CI communications,
i.e., PCAPs, and extracts Ro according to predetermined acceptance criteria.
ORE is developed as a Lua post-dissector plugin7 for the TShark network

7https://wiki.wireshark.org/Lua/Examples#editing_columns

21

monitoring tool [11]. The plugin first parses the network packet attributes
(nf) identified by the TShark protocol dissection plugins, and decides based
on the nf fields, identified by those plugins, if the network packet constitutes
a relevant CI operation to include in the specification. This decision is made
based on ontology γ dissection rules that correlate specific nfs for identifying
the registry of operations. Stage 2 constructs the network model Mn and
is implemented by the Network Reconnaissance Extractor module (NRE).
This module uses Ro, to produce the Mn network model in Backus–Naur
Form grammar format (as presented in Section 3.4). NRE is comprised of
awk scripts that filter the Ro to generate the model. Stage 3 involves creat-
ing the Mp process model and is handled by the Process Discovery Extractor
(PDE) component. PDE is developed as a wrapper to the process mining
library (ProM) [55] that parses the Ro, and selects the process and operation
identifiers required for ProM to produce the process model (based on ep and
eo respectively). ProM provides multiple plugins to parse logs extract process
models, and analyze their performance. PDE uses the Mine process tree with
Inductive Miner to construct the process in the Lp (as described in Section
3)8. PDE interacts with the ProM tool using Java provided as an argument
to the ProM command line interface. This method fully automates the con-
struction of the process model without requiring human-in-the-loop (which
would be the case if PDE used the ProM user interface). Finally, Stage
4 is implemented by the Process Behavior Extractor (PBE) component, a
Java-based library that parses the registry of operations and produces the
Mb behavior model.

FingerCI was designed to be easily integrated with systems that rely
on specifications [32, 31, 10, 14]. In this prototype, FingerCI was inte-
grated with BP-IDS and M-PE as a proof-of-concept (Figure 6). BP-IDS
uses a business process specification to model the accepted behavior of a CI.
BP-IDS detects, in real-time, abnormal machine operations on CI services
by comparing the behavior observed by network sensors with specifications.
M-PE also performs comparisons to find noncompliance but does not work
in real-time. BP-IDS has been previously validated on a railway transporta-
tion CI [31]. The Mn serves as the specification for the BP-IDS sensor. This

8PDE uses the default configuration of the plugin but disables the noise threshold of
the inductive miner algorithm to zero, since it allows the process model to fit 100% to
the Ro. This noise threshold was disabled since it excludes infrequent operations from the
resulting Mp which could influence the precision and accuracy of the SBSs.

22

specification provides the REGEXP for parsing network traffic and identi-
fying CI processes executed. The en collected the packets that contained
relevant CI process data. eo pinpointed the operation identifiers referenced
in the collected packets. ep captured the process identifiers referenced by
the operations. eb extracted the conditions to which the operation was ex-
ecuted. These REGEXP allowed the BP-IDS sensor to collect the data for
anomaly detection. In the case of M-PE integration, we used ORE to parse
network traffic since M-PE does not have network sensors. The Mp process
model specifies the expected sequence of operations for BP-IDS and M-PE
verification. With the sequence of operations, they can verify the ordering
of the operations reported by its sensors and detect anomalous process ex-
ecutions (deviations from Mp). The Mb behavior model offers the behavior
rules that BP-IDS and M-PE can use to validate processes. Each <activity>
rule of the Mb allows them to validate the eb data collected from the sensors,
and detect repeating activities thanks to the <activity> frequency threshold.
Gateway rules (× and ⟲) of the Mb allow them to validate gateways. The
validation is done by checking whether the processes are compliant with the
gateway rules. Thus, using the Mb model, BP-IDS and M-PE can detect
anomalous operations that compromise the CI process by altering the phys-
ical equipment to an invalid state. The FingerCI prototype reduced the
effort required to write BP-IDS and M-PE specifications while retaining the
main functionalities.

6. Evaluation

The objective of the evaluation of FingerCI is to answer the following
research questions (RQ):

RQ1 How long does it take to produce a fingerprint (Section 6.1)?

RQ2 Are models reliable for intrusion detection (Section 6.2)?

RQ3 Do models correctly describe the CI (Section 6.3)?

The evaluation was based on the Airbus simulation platform9. This plat-
form offered a digital twin of an airport network infrastructure, with VLAN-
connected virtual machines. The platform mimicked a BHS manufactured

9https://www.cyber.airbus.com/cyberrange/

23

EDS

Sorter
Area

Area 1 Area 2

Unclear
ChuteBag entry-point

Legend
Bag flow before destination allocation
Bag flow in Area 1
Bag flow in Sorter Area
Bag flow in Unclear chute
Bag flow in Area 2

Flight 2Flight 1

Figure 7: Testbed BHS organization.

by the Alstef Group10. The platform included a virtual AODB that provided
the BHS sortation unit with fictitious identifiers of bags and flights assigned
to BHS locations. The simulation also included virtual physical equipment
(EDS, ATR, and conveyors) managed by PLCs connected to the BHS sorta-
tion unit in the simulation platform. The simulation used Emulate3D11 to
mimic the physical equipment. Emulate3D is a high-fidelity emulator used
by BHS providers to test their systems against contractual conditions before
deployment in actual airports.

