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ABSTRACT
Fault-tolerant algorithms, such as Reliable Broadcast, assure the correct operation of modern distributed
systems, even when some of the system nodes fail. However, the development of distributed algorithms is
a manual and complex process, where slight changes in requirements can require a complete redesign of
the algorithm. To automate the process of developing such algorithms, this work presents a new approach
that uses Reinforcement Learning to synthesize correct and efficient fault-tolerant distributed algorithms.
This work shows the first application of the approach on the synthesis of fault-tolerant Reliable Broadcast
algorithms. The presented technique is capable of synthesizing correct and efficient algorithms with the
same performance as others available in the literature as well as a new Byzantine tolerant algorithm, in only
12, 000 learning episodes. Based on the success of this implementation, we aim, in the future, to extend this
technique to other distributed algorithms such as Consensus.

INDEX TERMS Fault-Tolerant Distributed Algorithms, Reliable Broadcast, Program Synthesis, Rein-
forcement Learning, Program Verification, Model-Checking

I. INTRODUCTION
Distributed systems are made of multiple components inter-
connected by communication networks. Examples of modern
and widely used distributed systems are cloud applications
[2] and blockchains [65]. During normal operation, some of
these components may fail, e.g., due to power loss, software
bugs, or malicious attacks. These faults can compromise
the normal functioning of the entire system. Therefore, it
is necessary to provide fault-tolerance properties so that the
distributed system can maintain its normal execution, even
in the presence of faults. For this purpose, it is important to
design and implement fault-tolerant distributed algorithms
[11], [61].

Fault-tolerant distributed algorithms have been widely
studied and developed over the years [6], [8], [9], [16], [47],
exploring different aspects such as the problem to solve [6],
[47], the fault model [26] or the system architecture [8],
[16]. However, the process of studying and designing a fault-
tolerant algorithm is a manual, time-consuming and complex
endeavor [26]. This is especially true when malicious faults
are considered, where algorithms are complicated, and slight
changes often require a complete redesign. Furthermore, cur-

rent research on fault-tolerant algorithms does not focus only
on correctness: efficiency is also a very important concern,
leading to an increase in the complexity of the algorithm
development process.

The journey to develop a fault-tolerant algorithm starts
with defining the problem the algorithm will solve, e.g., Re-
liable Broadcast, shortened in this paper as RBcast. Next, as-
sumptions about the environment (system model) are made,
e.g., if the system is synchronous or asynchronous (i.e., if
there are assumptions about time or not) and the failures
that can occur. The researchers then consider the strategy
to design the distributed algorithm. In this stage, in addition
to the difficulty in creating the algorithm, researchers may
be biased by previous related papers and algorithms. After a
trial-and-error process, the distributed algorithm is obtained.
This also involves a verification process to assess whether the
generated algorithm achieves the goal and solves the problem
correctly. This can be done by writing a manual proof or by
doing verification using a model checker [14] or a theorem
prover [7].

In this work, we present a new approach to automate
the process of synthesizing fault-tolerant Reliable Broadcast
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algorithms. Although only applied to this class of algorithms,
we believe this approach can be extended to the synthesis
of other distributed algorithms. Therefore, this can be the
beginning of a new path of research in the field of distributed
computing that can be adopted to improve and design new
distributed systems. This comes at a time when there is an
increasing need for higher scale and even more geograph-
ically dispersed deployments of distributed systems with
the emergence of technologies such as Internet of Things
(IoT) [42] and Distributed Ledger technologies (DLTs) [40].

Our technique is based on the idea of Generative Artificial
Intelligence (AI): from a specific description of the algorithm
needed and some previous knowledge, the approach will
be capable of synthesizing a correct, efficient, potentially
new algorithm. Besides first appearing associated with Gen-
erative Adversarial Networks (GANs) [34], more recently,
Generative AI evolved to a broader scope of AI solutions
capable of generating new data based on pre-existing knowl-
edge [25], [41], [45]. Solutions such as ChatGPT 1 and
GitHub CoPilot 2 gained notoriety with the generation of text
and code.

The core of our approach is an iterative process with two
phases: generation, to obtain candidate algorithms, and ver-
ification, to evaluate their correctness. The process goes on
discovering new algorithms and converging towards one that
is correct and efficient in terms of a set of metrics. For the first
phase, generation phase, we propose an agent that, based on
a machine learning technique, Reinforcement Learning [51],
[70], [73], synthetizes distributed algorithms. For the second
phase, verification phase, we propose an additional agent
that assesses the correctness of the generated algorithms. The
search for a verification process for distributed algorithms has
been ongoing for years [23], [24], [49], [66]. We identified a
group of possible frameworks that the agent can use, such as
the TLA+ language and tools [53], the Spin framework with
the PROMELA language [46], or the ByMC framework [52],
to new a few. We opted to use Spin/PROMELA, as explained
later (see section VIII).

There are already a few works an automatic synthe-
sis of distributed algorithms: three focused on mutual ex-
clusion algorithms [4], [36], [37], two on consensus algo-
rithms [30], [74], one on fault-tolerant distributed algo-
rithms [56], and one on leader election algorithms [38].
However, none of them uses machine learning techniques.
As far as we know, machine learning techniques have been
used only for the generation of local, non-distributed code,
mostly using supervised and unsupervised machine learning
techniques [3], [18], [58], [68]. In this work, we use Rein-
forcement Learning that allows running an agent following
a trial and error process, without the necessity of having
a dataset with fault-tolerant distributed algorithms (i.e., it
is not supervised). Such a dataset would be laborious and
complex to create, as it would require a large set of pre-

1https://openai.com/blog/chatgpt/
2https://github.com/features/copilot

existing algorithms that solved the problem. In relation to
Reinforcement Learning, the most interesting works that
we have found were: a framework to improve pre-trained
language models for program synthesis tasks through deep
reinforcement learning [57], a work that uses reinforcement
learning to generate matrix multiplication algorithms [22],
a work that uses reinforcement learning to generate tests
for Android GUI applications [39], and a work that uses
reinforcement learning coupled with deductive reasoning for
program synthesis [28]. However, all these works are very
different from ours. To the best of our knowledge, this work
is the first to present an approach based on a form of machine
learning, Reinforcement Learning, in the field of distributed
computing, to generate distributed algorithms.

The main contributions of the paper are: (1) a new ap-
proach for synthesize distributed fault-tolerant algorithms
using machine learning, instead of manual development by
human beings, (2) an intelligent agent to generate RBcast
distributed algorithms, and (3) an experimental evaluation of
the approach and the agent, showing a generation of correct
RBcast algorithms and a new efficient Byzantine-tolerant
algorithm.

II. RELIABLE BROADCAST
This section presents RBcast, the distributed problem for
which we want to find algorithms to solve.

