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Abstract—Fault-tolerant distributed algorithms such as Reli-
able Broadcast, Causal Broadcast, Total Order Broadcast, and
Consensus, are at the core of many modern distributed systems.
However, the development of distributed algorithms by humans
is a laborious and complex process. This work presents a novel
approach to generating distributed algorithms using Generative
Artificial Intelligence that allows for automating the process
of generating such algorithms. The paper also summarizes
our initial results on using the approach to generate Reliable
Broadcast algorithms.

Index Terms—Fault-Tolerant Distributed Algorithms, Reliable
Broadcast, Automatic Algorithm Generation, Generative AI,
Reinforcement Learning, Automatic Algorithm Validation

I. INTRODUCTION

Distributed systems are made up of several components that
are connected by communication networks. During normal
operation, some of these components may fail, for example,
due to power outages, software defects, or malicious attacks.
These flaws can affect the overall regular operation of the
system. As a result, fault tolerance must be provided so that
the distributed system can maintain normal operation even in
the presence of failures.

For this reason, we need to design and implement fault-
tolerant distributed algorithms [4], [9]. These algorithms have
been widely studied over the years for different problems
(Reliable Broadcast, Causal Broadcast, Total Order Broadcast
and Consensus) and different faults (Crash, Omission, Byzan-
tine). However, the process of creating a fault-tolerant dis-
tributed algorithm is a manual, time-consuming, and complex
procedure, from the development of the algorithm itself to
its validation. This is especially true when considering flaws,
because the algorithms are sophisticated and small adjustments
frequently impose a complete redesign. Furthermore, modern
fault-tolerant algorithm research does not focus just on cor-
rectness: efficiency is also a major concern, increasing the
complexity of the algorithm development process.

In this paper, we propose a new approach that aims to
automatically generate fault-tolerant distributed algorithms
using machine learning. More precisely, we intend to use
generative AI to generate fault-tolerant distributed algorithms.
Our claim is that by having a human input a description of
the algorithm he needs, it is possible to obtain a correct and
efficient algorithm. We believe that this can be the beginning
of a new path of research in the distributed computing field
that can get adoption in the next years.

Generative Artificial Intelligence (Generative AI) first ap-
peared with Generative Adversarial Networks (GANs), a class
of deep learning algorithms capable of generating new samples
(e.g., images, videos) from examples [8]. More recently,
the area evolved to the generation of text and code, with
ChatGPT1 and GitHub CoPilot2. ChatGPT, in particular, is
gaining traction / adoption [19] due to its ability to generate
text and answer questions in prose, poetry, or code.

We apply this idea of generative AI to the generation of dis-
tributed algorithms. In an attempt to experiment with current
generative AI solutions to the task of generating fault-tolerant
distributed algorithms, we have tested, on both ChatGPT (3.5
version) and GitHub CoPilot, the generation of a fault-tolerant
Reliable Broadcast algorithm. Interestingly, when asked about
Byzantine fault-tolerant Reliable Broadcast [9] algorithms,
ChatGPT correctly mentioned the classical Bracha algorithm
[3]. However, when asked to provide pseudo-code for such an
algorithm, it provided an inefficient fault-tolerant broadcast
algorithm or presented an algorithm that was not totally
correct. On the GitHub Copilot test, we have not obtained
any code for the defined problem.

It is possible to envisage various approaches to achieve this
goal. In the paper, we present the first, based on Reinforcement
Learning (RL), a form of learning based on experience –
in this case, the experience of generating algorithms. Our
approach follows an iterative process over two phases: gen-
eration, to obtain candidate algorithms, and validation, to
evaluate their correctness. The process goes on discovering
new algorithms and converging towards one that is correct and
efficient in terms of a set of metrics. In this paper, we present
a first application of the proposed approach to the generation
of fault-tolerant Reliable Broadcast algorithms: a non-trivial
distributed algorithm to which there are many solutions in the
literature [2], [9].