The experiments used network packet captures (PCAPs) recorded on the
Airbus simulation platform operating continuously for 25 hours. The PCAPs
were recorded in promiscuous mode through a port mirror on the simulation
platform router. As shown in Figure 7, the BHS sends bags to three locations:
two flights and one unclear bag chute U (in red). Flight 1 was assigned
to chute 1 (in blue, located in the same area 1 of the check-in and EDS
equipment). Flight 2 was assigned to chute 2 (in green, located in area
2, accessible through the BHS sorter area). This architecture is found in
civil airports, which differ mostly in terms of the number of flight chutes.
Emulate3D spawned one bag every 30 seconds, with bags being routed from
check-in counters to chute 1 in 1m30s, to chute U in 2m05s, and to chute 2
in 2m35s. AODB sent, to the BHS sortation unit, the check-in information
of the bags of 200 bags (100 bags per flight) which would then be introduced
repeatedly by random order12 on the BHS through the baggage check-in area.

10https://alstefgroup.com/baggage-handling/
11https://www.demo3d.com/Baggage-Handling/
12Reintroduction of bags can often happen at airports due to logistic reasons. Bags can

be stored on early bag store (EBS) systems and reintroduced into the sorting system when
required to be delivered to baggage handlers. In this evaluation, bags are introduced in

24

The automatic reintroduction of bags made by Emulate3D allowed us to have
a total of 2045 bags during 25 hours. FingerCI inspected 89 bags to generate
a fingerprint. 1956 bags were used to validate the accuracy and correctness
of the fingerprint.

6.1. Fingerprint Performance
To answer RQ1, the performance of FingerCI was measured and com-

pared with the performance of TShark. For this experiment, 8 different
network traffic datasets were created, with durations of 1 to 8 hours. The ex-
periments measured the variation between FingerCI and TShark processing
times on a 64-bit Ubuntu VM with 2048 MB RAM and a 1 CPU processor
i7-8565U (1.8GHz up to 1.99GHz). For each execution, it was measured (Fig-
ure 8) the average time (based on 30 repetitions) taken for FingerCI as a
whole, its components (ORE, NRE, PDE, and PBE), and TShark. As seen

0.74
1.2

1.7
2.1

2.6
3

3.5
4

1.2

2

2.7

3.5
4

4.8

5.5

6.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

P
ro

ce
ss

in
g

Ti
m

e
(s

)

Dataset ordered by number of hours of network traffic

FingerCI and Tshark Performance Comparison

ORE NRE PDE PBE Tshark FingerCI

Figure 8: Average execution times (YY) of FingerCI (line), its components
(bars), and TShark (line) for 8 datasets (XX).

in Figure 8, for all datasets, in terms of computational costs, FingerCI re-
quires, on average, 62% more than the time required for TShark to process
network traffic when used in stand-alone mode. The computational costs
required by the PDE to generate the process diagram, NRE to generate the
network model, and the PBE to generate the behavior model represent in

random order to simulate the EBS reintroduction of bags. For more information about
EBS, refer to the following video (not created by authors): https://www.youtube.com/
watch?v=d6_OeC0qZPE

25

total only 17% of total processing time (11%, 2%, and 4%, respectively); ORE
consumes most of the processing time (83%). ORE introduces a Wireshark
Lua post-dissector plugin that intercepts all network traffic analyzed and
extracts the fingerprint fields. Although the Lua plugin is an easy way to
extend TShark/Wireshark, its performance limitations are well-known. Re-
placing Lua with a C-based plugin would improve performance. Despite the
increase in computational time, fingerprint generation takes at most 12 sec-
onds based on eight hours of network traffic. Considering that configuring a
specification-based solution often takes a high number of hours13, FingerCI
can be used as a first approach for generating the fingerprint and then placing
a human-in-the-loop to perform the necessary corrections to get an accurate
fingerprint. Therefore, the experiments conducted show FingerCI can save
hours of expert work.