A. SYSTEM MODEL
The system model considered for the RBcast algorithms we
want to synthesize is inspired by the modular approach to
fault-tolerant problems by Hadzilacos and Toueg [26]. The
system is composed of a static group of N processes, i.e.,
there are no joins or leaves during execution. We assume a
fully connected point-to-point network, i.e., that all processes
are connected with each other through links and communi-
cate by passing messages. We also assume that the system is
asynchronous, i.e., that the communication delays are neither
upper-bounded nor respect a global stabilization time.

A process is the actor of the distributed system that exe-
cutes a set of specific ordered actions, together designated as
an algorithm. All processes in the system execute the same
algorithm.

Communication links allow processes to exchange mes-
sages by transporting the message from sender to the re-
ceiver. We assume that the links are reliable, authenticated,
and provide integrity on the messages, meaning that there
are no corrupted, lost or duplicated messages. However,
messages may arrive out of order.

Processes use messages to share data between them. Typi-
cally, a message contains data such as the message content
(used by the logic of the system) and an identifier that can
contain protocol type, sender, and sequence number.

System processes can be correct or faulty. We con-
sider three failure modes: No-Failure, Crash-Failure, and
Byzantine-Failure. In the simplest, No-Failure, we assume
that there are no failures. In the Crash-Failure mode [5], [20],
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FIGURE 1. Process/dataflow of the proposed solution.

processes may stop operating and never recover. Assuming
a system with N ∈ N processes, the maximum number
of faulty processes F ∈ N due to a crash failure that can
be tolerated in the system is F = ⌊(N − 1)/2⌋ [10]. In
the Byzantine-Failure mode [54] faulty processes may have
arbitrary behavior, e.g., they may execute other actions not
defined by the algorithm or even not execute any action at
all. Unlike a crash failure, when a process suffers a Byzantine
failure (or, “is Byzantine”), it can continue to work. Assum-
ing a system with N processes, the maximum number of
faulty processes F due to a Byzantine failure that can be
tolerated in the system is F = ⌊(N − 1)/3⌋ [10], [16].

B. PROBLEM DEFINITION
A RBcast algorithm ensures, essentially, that every message
broadcast by a correct process (an RB-Broadcast event) is
eventually delivered by all correct processes. The protocol is
defined by the following properties 3 [16], [26]:

• RB-Agreement: if a correct process delivers a message
m, then all correct processes will eventually deliver the
same message m;

• RB-Validity: if a correct process broadcasts a message
m, then it will eventually deliver that message m;

• RB-Integrity: for any message m, every correct process
delivers m at most once and only if m was previously
broadcast by some (correct or incorrect) process.

The term correct refers to a process that follows the
algorithm. Otherwise, we call it incorrect or faulty.

Sometimes a system requires stronger properties than
these, e.g., properties about the order of message delivery.
To provide these extra properties, variants of the RBcast
problem were specified, such as FIFO Broadcast, where
messages broadcast by the same process are delivered in the
order they were broadcast; Atomic Broadcast, that assures all
processes deliver the same messages in the same order [16],
[26], [50]; or Terminating Reliable Broadcast, that assures
that all correct processes eventually deliver something [43].
Nevertheless, in this work, we use only the default RBcast to
illustrate our approach to automated algorithm generation.

III. LEARNING THE RBcast ALGORITHM
Machine learning techniques can be divided into three broad
classes: supervised machine learning – to learn from labeled
data, unsupervised machine learning – to learn without la-
beled data – and reinforcement learning – to learn from a

3Other works may present an equivalent definition based on additional
properties such as No-Duplication, Consistency, or Termination.

reward mechanism. In this task of learning how to solve a
distributed problem, we decided to emulate the trial and er-
ror strategy used by human researchers to solve this problem.
Therefore, we decided to use Reinforcement Learning [51],
[70], [73].

Reinforcement Learning is based on the idea of an agent
choosing actions in specific states. The states are the obser-
vations that the agent receives from the environment where
it acts. The way in which the agent acts is defined by the
policy, in this case, a map from perceived states to actions
to be taken in those states. Then, by choosing an action in a
state, the agent will receive a reward, reflecting its choice.
With time, the agent will start learning the value of each
state, i.e., the total amount of reward the agent can expect
to accumulate over the future, starting from that state. While
rewards are short-term indicators, the values reflect the long-
term desirability of that state, taking into account the states
that are likely to follow and the rewards associated with them.
We use model-free Reinforcement Learning, in the sense that
the agent does not create a representation of the behavior of
the environment, unlike model-based approaches. A model-
based agent would need to have a model of the dynamics
of the environment, allowing to predict state transitions and
rewards, e.g., given the current algorithm, the agent could
plan future actions and their rewards.

In this work, we propose a novel approach to synthesize
fault-tolerant Reliable Broadcast algorithms based on the
Reinforcement Learning technique. Figure 1 presents the
entire process of the approach, divided into three phases:

1) Definition of inputs: in this phase, the user defines the
inputs in order to describe the specifications of the
algorithm to be synthesized. This is the phase where
the user will input some existing knowledge of the area
of distributed algorithms (e.g. the fault tolerance ratio);

2) Learning Phase: in this phase, the approach will learn
to solve the problem by experience, through the gener-
ation of multiple algorithms, both correct or incorrect;

3) Optimization Phase: in this last phase, the proposed
approach will generate a correct and efficient algorithm
– the optimal algorithm – based on the knowledge
obtained from the Learning Phase.

Although we believe and aim, in the future, to apply
this approach to other distributed algorithms, in this work,
we present the first study applied to a single problem: the
Reliable Broadcast problem. In the following sections, we
explain the specific synthesis process and the definitions of
the algorithm adopted in this work, namely, the structure,
messages, types, conditions, and efficiency.

A. SYNTHESIS PROCESS
Our solution considers an agent that has the goal of synthesiz-
ing correct and efficient RBcast algorithms, i.e., algorithms
that satisfy the RBcast properties (cf. Section II-B) and min-
imizes the efficiency metrics (cf. Section III-E). The solution
is composed of a main agent, RB-Learner, that collaborates
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FIGURE 2. Process/dataflow of synthesizing an optimal algorithm. The learning phase is represented by the blue components and the optimization phase is
represented by the red components.

Simulation Possible Generation Process Possible Verification Process Possible
inputs Values inputs Values inputs Values
Number of {1,2,3,...} Rewards {...,-1,0,1,..} Failure modes to model {No-Failure, Crash-Failure or
simulations Byzantine-Failure}
Number of learning {1,2,3,...} Heuristics to (cf. Sec. IV-E) System models to use {e.g. [N = 3, F = 0], [N = 3, F = 1],
episodes be applied [N = 4, F = 1]} for No-,Crash- and

and Byzantine-Failure, respectively
Properties to be verified {RB-Validity, RB-Agreement, RB-Integrity}

TABLE 1. Inputs used in the paper for synthesis of RBcast algorithms.

with an auxiliary agent, RB-Oracle, as represented in Fig-
ure 2. The entire execution of the solution for one algorithm
is designated as a simulation. The process starts with the
definition of the inputs of the simulation. Table 1 summarizes
these inputs. The simulation inputs include the number of
simulations and learning episodes to run. The generation
process inputs include the rewards and heuristics to be used,
the last two containing domain knowledge about the problem
(see Sections IV-C and IV-E). The verification process inputs
include the specifications to verify the algorithm, such as the
failures to model, the system architecture to model, and the
properties to be verified.