Research on the automatic generation of algorithms has
focused mainly on security protocols [20], [21]. For distributed
algorithms, we identified a work that automatically synthesizes
threshold-based distributed algorithms [15] and another that
automatically investigates and validates consensus algorithms
[23], both using brute-force approaches. These works are
limited and are not based on any type of machine learning
or AI. On the other hand, works based on AI to generate

1https://openai.com/blog/chatgpt/
2https://github.com/features/copilot
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code have been concentrated on local, non-distributed, single-
threaded code and mainly using supervising machine learning
techniques [1], [17]. Using Reinforcement Learning, we have
identified two interesting works: one that uses reinforcement
learning to optimize models to generate code [16] and another
that uses reinforcement learning to generate matrix multiplica-
tion algorithms [7]. However, the two works are very different
from what we propose.

The rest of the paper is organized in the following way:
Section II presents the scheme for generating distributed
algorithms that utilize reinforcement learning. Section III
summarizes our results on applying the approach to Reliable
Broadcast. Section IV discusses future work, and Section V
concludes the paper.

II. GENERATION OF DISTRIBUTED ALGORITHMS

For the task of learning to solve a distributed problem, we
decided to emulate the trial and error strategy used by human
researchers to solve this problem. Consequently, we decided
to use Reinforcement Learning [22]. Reinforcement Learning
is a process based on experience in which an agent chooses
actions in specified states and receives rewards depending on
the choices. The states are the observations that the agent gets
from its environment. How the agent acts is defined by the
policy, which in this case is a map of the perceived states to
the actions to be conducted in those situations. For each action
chosen, the agent receives a reward reflecting its decision. With
time, the agent will begin to understand the value of each
state, which is the total amount of reward the agent expects to
accrue in the future, beginning with that state. While rewards
are short-term indications, values translate the state’s long-
term attractiveness, taking into consideration the states that
are expected to follow, as well as the rewards related to them.

The reason for this method is that the agent will be capable
of learning/generating a right and efficient algorithm by devel-
oping several algorithms, either accurate or erroneous, without
prior knowledge of the state of the art of concrete solutions
of distributed algorithms. Furthermore, other machine learning
techniques such as supervised or unsupervised learning would
require a dataset with distributed algorithms to train the agent.
To our knowledge, such a dataset does not exist and would be
laborious and complex to create.

As explained above, our approach iterates in two phases:
generation and validation. The first phase, generation, cor-
responds to the problem of code/program generation, but
with important distinctions, since distributed algorithms run
in parallel across several nodes and are susceptible to errors,
whereas local programs are not. For this phase, we have
designed an agent that can construct correct and efficient
algorithms based on the inputs provided by researchers, which
include assumptions about the environment, faults to tolerate,
and the features of the algorithm. Our system is designed to
be adaptable, allowing researchers to tweak the specification
and acquire new protocols.

The second phase, validation, corresponds to the problem
of validating the algorithms generated. In this phase, our aim
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Fig. 1. Procedure of the generation of one algorithm.

is to create a second agent capable of validating, in due
time, the algorithm generated against the properties of the
distributed problem to be solved. For this purpose, research on
automatic validation of distributed algorithms has been using
a set of model-checking languages and frameworks such as
the TLA+ language and tools [13], the Spin framework with
the PROMELA language [6] or the ByMC framework [12].
We have decided to use the Spin/PROMELA framework. This
choice is based on the flexibility presented by the tool that
allows different algorithms to be modeled, as well as the ex-
istence of extensive documentation and an active community.

III. GENERATING RELIABLE BROADCAST ALGORITHMS

We have explored the approach on a more simple distributed
problem: Reliable Broadcast. A Reliable Broadcast algorithm
ensures, essentially, that every message broadcasted by a
correct process is eventually delivered by all correct processes.
More specifically, the protocol is defined by the following
properties [5], [9]:

• RB-Agreement: if a correct process delivers a message m,
then all correct processes will eventually deliver the same
message m;

• RB-Validity: if a correct process broadcasts a message m,
then it will eventually deliver that message m;

• RB-Integrity: for any message m, every correct process
delivers m at most once and only if m was previously
broadcast by some correct process.

Next, we explain how reinforcement learning was applied
to the generation of Reliable Broadcast algorithms.