6.2. Intrusion Detection
To answer RQ2 and validate the accuracy of an SBIDS, BP-IDS was con-

figured with the fingerprint generated by FingerCI. The fingerprint included
AODB, control unit, and sortation unit interactions during one hour. Dur-
ing this hour, FingerCI inspected flight information messages, bag check-in,
screening, and sortation operations. BP-IDS monitored the remaining net-
work traffic (24 hours), summing up a total of 1956 bags monitored. During
two hours, the simulation platform forced the BHS into two abnormal sit-
uations. For the first one, screening anomaly, the EDS screening results of
42 bags were changed by the simulation platform to route unclear bags to
flight instead of the unclear chute (7 unclear bags) and clear bags to the
unclear chute (33 clear bags). The second abnormal situation, the sorta-
tion anomaly, overwrote the BHS sortation messages to falsely route bags
to different destinations. In this abnormal situation, the simulation platform
changed sortation orders for 36 bags. Bags expected for flight 1 went to flight
2 (20) and vice-versa (16). As shown in Table 5, the fingerprints generated
by FingerCI to profile BHS behavior were very accurate when detecting
the two abnormal situations, with an accuracy of 99.89%. This good result in
terms of accuracy is due to the combination of process mining with the be-
havior model created by FingerCI that makes the verification deterministic.
The deterministic verification is confirmed by the fact that BP-IDS does not

13Typically experts take at least 6 hours to write a specification [51].

26

Abnormal Situation Valid bags Anomalous bags FN FP Accuracy FPR

Screening 1914 42 0 0 100% 0%
Sortation 1920 36 0 2 99.89% 6%
Both 1878 78 0 2 99.89% 3%

Table 5: Accuracy of the SBIDS (BP-IDS) with FingerCI.

have false negatives (FN) regarding the sortation and screening anomalies,
assuring a high fidelity result. There were two false positives (FP) from the
1956 bags inspected in the 24 hours of BHS functioning. The FP, in this case,
was due to the reintroduction of anomalous bags in the system. In this case,
BP-IDS had information cached from previous inspections of the sortation
anomaly and considered the bags to be anomalous when no anomaly was
taking place. BP-IDS achieved a 0% false positive rate (FPR) for the screen-
ing anomaly and 6% FPR for the sortation anomaly, resulting in a total of
3% FPR for the whole abnormal period. These results show that using the
FingerCI process and behavior models allows SBIDSs to achieve the high
fidelity required to identify anomalies that may affect CIs.

We have also compared our detection results with a previous application
of ComSEC in the same dataset [5]. ComSEC is a bump-in-the-wire tech-
nology for detecting integrity and replay attacks. ComSEC does not resort
to specifications and uses digital signatures and timestamp validations to
detect attacks. ComSEC case study is adequate for some CIs which look to
upgrade network traffic connections with security assurances. For validation
of BP-IDS results, we have compared ComSEC with BP-IDS (equipped with
FingerCI specifications) and used the same conditions previously described.
Since ComSEC works at the network packet level, ComSEC produced 220
alarms (one per network packet) while BP-IDS had 78 alarms (one per bag,
an aggregation of network packets). ComSEC had 99.99(9)% accuracy, with
3.2% (similar to BP-IDS in Table 5), with 7 false alarms in contrast with
2 BP-IDS false alarms. Based on these results, ComSEC could provide an
early warning of packet integrity violations, but it is more difficult for ex-
perts to understand based on network packet payload what caused the alarm
and find the appropriate measures. FingerCI specifications, included in
BP-IDS, provide alarms that are better to understand the reason for an
alarm to be triggered (non-compliance to specification) and also understand

27

the appropriate measures based on the physical impact of the anomaly. In
this scenario, those decisions would be to remove the abnormal bags before
destination flights take off.

6.3. Process Model Validation
To answer RQ3 and validate the correctness of the process models, we

conducted a conformance analysis [45, 56] of the specification created by
FingerCI. A conformance analysis measures the correctness of a process
model based on how well the model represents the activities observed on a
given activity log. The specification from RQ2 was reused to perform this
analysis. The ProM plugin used for conformance checking [56] compared the
process model with the BHS complete network traffic (24 hours), excluding
anomalous bags. The objective of excluding these bags was to measure how
well the process model represents the correct behavior of the BHS (malicious
activity is covered in RQ2). The experiments followed the conformance anal-
ysis approach proposed by Rozinat and van der Aalst [45], which measures
log correctness in two dimensions: model fitness and appropriateness.

The model fitness dimension compares the execution of the process in-
stance (in this case sortation of bag) k described on a log with the process
model. The process i activity execution described on a log is quantified with
produced tokens pi, while executed activities in the model are quantified as
consumed tokens ci. A perfect model and log fitness will mean the number
of tokens produced ∑k

i=1 pi and consumed ∑k
i=1 ci are the same. However, an

unfitted log can have missing tokens mi when there are missing conditions
in the model to satisfy process execution or classified as remaining tokens ri
when the log lacks activities that satisfy the process model conditions. The
occurrence of mi tokens increases ci while ri increases pi. Model fitness is
given by:

f =
1

2
(1−

∑k
i=1 mi∑k
i=1 ci

) +
1

2
(1−

∑k
i=1 ri∑k
i=1 pi

) (2)

The tests made in this experiment with k = 1878 process instances show the
log execution resulted in a total of ∑k

i=1 pi = 48788 produced, ∑k
i=1 ci = 48788

consumed, ∑k
i=1 mi = 8 missing, and ∑k

i=1 ri = 10 remaining tokens. The 18 un-
fitted tokens (total of remaining and missing tokens) occurred on two process
instances that were executed during a temporary delay in communications
exchanged between sortation units and control units that forced message re-
transmissions of sortation decisions. The retransmissions were classified as
misplaced activities in the process model. The experiment shows FingerCI
process model obtained a fitness measurement of 99.98% by applying the fit-

28

ness formula. The FingerCI process models have shown high fidelity in
specifying CI operations.