The simulation starts with the learning phase which is
composed of the execution of a set of learning episodes.
In each of these episodes, the RB-Learner agent runs the
generation process, i.e., generates one algorithm and gives
the algorithm to the RB-Oracle agent, which executes the

verification process, i.e., assesses whether the generated al-
gorithm actually solves the problem. Then, the RB-Oracle
returns the verification result to the RB-Learner, which it uses
as part of the learning phase. When all learning episodes are
executed, the agent runs one optimization episode composed
by the execution of a single optimal generation process. In
this episode, the agent generates the optimal algorithm based
on the knowledge obtained from the learning episodes. The
optimal algorithm may not be correct because the agent may
not be able to learn to solve the problem, so the verification
process is executed one final time to analyze the correctness
of the optimal algorithm. In the rest of the work, we often
use the term episodes to refer to learning episodes, as the
optimization episode is a single one and it has a specific goal.

With this technique, the idea is that the agent will be
able to learn/synthesize a correct and efficient algorithm by
generating multiple algorithms – either correct or incorrect –
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without the need for prior knowledge of the state of the art in
RBcast.

B. STRUCTURE
RBcast has been studied extensively over the years [6], [8],
[9], [16], [47], [48]. The papers present RBcast algorithms
with different structures. For example, Bracha and Toueg
presented algorithms organized in execution steps [9], [10],
while more recent work favours a structure based on event
handling routines [47], [48]. We follow the latter, an event-
oriented structure.

We assume that the structure of the algorithm is composed
of two events: the RB-Broadcast event, triggered only once
by the process that starts the execution of the algorithm;
and a receive event, triggered every time a process receives
a message. Each event can contain a set of actions, i.e.,
instructions that are executed when the event is triggered.
The execution of the algorithm ends when there are no more
messages to be received.

C. MESSAGES AND TYPES
As discussed in Section II-A, messages contain multiple
elements, e.g., content, sender, and protocol type. To dif-
ferentiate between the different communication steps of the
algorithm, the messages must have a specific element called
type. In this work, we follow previous RBcast works [9],
[48] by representing messages in the format <t,m>, where
t symbolizes the type of the message, and m the message
itself. Previous works define types as words like echo or init
[9], [47], but in this work, we designate types as type0, type1,
type2, etc. The reason for this option is that the types are
generated automatically, not by a human. But afterward, we
can translate the type0 into init and the type1 into echo.

D. INSTRUCTIONS AND CONDITIONS
Instructions are statements defining behavior that can be
executed by the algorithm. Conditions are statements used to
evaluate when a specific instruction can be executed and are
associated with the if clause. To solve Reliable Broadcast, we
have defined instructions related to sending and delivering
messages and defined 2 types of conditions: the true and
the threshold conditions. The true condition is a neutral
condition representing an always true behavior. Threshold
conditions are defined by two properties: the message <t,m>
and the threshold expression, which is the number of mes-
sages needed to satisfy the condition. For example, the state-
ment SEND to all (<type1,m>) if received (<type0,m>)
from F + 1 distinct processes means that the instruction
SEND to all (<type1,m>) can only be executed, i.e. send
a message m of type type1 to all the processes in the system,
if the process has received a message m of type0 from at least
F + 1 processes (the threshold is F + 1). Each condition
can be associated with different instructions: if the algorithm
contains different instructions with the same condition and
the condition is satisfied, all of them are executed.

Instruction Message type Condition Message type
SEND to all(<t,m>) type0, type1 true, 1, F + 1, (N + F )/2, N − F type0, type1
SEND to neighbours(<t,m>) type0, type1 true, 1, F + 1, (N + F )/2, N − F type0, type1
SEND to myself(<t,m>) type0, type1 true, 1, F + 1, (N + F )/2, N − F type0, type1
DELIVER(m) - true, 1, F + 1, (N + F )/2, N − F type0, type1
STOP - true -

TABLE 2. Actions available to the RB-Learner.

E. EFFICIENCY
To analyze the efficiency of an algorithm, we adopt a model
based on previous works [11], [67], where the efficiency is
related to three properties: (1) the number of messages sent
by the algorithm; (2) the number of communication steps
(which in the case of RBcast is the number of types, as there
are no loops) and; (3) the number of messages that have
to be received for the algorithm to stop. All these metrics
indirectly express the cost of computational power, storage,
and network to execute the algorithm. As the algorithm sends
more messages or contains more communication steps, then
the process will need more storage for messages, spend
more network resources, and take more time to execute the
algorithm.

IV. RB-LEARNER
The RB-Learner agent uses Reinforcement Learning to learn
not only an algorithm that solves the problem but also an
algorithm that is efficient. Next, we explain the elements
behind the learning process of the RB-Learner.

A. ACTIONS
An algorithm is composed of a set of event handling routines
– two in the case of RBcast, each of which contains a
sequence of actions. The RB-Learner selects an action from
the set of possible actions to add to one of the routines.
Each action has two components: instruction – the part of
the action that is executed – and condition – a statement that
must be true in order for the instruction to be executed. For
example, in action

SEND to all(<type1,m>) if received (<type0,m>) from 1
distinct process

the instruction component is the left-hand part (in red) and
the condition is the right-hand part (in blue, starting with the
word “if”). Next, we present the instruction and condition
components that we assume in the paper.

1) Instruction
We selected the following instruction components taken from
previous work that solve the RBcast problem [9], [26], [47]:

• SEND to all(<t,m>): sends the message <t,m> to all pro-
cesses of the system (including itself);

• SEND to neighbours(<t,m>): sends the message <t,m>
to all processes of the system (excluding itself);

• SEND to myself(<t,m>): sends the message <t,m> only
to itself;

• DELIVER(m): delivers the message m;
• STOP: end the execution of the event handler.

In addition to these, we could think of a generic component
to send a message to N − X processes, for any X > 0
and X ∈ N. However, this generality is found only in
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probabilistic algorithms [11], [21], which are out of the scope
of this work.

2) Conditions
In this work, each action contains a specific condition that
defines when the instruction in the action is executed. The
true condition is only defined by the word true, while each
threshold condition is associated with a specific thresh-
old and a message type. From a range of works ana-
lyzed [9], [26], [47], we selected four thresholds: waiting for
1, F + 1, (N + F )/2, and N − F messages from different
processes. We assume that two threshold conditions are equal
if they wait for the same message type and have the same
threshold.