The solution considers an agent that has the goal of gener-
ating correct and efficient Reliable Broadcast algorithms, that
is, algorithms that satisfy the Reliable Broadcast properties
and minimizes the efficiency metrics, such as the number
of messages sent, the number of communication steps, and
the number of messages needed to execute the algorithm.
The architecture of the solution is made up of a main agent,
RB-Learner, which collaborates with an auxiliary agent, RB-
Oracle.

The entire procedure to generate a correct and efficient
algorithm is represented in Figure 1. The procedure begins
with the definition of the inputs for the problem to be solved.
In this step, users give the agents some information and pre-
existing knowledge. The learning inputs include the number
of simulations and episodes to run. The generation process
inputs include the rewards and heuristics to be used, both
having domain knowledge about the problem [14]. The val-
idation process inputs include the specifications to validate



the algorithm, such as the failure modes and their tolerance
ratios, the number of nodes to model, and the properties to be
validated.

After the definition of the inputs, the learning phase
starts with the RB-Learner agent executing a set of learning
episodes. In each episode, RB-Learner executes the generation
process. During this process, the agent analyzes a group
of heuristics [18], i.e. rules that discard invalid actions in
specific states such as the impossibility of generating an empty
algorithm. After the analysis, the agent selects and adds an
action, i.e. representations of behavior such as sending or
delivering messages, to the algorithm. A policy guides the
selection of the action. In this work, the agent follows the
Upper Confidence Bound (UCB) policy [22], a policy based
on the idea of being optimistic under uncertainty For each
added action, the agent receives a reward representing the
cost of the action related to the efficiency of the action for
the algorithm. For example, an action that instructs processes
to send only one message will have a lower cost than an action
that instructs processes to send messages to all the processes,
since it represents a higher number of messages being sent
during the execution of the algorithm. The generation process
was implemented using the Q-Learning [22] reinforcement
learning algorithm, a broadly used algorithm that employs a
table designated QTable to map the values of each action to
each state. When the algorithm is complete, the RB-Learner
gives it to the RB-Oracle agent, which executes the validation
process, i.e., assesses whether the generated algorithm actually
solves the problem. In this process, the agent uses the Spin
[10] framework and the PROMELA language. In essence, Spin
simulates the execution of the created algorithm in a specific
system model, performing an exhaustive exploration of the
state space, and verifying if none of the three RBcast properties
(RB-Agreement, RB-Validity, and RB-Integrity) is violated.
Then, the RB-Oracle returns the validation result to the RB-
Learner, which it uses as part of the generation process, i.e.
RB-Leaner receives a final reward depending if the algorithm
is correct or not.

When all learning episodes are executed, the learning phase
ends, followed by the optimization phase. In this phase, the
agent performs a last episode called optimization episode. The
agent runs the optimal generation process in this episode to
build the optimal algorithm based on the knowledge gathered
from the previous episodes. Since the agent may not be able to
learn to solve the problem, the validation procedure is repeated
one more time to ensure that the optimal algorithm is correct.
In the end, a correct and efficient algorithm is exported.

We conducted experiments with the objective of generating
correct and efficient No-Failure tolerant, ⌊(N − 1)/2⌋ Crash-
Failure tolerant and ⌊(N − 1)/3⌋ Byzantine-Failure tolerant
algorithms. We executed a total of 12.000 generation episodes
for each experiment. It took ±9 hours to run the No-Failure
experiment, ±3 days to run the Crash-Failure experiment, and
±7 days to run the Byzantine-Failure experiment. All tests
were run on a Debian 10 machine with 32 vCPUs and 64 GB
of memory.