Model appropriateness measures the model’s comprehensibility to humans
and the precision in describing only the log’s observed processes. The com-
prehensibility c is measured by relating the observable and non-observable
transitions. The observable transitions |T | are the movement between one
activity of the process model to another. The non-observable transactions
can be either: redundant invisible |TRI | or alternative duplicate |TAD|. |TRI |
transitions are the ones that were not executed by any process instance. |TAD|
are the repeated transitions that form an alternative repeated path to one
activity. Compreehensibility is measured by:

c = (|T | − |TAD|+ |TRI |)/|T | (3)

The tests made in this experience with k = 1878 process instances show the
log execution resulted on |TAD| = 0 alternative duplicate transitions, |TRI | = 5

of the total of |T | = 36 transitions represented on the process model. The
FingerCI process model obtained a comprehensibility score of 86%. This
level of comprehensibility allows experts to understand the process model and
pinpoint the overall execution. As seen in the validation reasoning described
in the previous section, despite the invisible tasks, the FingerCI process
and behavior model offered an understandable explanation of the overall
functioning of the BHS and can be interpreted by experts.

Process model precision is calculated by relating the model to the log
executions and determining whether the observed executions represent the
complete process model or partially. Process model precision P is measured
by relating the number of transitions xi with the number of visible transitions
TV represented on the process model. The precision measurement can be
calculated using the formula:

P = (TV −
∑k

i=1 xi

k
)/(TV − 1) (4)

The tests made in this experience with k = 5987 process instances show
the log execution resulted in a total of ∑k

i=1 xi = 33431 enabled transitions
of the process model TV = 26 visible transitions. By applying the precision
formula, the experiment shows FingerCI process model obtained a precision
appropriateness measurement of 82%. FingerCI displays high fidelity to
represent the CI specifications.

Furthermore, we have also studied the impact of varying the amount of
bags to infer FingerCI specifications. As can be seen in Figure 9, we have
used M-PE to measure model fitness (blue) and non-compliant operations
(orange) for specifications created with 1 to 89 bags (the amount used in

29

86

88

90

92

94

96

98

100

0 20 40 60 80
0

10

20

30

40

0 20 40 60 80

Figure 9: M-PE fitness (blue) and non-compliant operations (orange) (1878
bags, y-axis) as more bags are fed into a FingerCI specification (1-89, x-axis).

previous evaluations). It can be seen in this evaluation, results vary from
88% to 99.98% model fitness. And errors from 40% to 0%. Showing Fin-
gerCI just needs to inspect 1 to 4 bags to infer specifications that fit the
CI observations, but requires more bags 89 to handle the less frequent BHS
process variations. We have also tested FingerCI integrated with M-PE
and BP-IDS by altering the BHS communication protocol without updating
the specification. We changed the reporting messages of 37 bags. In this
case, BP-IDS had a 100% FN rate, since the FingerCI specification did not
capture the changed messages. M-PE however, was able to highlight the
differences in the messages. This shows complementary: BP-IDS detects in
real-time messages that deviate from the specification; M-PE detects when
FingerCI specification needs to be updated.

7. Discussion and lessons learned

The results of the evaluation allow for the conclusion of three key points:
FingerCI was fast to generate CI fingerprint specifications (taking at most
12 seconds to analyze eight network traffic hours); FingerCI integrated with
SBSs automates the work required from experts on writing specifications for
the CI, with accurate detection results and a low false-positive rate; and
FingerCI provided correct and comprehensive specifications with a process
model that has: 99.98% fitness to the observed behavior, 86% comprehensibil-
ity score, and a precision of 82%.

7.1. Lessons learned
Several lessons can be learned: (1) dissection rules identified by the ex-

perts influence the meaningfulness of the produced specification; (2) abstrac-
tion of network fields in dissection rules allows γ functions to be compatible

30

with any network packet regardless of the protocols underlying them. This
design allows compatibility with several protocols for which there is a stan-
dard to extract the nf fields; (3) FingerCI process model indicates it is
understandable based on Rozinat and van der Aalst’s evaluation method
[45], but with some room for improvement in terms of readability.