3) Message type
As explained above, messages contain a type: type0, type1,
and so forth. One parameter of the problem of generating an
algorithm is how many types of messages it uses. Clearly,
the minimum number of types found in algorithms in the
literature corresponds to the maximum number of types
needed to solve the problem. For RBcast we found that
the number is of two types [47]. Both SEND actions and
conditions are influenced by a certain type. On the contrary,
the true condition is not associated with any threshold or
message type.

Table 2 presents all actions available to our agent, resulting
in a total of T = 64 possible actions – the total number
of possible combinations using the actions of the table. All
actions are associated with all possible conditions except
STOP that does not depend on messages being received (or,
equivalently, it depends only on the true condition).

We also assume that each action contains an implicit
condition that forbids the action to execute more than once
for the same message. This means that if a process delivers
a message with content m = 1, it will never deliver the
same message again. The same applies to SEND actions.
This inner condition is introduced by previous articles that
present RBcast algorithms: for example, in [47] we have the
conditions not yet broadcast or not yet RB_delivered and in
[26] we have the condition if p has not previously executed
deliver(R,m).

B. STATES
A typical Reinforcement Learning agent interacts with an
external environment. In our case, the environment is not
external, but internal memory. This memory stores the ac-
tions already selected by the agent to form the algorithm.
Specifically, a state is the sequence of actions selected by the
agent up to that moment. By following this representation,
the agent will be able to learn to select the best actions
based on the ones that the algorithm already contains. Each
state follows the algorithm structure defined in Section III-B,
being composed of two event handlers and expressed as
State([]). We assume that State A and State B are equal if

both contain the same actions, in the same number, in the
same order and in the same event handlers.

C. REWARDS
Rewards are used by the agent to learn which actions are
suitable or not in each state – a technique called reward
shaping [55]. In this work, the rewards are related to the
efficiency (cf. Section III-E) and correctness (cf. Section
II-B) of the algorithm: the most efficient correct algorithm
will generate the best reward. Rewards are defined as part
of the input, but it is important to mention that the agent
synthesizes the most efficient algorithm not because of the
absolute reward values that we have defined, but because of
the relative values between them (the absolute rewards are
the result of testing multiple possibilities).

The RB-Agent receives a reward in two moments: (1)
every time the agent selects an action – runtime reward –
and (2) when the agent receives the verification result from
the RB-Oracle – bonus reward.

1) Runtime rewards
Runtime rewards are related to the efficiency of the produced
algorithm, i.e., more efficient algorithms will generate the
best rewards. Table 3 summarizes the values we empirically
established for calculating these rewards. The SEND actions
and the DELIVER action have a negative reward, as pro-
cesses need to spend time and resources to execute these
actions, so there is a cost involved. For the SEND actions,
the SEND to myself action has a better reward than the
SEND to neighbours and the SEND to all actions. This
happens due to the number of sent messages metric: SEND
to myself only sends 1 message, whereas the others in-
volve sending N − 1 and N messages, respectively. The
threshold of the conditions also influences the reward. Table
3 shows the rewards associated with each selected threshold
(c.f Section IV-A2). Considering that 1 ≤ F + 1 ≤ (N +
F )/2 ≤ N − F , the higher the threshold, the higher its cost
since processes need to wait for more messages to execute
the instruction of the action, where N is the total number of
processes and F the maximum number of faulty processes.
The true condition has a reward of 0 since does not involve
any cost such as the need for a specific number of messages
or message types.

Beyond what is presented in Table 3, the addition of a
new message type to the algorithm also involves a (negative)
reward. Specifically, the reward is added when a SEND action
introduces a new type. Each new type has an increasing cost:
type0 is associated with the reward 0, type1 is associated
with reward −1, etc. The objective is for the agent to add
the minimum number of new types to the algorithm, as each
new type involves more communication.

The last aspect that influences the reward obtained by
the agent is the event handler where the action is selected.
We defined that each action selected for the RB-Broadcast
event handler has an additional reward of 0, while the actions
selected for the receive event handler have an additional
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Instruction Reward Condition Reward
SEND to myself(<t,m>) −1 true 0
SEND to neighbours(<t,m>) −2 1 −1
SEND to all(<t,m>) −3 F + 1 −2
DELIVER(<m>) −1 (N + F )/2 −3
STOP 0 N − F −4

TABLE 3. Rewards given to each instruction and each condition.

reward of −1. These rewards favour the addition of actions
to the RB-Broadcast event handler instead of the receive
event handler; this bias is needed because RB-Broadcast is
executed only once per execution of the algorithm, whereas
receive is executed N times (one per process), meaning that
an action on the receive event handler will have a greater
impact on the efficiency of the algorithm when compared
to an action on the RB-Broadcast event handler, e.g, a SEND
to myself action will have a cost of 1 message if executed
on the RB-Broadcast event handler, but a cost of N ∗ 1 if
executed on the receive event handler.

To summarize, consider the example where the agent
chooses the action:

SEND to all(<type0,m>) if received (<type0,m>)
from N − F distinct parties

The reward for this action will be: −3 (the SEND to all

instruction) + 0 (type0 sent) −4 (the N − F threshold) =
−7. Then, if the action is selected for the RB-Broadcast event
handler, it will receive an additional reward of 0 (still a total
of −7), while if selected for the receive event handler, it will
receive an additional reward of −1 (total of −8).

2) Bonus rewards
After the algorithm is verified by the RB-Oracle, the RB-
Learner receives the verification result from the RB-Oracle.
The RB-Learner will use that result – correct or incorrect –
to get a bonus reward or not. In case the algorithm is correct,
there is a bonus of 100, from where we discount the runtime
rewards accumulated during the generation. For example, if
the agent generates a correct algorithm with a runtime reward
accumulated of −14 during the state transitions of the genera-
tion process, the bonus will be 100+(−14) = 86. This allows
the agent to receive a better bonus for the most efficient
algorithms. In the case of an incorrect algorithm, the reward
received by the agent will be −1: from the total number of
possible algorithms, the number of incorrect algorithms will
tend to be greater than the correct ones, so we do not want
the agent to be severely penalized by finding an incorrect
algorithm since some actions of an incorrect algorithm can
still lead to a correct algorithm.

D. LEARNING AND OPTIMIZATION PHASES
This section explains one learning episode, from the Learning
Phase, and its generation process that builds one algorithm
and the optimization episode, from the Optimization Phase,
and its optimal generation process that generates the optimal
algorithm, both detailed in Figure 2.

During a learning episode, the generation process is exe-
cuted. This process is composed of two development steps:
the step of the RB-Broadcast event handler and the step
of the receive event handler. Both steps are based on Q-
Learning [72], a broadly adopted Reinforcement Learning
algorithm. This algorithm uses a table designated QTable to
map the values of each action to each state. Next, we explain
how the development steps generate the entire algorithm
during the generation process.