Figure 2 presents the total number of algorithms generated
in each test. As expected, with the increase in the complexity
of the problem to solve – from a No-Failure tolerant to a
Byzantine-Failure tolerant – the agent needs to generate and
explore more algorithms to converge to a correct and efficient
algorithm. In all the tests performed, our agent successfully
generated an efficient and correct algorithm, equivalent to
one already presented in the literature. In the No-Failure
experiment, it converged to the algorithm presented in [4].
In the Crash-Failure experiment, it converged to the algorithm
presented in [9]. In the Byzantine failure case, although the
agent generated an algorithm equivalent to the one presented
in [11], at the end, the agent converged to a new efficient algo-
rithm presented in Figure 3. After an analysis, we concluded
that this algorithm works only for F = 1 and N ≥ 4 ∈ N,
where F is the maximum number of faulty processes in the
system and N is the total number of processes in the system.
Compared to the Imbs and Raynal algorithm [11], the new
Figure 3 presents two improvements: (1) Figure 3 sends a
total of (N − 1) + N(N − 1) messages, instead of N2 + N
messages sent by the algorithm in [11]; and (2) it only needs
F + 1 messages to deliver, instead of (N + F )/2 needed by
the algorithm in [11]. Since, for F = 1 and N ≥ 4 ∈ N, we
have (N+F )/2 > F +1, then the new algorithm is also more
efficient from a message delivery point of view.
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Fig. 2. Total number of algorithms generated in each experiment.

IV. FUTURE WORK

The use of machine learning techniques to generate new
information/data – a field called Generative AI – is receiving
attention these days, mainly due to products such as GitHub
CoPilot and ChatGPT. Similarly to those products, in this
work, we propose the use of reinforcement learning techniques
to solve a specific but complex problem: to generate correct
and efficient fault-tolerant distributed algorithms. This ap-
proach has already been explored with a distributed problem,
the Reliable Broadcast problem, and, by the results obtained,



1: when RB-Broadcast(m) do:
2: SEND to neighbours(<type0,m>) if received (<type0,m>)

from 0 distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: SEND to neighbours(<type1,m>) if received (<type0,m>)

from 1 distinct parties and not already sent;
6: SEND to neighbours(<type1,m>) if received (<type1,m>)

from F + 1 distinct parties and not already sent;
7: DELIVER(<m>) if received (<type1,m>) from F + 1 distinct

parties and not already delivered;
8: STOP if received (<type0,m>) from 0 distinct parties;

Fig. 3. Generated Byzantine-tolerant algorithm.

we identify the potential and capacity of this strategy to solve
different and more complex distributed algorithms. We believe
that being this work the beginning of a new field of research
in the distributed computing field, a research community can
grow around the approach that we purpose, with the objective
of increasing its capacity to solve more distributed problems,
discovering new algorithms, and promoting research.

However, there are two main issues that will need to be
addressed in the future: (1) with the increase in the complexity
of the distributed problem to be solved, the complexity and,
probably, the size of the algorithm to be generated will also
increase. Therefore, this can result in a higher number of
possible actions and states to be explored, which consequently
will lead to an increase in the time needed to train the agent.
To help address this issue, more computing resources will
be needed to train the agent in due time. For example, for
Reliable Broadcast, it was possible to obtain solutions in a
single computer, whereas for other distributed algorithms (e.g.,
Consensus, Total Order Broadcast) we may need parallel/dis-
tributed computing. Another possible solution is to define
new heuristics in order to reduce the number of states and
algorithms to be explored; (2) the fact that the agent relies on
inputs from previous works can bias the agent when finding
distributed algorithms. To address this issue, it is important
to decouple the agent from data based on previous work by
decreasing the number of inputs necessary to be given to the
agent. Also, new inputs can be created and added to the agent,
e.g., thresholds that are not based on previous works, but can
help to generate new algorithms.

V. CONCLUSION

Over the years, various problems and variants of fault-
tolerant algorithms have been discussed. However, this study
is intricate and has always been grounded in a human-oriented
process. We suggest a method to automate this procedure
based on Reinforcement Learning techniques that can generate
correct and efficient algorithms. A first study with the proposed
method successfully demonstrates the capacity of the approach
in generating correct and efficient Reliable Broadcast algo-
rithms. Based on the characteristics of the problem, the paper
shows that the solution can produce accurate and effective al-
gorithms, either already developed or new. To our knowledge,
this is the first work to combine the fields of generation and

validation into an autonomous process capable of producing
accurate and effective distributed algorithms using machine
learning.
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