Regarding point one, the meaningfulness of the produced specifications
depends on the dissection rules produced by the experts. They need to
cherry-pick the fields found on a network packet that identify critical oper-
ations (eo), processes (ep) and behavior data (eb). To configure a dissection
rule, experts need to know the process they want to specify, which includes
how to identify the main operations and physical state conditions in the
network traffic. The ideal expert to write the dissection rules would be an
expert in the network communications used by the CI system (e.g., the man-
ufacturer of the BHS simulation platform Alstef, or the airports that use the
BHS services). A good dissection rule allows specifications to portray the
sequential ordering of activities in a process and identify the conditions for
legitimate action. They affect the efficacy of the SBS in portraying the real
behavior of the CI. For example, the dissection rules used on the evaluation
allowed BP-IDS to use the FingerCI specification to distinguish between
the good behavior of the BHS and anomalies. If the wrong fields were se-
lected on the dissection rule, BP-IDS could experience false positives (raise
alarms for normal behavior), or false negatives (would not detect anomalies).
Such choices do not affect the correctness and conformance of the FingerCI
system, since the specifications produced would still reflect the registry of
operations to which the network packets are portrayed in the PCAP. It is
thus independent of the techniques employed by FingerCI for process and
behavior discovery and affects only the support and confidence that the dis-
section rule has to represent the real CI system.

Regarding point two, the implementation of the ORE post-dissector plu-
gin shows that the design abstraction presented in Section 3.3.1, of network
fields that allow γ to be compatible with any network packet regardless of
the protocols underlying them, holds in the proof-of-concept implemented
(Section 5). In TShark, dissection protocols are processed before the post-
dissection field. This allowed ORE to have available all the network fields
previously processed by the specific dissection protocols at the moment of
the post-dissection analysis. With this, γ functions that are written for ORE
can simply refer to the identifiers of the TShark protocol dissector. As in the
above, writing γ is as simple as writing a TShark filter. The implementation

31

of ORE validates the design and allows compatibility with several protocols
for which there is a standard (or a Wireshark protocol dissector) to extract
the nf fields. Dissection rules enable a sharing community of airports, tech-
nology manufacturers, law enforcement, and research partners to increase
their knowledge of underlying CI network protocols.

Regarding point three, FingerCI process models include three types of
gateway choices: parallel, exclusive, and loop. This allows the process model
to be portrayed as a state machine, and displayed in multiple formats such
as process trees, process diagrams written in BPMN language, or Petri-Nets.
BPMN also has other elements that could be used besides those already used
by FingerCI. Such elements are specific to that modeling language such
as pools, lanes, event-triggering gateways, or message flows. The elements
already supported are sufficient to portray a valid process model and are
typically those provided by process discovery approaches [54, 58, 29, 53, 40,
41, 39].

7.2. Generalizability and Limitations
FingerCI specification language can be represented as sequence dia-

grams (e.g., BPMN, PetriNet) that are easily auditable by CI experts and
can be used to configure existing specification-based systems. The specifi-
cation language employed in FingerCI showed good results for BHSs, and
its applicability is theoretically generalizable to other cyber-physical systems.
Sequence diagrams have been largely used in cyber-physical systems to model
operation safety conditions. Examples include unmanned aircraft systems
[37], safety-critical medical systems [38], power grid systems [6], railways
[32, 31], and airports [4]. The specification language could help configure
the aforementioned solutions, since their detection validates the conformity
between data collected from sensors, with the specification.

The FingerCI current method has limitations regarding its applicability
to other CI domains. The limitations include: (1) the necessity to create
dissection rules specific to the case study; and (2) the necessity for more
tailored behavior models.

Regarding limitation one, the system requires the construction of dissec-
tion rules for interpreting the CI network protocol and identifying processes,
operations, and behavior. Some protocols are shared across sectors (e.g.,
MODBUS) other protocols are specific to the airport sector (IATA RP1745
[24]). To employ FingerCI in a different sector, new dissection rules need

32

to be specified. For example, BP-IDS [43], was previously tested in the rail-
way sector. Namely, BP-IDS monitored the Passenger Information System
(PIS), and the Train Movement Management System (TMM) to ensure the
schedules provided at the station were coherent with the train position and
velocity. To also deploy FingerCI under this scenario would involve the con-
struction of dissection rules that identify process, operation and behavioral
data on the PIS and TMM messages.

Regarding limitation two, the current system behavioral model Mb is ad-
equate for monitoring changes in physical variables that are expressed in
categorical values. The BHS categorical values are simplified in Figure 5 as
(∅,R,C,F ,U). On other CI applications, physical variables assume contin-
uous values such as speed and coordinates which need to be converted to
categorical on FingerCI dissection rules.

7.3. Future Work
Dissection rules are a continuous improvement for FingerCI to be gen-

erally applied to more CI sectors. Future work could apply algorithms that
convert the continuous values into categorical values. Previous works have
made significant progress in inferring such categorical values from continuous
data. According to previous work [59, 46] on the cybersecurity domain, cate-
gorical values can be inferred by finding minimum and maximum points from
physical sensor variables, and by measuring gradient and periodicity between
changes in the sensor variables. Both articles have applied this approach to
the railway and energy sectors. Becoming a good candidate for future work
to apply them in dissection rules.