The generation process begins with the development phase
of the RB-broadcast event handler. The agent starts with the
internal state empty, i.e. an empty algorithm with State([]).
Then, comes a loop based on the current internal state, where
the agent analyses a set of heuristics (a topic we defer for
Section IV-E) to discard the actions not suitable for the
current state, from the set of all possible actions. Then, the
agent selects one of the suitable actions based on a policy.
In this work, the agent follows the Upper Confidence Bound
(UCB) policy [70], a policy based on the idea of being
optimistic under uncertainty. This policy works by defining
a confidence boundary assigned to each action that decreases
when the action is more frequently chosen, helping to solve
the exploration/exploitation problem [15] – the dilemma
of selecting new actions or keeping the same selection of
actions as before. Then, the selected action is added to the
current internal state and to the current event handler – in
this case the RB-Broadcast – originating a new state. For
example, if the agent is in state State([]) and chooses action
A, the action is added to the algorithm and the RB-Broadcast
event handler, originating the new state State([action A]).
Moreover, based on the action selected, the agent receives
a runtime reward that it uses to update its learning base, the
QTable, by associating the reward received with the action
selected in the current state. Finally, the agent defines its
current state as the new state and re-executes the analysis of
the heuristics to get the suitable actions for this new state.

The agent continues to re-execute the development of
the RB-Broadcast event handler until the moment when it
chooses the STOP action. By choosing this action, the de-
velopment step of the current event handler – in this case,
the RB-Broadcast event handler – is completed, and the
development step of the next event handler – the receive
event handler – is started. The agent executes this second
development step but now adds the actions to the receive
event handler, until the moment when it chooses the STOP

action again. This marks the end of the development step
of the receive event handler. Only after the two development
steps – the development of the RB-Broadcast and the receive
events – the algorithms is considered completed.

With the development of the algorithm completed, the gen-
eration process ends, and the RB-Learner gives the algorithm
to the RB-Oracle, which in turn, will verify it. After verifying
the algorithm, the RB-Oracle returns the verification result to
the RB-Learner which receives a bonus based on whether the
algorithm is correct or not. This bonus reward will also be
used to update the QTable of the agent.
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In the first learning episodes, the generation process will
produce random algorithms, led by the policy that allows
it to explore new actions and states. As the learning phase
progresses, based on the values of the QTable, the policy used
by the agent will lead it to exploit the actions that have the
best value in each state, allowing it to converge to the most
efficient algorithms. We use the terms explore and exploit
with the precise meanings they have in Reinforcement Learn-
ing: explore is related to the search for new and unfamiliar
states, while exploit refers to the examination of familiar
states [15].

The agent performs the optimal generation process
episode when all the learning episodes are executed. In this
final episode, the agent generates the optimal algorithm.
The process to generate this algorithm is identical to the
generation process. However, instead of being guided by
a policy, in the optimal generation process, the agent will
always select the optimal action allowed in each state, based
on the knowledge obtained during the learning episodes.
To be more specific, the agent will generate the optimal
algorithm by always selecting the action that gives the best
reward, following a policy usually called the greedy policy.
With the optimal algorithm generated, the RB-Learner gives
it to the RB-Oracle to execute the verification process and
analyze either if the optimal algorithm is correct or incorrect.
After the verification process, the RB-Learner outputs the
results of the simulation, including the distributed algorithm
found and its correctness.

E. HEURISTICS
The number of possible algorithms grows exponentially with
the base given by the maximum number of allowed actions
T in the algorithm (a constant), i.e., has complexity O(T i),
where i is the total number of possible actions. Although the
agent has i actions to choose from, there are clearly some
bad choices in some cases. For example, it is a bad option to
choose STOP as the first action since that would generate an
empty algorithm.

To reduce the explosion of possibilities and guide the agent
during the generation process, we define a set of heuristics
[59], [64] for the agent to avoid bad choices. Notice that
the heuristics do not help in obtaining correct and efficient
algorithms; they only reduce the number of possibilities to
explore by discarding invalid actions in specific states and,
consequently, reducing the time required to find solutions.

Table 4 presents the generation heuristics (GH) that we use
to guide the agent in the case of RBcast. These heuristics
were defined on the basis of a logic of discarding undesirable
actions. Every time the agent is in a state, the agent uses the
heuristics to know which actions are available in this specific
state, thus reducing the options from T to Th < T .

GH1 says that the entire algorithm cannot contain dupli-
cate actions (except the STOP action). GH2 allows to define
the actions available in each event handler. For RBcast, we
define that the agent can select all actions in both event han-
dlers, except the DELIVER action on the RB-Broadcast event

Heuristic Definition
GH1 Do not allow repeated actions on the algorithm
GH2 Allow to define the actions available in each event handler
GH3 Allow to define the conditions available in each event handler
GH4 We can only use a SEND action for each type

of message sent and condition
GH5 Messages sent on the RB-Broadcast event handler

must be of type type0
GH6 Allow to define the minimum and maximum

number of actions that each event handler can have
GH7 Only select an action that waits for a

message type already sent on the algorithm
GH8 The algorithms generated must contain,

at least one DELIVER action
GH9 The incorrect states are blocked, in order to

never explore them again
GH10 Allows defining the maximum number of types that

the algorithm can contain

TABLE 4. Heuristics used on the generation process.

handler; as the RB-Broadcast event handler is only executed
by one process, the DELIVER action must exist on the receive
event handler, so that all processes can deliver the message,
thus the possible existence of the DELIVER action on the RB-
Broadcast event handler is redundant. GH3 allows to define
the conditions available in each event handler. Based on this
heuristic, we define that on the receive event handler, all
considered conditions are allowed (see Section IV-A2). In the
RB-Broadcast, we only allow conditions based on condition
0, since in that event handler the processes do not receive any
message. GH4 allows to define that, for each condition and
message type sent, the agent must choose between sending
to all, to the neighbours, or only to itself. GH5 allows to
define a message type for the first communication step of
the algorithm (RB-Broadcast event handler). GH6 allows to
restrict the size of the algorithm generated in terms of the
number of actions for each event handler. As previously
explained, we took inspiration from one of the most efficient
RBcast algorithms [47], so we defined a minimum number of
2 and a maximum number of 4 actions in each event handler.
GH7 forbids the agent to select actions based on invalid
conditions, e.g., we forbid the agent to select actions that wait
for message types not yet contained in the algorithm. GH8
forces the generation of algorithms with at least one DELIVER
action, as that action clearly must exist in the algorithm.
GH9 allows to decrease the convergence time by discarding
incorrect algorithms that are not related to the solution, which
is equivalent to giving an infinite cost. GH10 allows to define
the maximum number of types that the algorithm can contain
– in this work, we defined only two possible types (cf. Section
IV-A3).

V. RB-ORACLE
The RB-Oracle is the agent responsible for verifying the al-
gorithms created by the RB-Learner agent, i.e., to implement
the verification process. This section explains the verification
process executed in the context of one episode.

The verification process is responsible for assessing the
correctness of the algorithms generated, i.e., for assessing if
each algorithm satisfies the RBcast properties (Section II-B)
within one of the variants of the system model (Section II-A).
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Every episode, the RB-Learner generates an algorithm, and
the RB-Oracle verifies it.

Automatic verification of a fault-tolerant distributed al-
gorithm can be achieved using different techniques such as
model checking [23], [49] or theorem proving [66]. In this
paper, we use a model checking tool called Spin [46], a
widely used framework on the verification of fault-tolerant
algorithms [19], [23], [49], [62] that allows to build models
and verify them.

Spin supports a few modes. We use Spin in simulation
mode, i.e., we use it to simulate the execution of the created
algorithm in a specific system model, doing an exhaustive
exploration of the state space. In essence, during the state
space exploration, Spin verifies if none of the three RBcast
properties (RB-Agreement, RB-Validity, and RB-Integrity)
is violated. The three properties, the protocol, the values
of N and F , the system architecture, the behavior of each
failure mode (No/Crash/Byzantine-Failure mode), the pro-
cess that initiates the verification (randomly selected), and
the faulty processes (also randomly selected, for F > 0)
are all specified in PROMELA (Process or Protocol Meta
Language). This is achieved by creating a system model in
a PROMELA language file (.pml extension). Then, based on
the .pml file, RB-Oracle builds a verification file (pan.c) –
a C program that performs a verification of the correctness
requirements for the system – and compiles it using gcc,
generating an executable file. Lastly, the agent uses Spin to
run the executable file and, with that, check the correctness
of the algorithm.

The RB-Oracle verifies algorithms considering three
failure modes: No-Failure, Crash-Failure, and Byzantine-
Failure.

For the No-Failure mode, the RB-Oracle verifies the al-
gorithm considering that all processes are correct, i.e., by
following the actions of the algorithm without deviations.
In this mode, in the experiments, we assume a system with
N = 3 processes and F = 0. Moreover, we model only one
possible verification of the system: since the algorithm that
runs in each process is the same, more than one model would
be redundant.

In the Crash-Failure mode, we simulate the crash of the
process assuming the worst case possible: crash failures
happen between the sending of messages since the impact
of a crash failure is the highest when it leads a message to
be delivered only to a fraction of the processes. In this mode,
in the experiments, we assume a system with F = 1 faulty
processes and N = 3 processes, the minimum necessary to
have F = 1 failures (see Section II-A). Moreover, for this
mode, we build two models: when the process that initiates
the algorithm is correct and when it is faulty. This allows
verifying cases when either of the event handlers fail.

For the Byzantine-Failure mode, the RB-Oracle models a
range of attacks where all faulty processes send the same
malicious message to a predefined group of correct processes
– from a group with 0 processes, and consequently, not
sending to anyone, to sending to N − F processes, and

Module Lines of Code Programming Language
Client 217 Python3
Generator (containing the RB-Learner) 2739 Python3
Verifier (containing the RB-Oracle) 2284 Python3 and PROMELA

TABLE 5. Number of lines of code and programming language used.

consequently, sending to all correct processes. In this mode,
in the experiments, we assume a system with F = 1 faulty
processes and N = 4 processes, which is the minimum num-
ber of processes necessary to have F = 1 faulty processes
(see Section II-A). Moreover, similar to the process on the
Crash-Failure mode, in this mode we also build two models:
one to model a failure on each event handler of the algorithm.

VI. IMPLEMENTATION
As explained in the previous sections, our implementation 4

is based on two agents: RB-Learner and RB-Oracle. Table 5
shows the number of lines of code and the programming
language used to implement the entire solution. The Client
component is where the user defines the inputs and starts
the execution of the solution. The Generator component is
the one responsible for the generation of the algorithms,
containing the RB-Learner. RB-Learner uses the Q-Learning
algorithm and the UCB policy to implement the generation
and learning of the algorithms. The Verifier component is
the one that contains the RB-Oracle, responsible for the ver-
ification of the algorithms. RB-Oracle models a distributed
system with N processes and F faulty processes, simulating
the execution of the algorithm generated using the Spin
framework. RB-Learner was implemented in Python3. RB-
Oracle was implemented using both Python3, PROMELA (a
verification modeling language used for Spin), and the Spin
model checker.

VII. EXPERIMENTAL EVALUATION
Our experimental evaluation aims to assess the effectiveness
and correctness of our solution. It will answer the following
questions:

1) How many states does the agent explore until the first
correct algorithm and the most efficient algorithm are
found?

2) How many algorithms are generated in total in each
experiment?

3) How many algorithms are generated until the first
correct algorithm is generated?

4) What is the proportion of correct and incorrect algo-
rithms from the total number of generated algorithms?

5) How does each proposed heuristic influence the learn-
ing process?

6) Is the agent able to generate a new algorithm, i.e., an
algorithm that as far as we know has not been generated
by humans?

We ran our experiments on a single machine with 32
vCPUs, 64 GB of memory, and Debian 10. We made experi-
ments for three cases: (1) No-Failure mode; (2) Crash-Failure

4https://diogolvaz.github.io/FAULTAGE/
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Simulation Process inputs Value
Number of simulations 5
Number of episodes 12.000
Generation Process inputs Value
Rewards Defined at Table 3
Heuristics to be applied and Configured as presented on Section IV-E
configurations associated
Verification Process inputs Value
Failure modes to test No-Failure, Crash-Failure and

Byzantine-Failure modes
System Models to use [N = 3, F = 0] for No-Failure,

[N = 3, F = 1] for Crash-Failure and
[N = 4, F = 1]for Byzantine-Failure

Properties to verify RB-Agreement, RB-Validity and RB-Integrity

TABLE 6. Experimental evaluation inputs.

Experiment States
No-Failure 15.4± 0.0
Crash-Failure 33.4± 16.9
Byzantine-Failure 13462.8± 6909.4

TABLE 7. Number of states generated until the first correct algorithm is
generated.

mode; and (3) Byzantine-Failure mode. All results shown
in the next sections are, except when noticed, averages of 5
simulations runs, each with 12, 000 episodes – the minimum
number of episodes that we have found to be possible for
the agent to converge to the most efficient algorithms in all
experiments. The 12, 000 episodes took ±9 hours to run on
the No-Failure experiment, ±3 days to run on the Crash-
Failure experiment, and ±7 days to run on the Byzantine-
Failure experiment. This increase in time is due to the time
needed for Spin to verify the models. Table 6 summarizes the
inputs considered for the experimental evaluation.