In recent years, the use of CI specifications has allowed the deployment
of digital twins [3, 30], and the investigation of cascading effects [42, 27]
between CIs in supply chains. FingerCI enables future work to use semi-
automatic dissection rules and specifications to reduce effort while retaining
the necessary context required for configuring and maintaining these SBSs
up-to-date. FingerCI opens the way for automated specification writing.
Experts steer the specification writing using dissection rules. Future work
could study how to automate dissection rules, which was beyond the scope
of this work since the main goal of FingerCI is automating the writing
of a CI specification while retaining expert decisions on what constitutes
a critical operation and procedure (which is what makes SBS opposed to
anomaly-based, where the expert is not involved at all).

33

8. Conclusion

This paper presented FingerCI, a solution that fingerprints a Critical
Infrastructure (CI) and collects the network, process, and behavior models
required by Specification-Based Systems (SBSs) [14, 32, 31, 10]. We argue
that automating the modeling of such infrastructures is crucial, given that
they frequently contain outdated legacy code and systems for which specifica-
tions are no longer accessible. Additionally, finding experts to develop these
specifications can be challenging. We show the solution proposed is capable
of automating process discovery solely based on CI network traffic, looking
beyond the causal relations between activities, and providing detection rules
based on behavior analysis. The specifications are compatible with existing
SBSs. Moreover, the evaluation conducted shows that FingerCI contributes
to an increase in the overall security of critical infrastructures and the timely
detection of malfunctions.

References

[1] C. M. Ahmed, J. Zhou, and A. P. Mathur. Noise matters: Using sensor
and process noise fingerprint to detect stealthy cyber attacks and au-
thenticate sensors in CPS. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC ’18, page 566–581, New York,
NY, USA, 2018. Association for Computing Machinery.

[2] M. R. Aliabadi, H. Haghighi, M. V. Asl, and R. G. Meybodi. Chal-
lenges of specification mining-based test oracle for cyber-physical sys-
tems. In 2020 11th International Conference on Information and Knowl-
edge Technology (IKT), pages 1–7, 2020.

[3] D. Allison, P. Smith, and K. Mclaughlin. Digital twin-enhanced incident
response for cyber-physical systems. In Proceedings of the 18th Inter-
national Conference on Availability, Reliability and Security, ARES ’23,
2023.

[4] F. Apolinário, N. Escravana, E. Hervé, M. L. Pardal, and M. Correia.
Fingerci: generating specifications for critical infrastructures. In Pro-
ceedings of the 37th ACM/SIGAPP Symposium on Applied Computing,
SAC ’22, page 183–186, New York, NY, USA, 2022. Association for
Computing Machinery.

34

[5] F. Apolinário, J. Guiomar, É. Hervé, S. Hrastnik, N. Escravana, M. L.
Pardal, and M. Correia. Comsec: Secure communications for baggage
handling systems. In European Symposium on Research in Computer
Security, pages 329–345. Springer, 2022.

[6] R. Berthier and W. H. Sanders. Specification-based intrusion detec-
tion for advanced metering infrastructures. In 2011 IEEE 17th Pacific
rim international symposium on dependable computing, pages 184–193.
IEEE, 2011.

[7] M. Caselli, E. Zambon, J. Amann, R. Sommer, and F. Kargl. Specifi-
cation mining for intrusion detection in networked control systems. In
25th USENIX Security Symposium, pages 791–806, 2016.

[8] Y. Chen, C. M. Poskitt, and J. Sun. Learning from mutants: using code
mutation to learn and monitor invariants of a cyber-physical system. In
IEEE Symposium on Security and Privacy, pages 648–660, 2018.

[9] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for
vehicle intrusion detection. In 25th USENIX Security Symposium, pages
911–927, 2016.

[10] A. Choquehuanca, D. Rondon, K. Quiñones, and R. León. Formal speci-
fication and validation of a gas detection system in the industrial sector.
In 2020 15th Iberian Conference on Information Systems and Technolo-
gies (CISTI), pages 1–6. IEEE, 2020.

[11] G. Combs. Tshark: dump and analyze network traffic, 2012.

[12] G. Dan and H. Sandberg. Stealth attacks and protection schemes for
state estimators in power systems. In 1st IEEE International Conference
on Smart Grid Communications, pages 214–219, 2010.

[13] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals
of business process management, volume 1. Springer, 2017.

[14] M. Eckhart and A. Ekelhart. A specification-based state replication
approach for digital twins. In Proceedings of the 2018 Workshop on
Cyber-Physical Systems Security and Privacy, pages 36–47, 2018.

35

[15] European Commission. Guidelines for the classification of information
in research projects. H2020 Programme, 2020.