A. STATES EXPLORED

For each algorithm generated, the agent explores multiple
states when selecting the actions. This first set of experiments
assesses the number of states explored in each experiment.
Figure 3 shows the total number of states explored by the
agent for each episode, on the entire experiment. Table 7
shows the number of states explored until the agent generated
the first correct algorithm.

As expected, we can see in both figures that the agent needs
to explore more states when the complexity of the problem
to solve increases, i.e., the agent needs to explore more states
when trying to find a Byzantine-tolerant algorithm – almost
20, 000 states – when compared to a Crash-tolerant or a non-
fault-tolerant algorithm – around 12, 000 and 3, 000 states,
respectively. Additionally, the agent also takes more time to
converge when trying to find a Byzantine-tolerant algorithm
– between 8, 000 and 10, 000 episodes – when compared to
the other cases – between 1, 000 and 2, 000 episodes for the
No-Failure algorithm and between 4, 000 and 6, 000 episodes
for the Crash-Failure algorithm.
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TABLE VII
NUMBER OF STATES GENERATED UNTIL THE FIRST CORRECT ALGORITHM

IS GENERATED.

Experiment States
No-Failure 15.4± 0.0
Crash-Failure 33.4± 16.9
Byzantine-Failure 13462.8± 6909.4

As expected, we can see in both figures that the agent needs
to explore more states when the complexity of the problem
to solve increases, i.e., the agent needs to explore more states
when trying to find a Byzantine-tolerant algorithm – almost
20, 000 states – when compared to a Crash-tolerant or a non-
fault-tolerant algorithm – around 12, 000 and 3, 000 states,
respectively. Additionally, the agent also takes more time to
converge when trying to find a Byzantine-tolerant algorithm –
between 8, 000 and 10, 000 episodes – when compared to the
other cases – between 1, 000 and 2, 000 episodes for the No-
Failure algorithm and between 4, 000 and 6, 000 episodes for
the Crash-Failure algorithm.
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Fig. 3. Number of algorithms generated during each experiment.

The agent generates multiple algorithms with the objective
of learning from them. Therefore, we decided to assess how
many algorithms the agent generates in each experiment. Figure
3 shows the number of algorithms generated by the agent per
episode. Table VIII shows the number of correct and incor-
rect algorithms generated, as also the number of algorithms
generated until the first correct algorithm. As expected, and

TABLE VIII
NUMBER OF CORRECT AND INCORRECT ALGORITHMS GENERATED IN

EACH EXPERIMENT AND NUMBER OF ALGORITHMS GENERATED UNTIL THE
FIRST CORRECT ALGORITHM.

Experiment Correct Algo. Incorrect Algo. Number Algo.
No-Fail. 341.8± 23.2 502.0± 53.3 2.6± 1.9
Crash-Fail. 420.2± 32.1 3355.6± 256.6 6.8± 4.1
Byzantine-Fail. 2.0± 0.0 9369.6± 6.8 6260.0± 3467.9

similarly to what happens with the number of states, the agent
needs to generate more algorithms, as also takes more time to
converge, with the increase of the complexity of the problem to
solve. Moreover, another interesting aspect is the percentage of
incorrect algorithms generated by the agent in each test: ±60%
on the No-Failure test, ±89% on the Crash-Failure test and
99.9% on the Byzantine-Failure test, which means that, even
with all the Heuristics defined, the agent still has a difficult
task generating a correct algorithm.

The final algorithms generated by each experiment are
presented in Algorithms 1, 2 and 3, one for each failure mode.

Algorithm 1 Most efficient RBcast algorithm for a No-Failure
experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if received (<type0,m>) from 0

distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: DELIVER(<m>) if received (<type0,m>) from 0 distinct

parties and not already delivered;
6: STOP if received (<type0,m>) from 0 distinct parties;

In the No-Failure mode, the agent converged to Algorithm 1
in 4 of the simulations executed. This algorithm is equivalent
to one presented in [12]: both exchange, at most, N messages,
require 1 communication step and 1 message type (or none)
and need to receive 1 message.

On the Crash-Failure mode, the agent also converged to
Algorithm 2 in 4 of the simulations executed. Note that the
algorithm sends a new message type on the receive event
handler (type1), when it could send the type0. This happens
because of the heuristic GH5, that only allows to send messages
of type0 on the RB-Broadcast event handler. This algorithm is
similar to the one presented in [24], [51]: both exchange, at
most, N2 − N + 1 messages, require 1 communication step
and 1 message type (or none) and need to receive 1 message.

On the Byzantine-Failure mode, the agent converged to
Algorithm 3 in all the simulations executed. This algorithm is
one of the most efficient algorithms developed and it is similar
to the one presented in [27]: both exchange, at most, N2 +N
messages, require 2 communication steps and 2 message types
and need to receive (N + F )/2 messages.

C. Impact of the Heuristics

The heuristics we defined (see Section IV-E) guide the agent
by helping it to avoid incorrect algorithms and reduce the
number of states to explore. In this evaluation, we analyzed the
importance of each heuristic with the Crash-Failure experiment.

To achieve this, we ran one experiment with each GH turned
off and all others turned on. There were two exceptions. In
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The agent generates multiple algorithms with the objective
of learning from them. Therefore, we decided to assess how
many algorithms the agent generates in each experiment. Figure
3 shows the number of algorithms generated by the agent per
episode. Table VIII shows the number of correct and incor-
rect algorithms generated, as also the number of algorithms
generated until the first correct algorithm. As expected, and

TABLE VIII
NUMBER OF CORRECT AND INCORRECT ALGORITHMS GENERATED IN

EACH EXPERIMENT AND NUMBER OF ALGORITHMS GENERATED UNTIL THE
FIRST CORRECT ALGORITHM.

Experiment Correct Algo. Incorrect Algo. Number Algo.
No-Fail. 341.8± 23.2 502.0± 53.3 2.6± 1.9
Crash-Fail. 420.2± 32.1 3355.6± 256.6 6.8± 4.1
Byzantine-Fail. 2.0± 0.0 9369.6± 6.8 6260.0± 3467.9

similarly to what happens with the number of states, the agent
needs to generate more algorithms, as also takes more time to
converge, with the increase of the complexity of the problem to
solve. Moreover, another interesting aspect is the percentage of
incorrect algorithms generated by the agent in each test: ±60%
on the No-Failure test, ±89% on the Crash-Failure test and
99.9% on the Byzantine-Failure test, which means that, even
with all the Heuristics defined, the agent still has a difficult
task generating a correct algorithm.

The final algorithms generated by each experiment are
presented in Algorithms 1, 2 and 3, one for each failure mode.

Algorithm 1 Most efficient RBcast algorithm for a No-Failure
experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if received (<type0,m>) from 0

distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: DELIVER(<m>) if received (<type0,m>) from 0 distinct

parties and not already delivered;
6: STOP if received (<type0,m>) from 0 distinct parties;

In the No-Failure mode, the agent converged to Algorithm 1
in 4 of the simulations executed. This algorithm is equivalent
to one presented in [12]: both exchange, at most, N messages,
require 1 communication step and 1 message type (or none)
and need to receive 1 message.