[16] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 5(6):29, 2011.

[17] J. Feld. PROFINET: Scalable factory communication for all applica-
tions. In IEEE International Workshop on Factory Communication Sys-
tems, 2004. Proceedings, pages 33–38, 2004.

[18] C. Feng, V. R. Palleti, A. Mathur, and D. Chana. A Systematic Frame-
work to Generate Invariants for Anomaly Detection in Industrial Control
Systems. In Proceedings 2019 Network and Distributed System Security
Symposium, San Diego, CA, 2019. Internet Society.

[19] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. A. Beyah.
Who’s in control of your control system? device fingerprinting for cyber-
physical systems. In Network and Distributed System Security Sympo-
sium (NDSS), 2016.

[20] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera.
Modbus/DNP3 state-based intrusion detection system. In 24th IEEE
International Conference on Advanced Information Networking and Ap-
plications, pages 729–736, 2010.

[21] N. Goldenberg and A. Wool. Accurate modeling of Modbus/TCP for
intrusion detection in SCADA systems. International Journal of Critical
Infrastructure Protection, 6(2):63–75, 2013.

[22] K. E. Hemsley, E. Fisher, et al. History of industrial control system
cyber incidents. Technical report, Idaho National Lab (INL), 2018.

[23] W. Hurst and N. Shone. Critical infrastructure security: Cyber-threats,
legacy systems and weakening segmentation, pages 265–286. Academic
Press, United States, Sept. 2023.

[24] International Air Transport Association. Recommended practice 1745.
IATA, 2013.

36

[25] A. Kleinmann and A. Wool. A statechart-based anomaly detection
model for multi-threaded SCADA systems. In International Confer-
ence on Critical Information Infrastructures Security, pages 132–144.
Springer, 2015.

[26] M. Kneib and C. Huth. Scission: Signal characteristic-based sender iden-
tification and intrusion detection in automotive networks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 787–800, 2018.

[27] S. König, A. M. Shaaban, T. Hadjina, K. Gregorc, and A. Kutej. Identi-
fication and evaluation of cyber-physical threats on interdependent crit-
ical infrastructures. In Proceedings of the 18th International Conference
on Availability, Reliability and Security, ARES ’23, 2023.

[28] R. M. Lee, M. Assante, and T. Conway. Crashoverride: Analysis of the
threat to electric grid operations. Dragos Inc., March, 2017.

[29] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Discovering block-
structured process models from event logs - a constructive approach. In
International conference on applications and theory of Petri nets and
concurrency, pages 311–329. Springer, 2013.

[30] T. Lieskovan and J. Hajny. Security of smart grid networks in the cyber
ranges. In Proceedings of the 17th International Conference on Avail-
ability, Reliability and Security, ARES ’22, 2022.

[31] J. Lima, F. Apolinário, N. Escravana, and C. Ribeiro. BP-IDS: Using
business process specification to leverage intrusion detection in critical
infrastructures. In 31st IEEE International Symposium on Software Re-
liability Engineering (ISSRE 2020), 2020.

[32] J. Lima, N. Escravana, and C. Ribeiro. BPIDS-using business model
specification in intrusion detection. In Research in Attacks, Intrusions
and Defenses: 17th International Symposium, RAID 2014, volume 8688,
page 479. Springer, 2014.

[33] H. Lin, A. Slagell, Z. T. Kalbarczyk, P. W. Sauer, and R. K. Iyer. Run-
time semantic security analysis to detect and mitigate control-related
attacks in power grids. IEEE Transactions on Smart Grid, 9(1):163–
178, 2016.

37

[34] M. V. Mahoney and P. K. Chan. Learning rules for anomaly detection of
hostile network traffic. In 3rd IEEE International Conference on Data
Mining, pages 601–604, 2003.

[35] F. Mannhardt. Multi-perspective process mining. In BPM (Disserta-
tion/Demos/Industry), pages 41–45, 2018.

[36] F. Mannhardt, M. De Leoni, and H. A. Reijers. The multi-perspective
process explorer. In 13th International Workshops on Business Process
Management Workshops (BPM 2015), pages 130–134, 2015.

[37] R. Mitchell and I.-R. Chen. Specification based intrusion detection
for unmanned aircraft systems. In Proceedings of the first ACM Mobi-
Hoc workshop on Airborne Networks and Communications, pages 31–36,
2012.

[38] R. Mitchell and R. Chen. Behavior rule specification-based intrusion de-
tection for safety critical medical cyber physical systems. IEEE Trans-
actions on Dependable and Secure Computing, 12(1):16–30, 2014.

[39] D. Myers. Detecting cyber attacks on industrial control systems using
process mining. PhD thesis, Queensland University of Technology, 2019.

[40] D. Myers, K. Radke, S. Suriadi, and E. Foo. Process discovery for
industrial control system cyber attack detection. In IFIP International
Conference on ICT Systems Security and Privacy Protection, pages 61–
75. Springer, 2017.

[41] D. Myers, S. Suriadi, K. Radke, and E. Foo. Anomaly detection for
industrial control systems using process mining. Computers & Security,
78:103–125, 2018.

[42] L. Papadopoulos, A. Karteris, D. Soudris, E. Muñoz Navarro, J. J.
Hernandez-Montesinos, S. Paul, N. Museux, S. Kuenig, M. Egger,
S. Schauer, J. Hingant Gómez, and T. Hadjina. Praetorian: A frame-
work for the protection of critical infrastructures from advanced com-
bined cyber and physical threats. In Proceedings of the 18th Interna-
tional Conference on Availability, Reliability and Security, ARES ’23,
2023.

38

[43] F. Reuschling, N. Carstengerdes, T. H. Stelkens-Kobsch, K. Burke,
T. Oudin, M. Schaper, F. Apolinário, I. Praça, and L. Perlepes. Toolkit
to enhance cyber-physical security of critical infrastructures in air trans-
port. Cyber-Physical Threat Intelligence for Critical Infrastructures Se-
curity, pages 254–287, 2021.

[44] L. Rosa, M. Freitas, S. Mazo, E. Monteiro, T. Cruz, and P. Simões. A
comprehensive security analysis of a SCADA protocol: From OSINT to
mitigation. IEEE Access, 7:42156–42168, 2019.

[45] A. Rozinat and W. M. van der Aalst. Conformance testing: Measuring
the fit and appropriateness of event logs and process models. In Inter-
national Conference on Business Process Management, pages 163–176.
Springer, 2005.

[46] G. Saraiva, F. Apolinário, and M. L. Pardal. Im-disco: Invariant mining
for detecting intrusions in critical operations. In European Symposium
on Research in Computer Security, pages 42–58. Springer, 2023.

[47] K. Stouffer, S. Lightman, V. Pillitteri, M. Abrams, and A. Hahn. Guide
to industrial control systems (ICS) security. Technical Report NIST
Special Publication (SP) 800-82 Rev. 2, National Institute of Standards
and Technology, June 2015.

[48] S. D. Sudarsan, D. Mohan, and S. Rohit. Industrial control systems-
legacy system documentation and augmentation. In IEEE 3rd Inter-
national Conference on Computing, Communication and Security (IC-
CCS), pages 167–170, 2018.

[49] R. Tan, H. H. Nguyen, E. Y. Foo, D. K. Yau, Z. Kalbarczyk, R. K.
Iyer, and H. B. Gooi. Modeling and mitigating impact of false data
injection attacks on automatic generation control. IEEE Transactions
on Information Forensics and Security, 12(7):1609–1624, 2017.

[50] The European Commission. Council directive 2008/114/EC L
345/75/82 of 8 december 2008 on the identification and designation
of european critical infrastructures and the assessment of the need to
improve their protection. Official Journal of the European Union, 2008.

39

[51] P. Uppuluri and R. Sekar. Experiences with specification-based intrusion
detection. In International Workshop on Recent Advances in Intrusion
Detection, pages 172–189. Springer, 2001.

[52] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Va-
lente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg. Limiting the
impact of stealthy attacks on industrial control systems. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1092–1105, 2016.

[53] W. van der Aalst. Process mining: discovery, conformance and enhance-
ment of business processes, volume 2. Springer, Heidelberg, 2011.

[54] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowl-
edge and Data Engineering, 16(9):1128–1142, 2004.

[55] B. F. van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and
W. M. van der Aalst. The ProM framework: A new era in process
mining tool support. In International Conference on Application and
Theory of Petri Nets, pages 444–454. Springer, 2005.

[56] S. K. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens.
A comprehensive benchmarking framework (CoBeFra) for conformance
analysis between procedural process models and event logs in ProM. In
2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pages 254–261, 2013.

[57] C. Wakup and J. Desel. Analyzing a TCP/IP-protocol with process
mining techniques. In International Conference on Business Process
Management, pages 353–364. Springer, 2014.

[58] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. de Medeiros.
Process mining with the heuristics miner-algorithm. Technical report,
Technische Universiteit Eindhoven, 2006.

[59] K. Wolsing, L. Thiemt, C. v. Sloun, E. Wagner, K. Wehrle, and
M. Henze. Can industrial intrusion detection be simple? In Com-
puter Security – ESORICS 2022: 27th European Symposium on Re-
search in Computer Security, Copenhagen, Denmark, September 26–30,

40

2022, Proceedings, Part III, page 574–594, Berlin, Heidelberg, 2022.
Springer-Verlag.

[60] M.-K. Yoon and G. F. Ciocarlie. Communication pattern monitoring:
Improving the utility of anomaly detection for industrial control systems.
In NDSS Workshop on Security of Emerging Networking Technologies,
2014.

41