On the Crash-Failure mode, the agent also converged to
Algorithm 2 in 4 of the simulations executed. Note that the
algorithm sends a new message type on the receive event
handler (type1), when it could send the type0. This happens
because of the heuristic GH5, that only allows to send messages
of type0 on the RB-Broadcast event handler. This algorithm is
similar to the one presented in [24], [51]: both exchange, at
most, N2 − N + 1 messages, require 1 communication step
and 1 message type (or none) and need to receive 1 message.

On the Byzantine-Failure mode, the agent converged to
Algorithm 3 in all the simulations executed. This algorithm is
one of the most efficient algorithms developed and it is similar
to the one presented in [27]: both exchange, at most, N2 +N
messages, require 2 communication steps and 2 message types
and need to receive (N + F )/2 messages.

C. Impact of the Heuristics

The heuristics we defined (see Section IV-E) guide the agent
by helping it to avoid incorrect algorithms and reduce the
number of states to explore. In this evaluation, we analyzed the
importance of each heuristic with the Crash-Failure experiment.

To achieve this, we ran one experiment with each GH turned
off and all others turned on. There were two exceptions. In
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B. ALGORITHMS GENERATED
The agent generates multiple algorithms with the objective
of learning from them. Therefore, we decided to assess how
many algorithms the agent generates in each experiment. Fig-
ure 4 shows the number of algorithms generated by the agent
per episode. Table 8 shows the number of correct and incor-
rect algorithms generated, as also the number of algorithms
generated until the first correct algorithm. As expected, and
similarly to what happens with the number of states, the
agent needs to generate more algorithms, as also takes more
time to converge, with the increase of the complexity of the
problem to solve. Moreover, another interesting aspect is the
percentage of incorrect algorithms generated by the agent in
each test: ±60% on the No-Failure test, ±89% on the Crash-
Failure test, and 99.9% on the Byzantine-Failure test, which
means that, even with all the Heuristics defined, the agent still
has a difficult task generating a correct algorithm.

In the No-Failure mode, the agent converged to Algorithm
1 in 4 of the simulations executed. This algorithm is equiv-
alent to one presented in [11]: both exchange, at most, N
messages, require 1 communication step and 1 message type
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Experiment Correct Algo. Incorrect Algo. Number Algo.
No-Fail. 341.8± 23.2 502.0± 53.3 2.6± 1.9
Crash-Fail. 420.2± 32.1 3355.6± 256.6 6.8± 4.1
Byzantine-Fail. 3.0± 0.0 9368.6± 6.8 6260.0± 3467.9

TABLE 8. Number of correct and incorrect algorithms generated in each
experiment and number of algorithms generated until the first correct
algorithm.

Algorithm 1 Most efficient RBcast algorithm for a No-
Failure experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if true and not already sent;
3: STOP if true;

4: when receive(<t,m >) do:
5: DELIVER(<m>) if true and not already delivered;
6: STOP if true;

(or none), and need to receive 1 message.
On the Crash-Failure mode, the agent also converged to

Algorithm 2 in 4 of the simulations executed. Note that the
algorithm sends a new message type on the receive event
handler (type1) when it could send the type0. This happens
because of the heuristic GH5, which only allows sending
messages of type0 on the RB-Broadcast event handler. This
algorithm is similar to the one presented in [26], [67]: both
exchange, at most, N2 − N + 1 messages, require 1 com-
munication step and 1 message type (or none) and need to
receive 1 message.

On the Byzantine-Failure mode, Algorithm 3 is one of
the algorithms generated by the agent in all the simulations
executed. This algorithm is one of the most efficient algo-
rithms developed and it is similar to the one presented in
[47]: both exchange, at most, N2 + N messages, require
2 communication steps and 2 message types, and need to
receive (N + F )/2 messages. However, in this experiment,
the agent converged to a new efficient algorithm discussed in
Section VII-D

C. IMPACT OF THE HEURISTICS
The heuristics we defined (see Section IV-E) guide the agent
by helping it to avoid incorrect algorithms. They do not help
to obtain algorithms or algorithms that are more correct but
reduce the number of states to explore. In this evaluation,
we analyzed the importance of each heuristic with the Crash-
Failure experiment.

To achieve this, we ran one experiment with each GH
turned off and all others turned on. There were two excep-
tions. In GH6, we increased the maximum number of actions
in each event from 4 to 5, but did not turn this heuristic off,
to avoid the agent of generating algorithms with too many
actions. For GH10, we increased the maximum number of
types from 2 to 3 but did not turn it off, as the agent could
explore too many types. We executed one simulation with
10, 000 episodes for each experiment.

Figure 5 shows the evolution of the number of algorithms
generated with each GH turned off, from where we conclude

Algorithm 2 Most efficient RBcast algorithm for a Crash-
Failure experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to myself(<type0,m>) if true and not already sent;
3: STOP if true;

4: when receive(<t,m >) do:
5: SEND to neighbours(<type1,m>) if true and not already

sent;
6: DELIVER(<m>) if true and not already delivered;
7: STOP if true;

Algorithm 3 Most efficient RBcast algorithm for a
Byzantine-Failure experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if true and not already sent;
3: STOP if true;

4: when receive(<t,m >) do:
5: SEND to all(<type1,m>) if received (<type0,m>) from 1 dis-

tinct party and not already sent;
6: DELIVER(<m>) if received (<type1,m>) from (N+F )/2 distinct

parties and not already delivered;
7: SEND to all(<type1,m>) if received (<type1,m>) from F + 1

distinct parties and not already sent;
8: STOP if true;

that all heuristics are important to reduce the number of states
explored until a correct and efficient algorithm is obtained.

D. A NEW BYZANTINE-TOLERANT ALGORITHM
This section answers the last question, i.e., the possibility of
our agent finding new algorithms. On the Byzantine-Failure
simulations, the agent converged to Algorithm 4, a new and
efficient Byzantine-tolerant algorithm for F = 1 and N ≥
4 ∈ N.

When comparing the efficiency of Algorithms 3 and 4,
we see two improvements on Algorithm 4: (1) Algorithm 3
instructs processes to send messages to all, meaning a total
of N2 + N messages sent, while Algorithm 4 instructs
processes to send messages only to the neighbours, saving
the cost of processes sending a message to themselves and

Algorithm 2 Most efficient RBcast algorithm for a Crash-
Failure experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to myself(<type0,m>) if received (<type0,m>)

from 0 distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: SEND to neighbours(<type1,m>) if received

(<type0,m>) from 0 distinct parties and not already sent;
6: DELIVER(<m>) if received (<type0,m>) from 0 distinct

parties and not already delivered;
7: STOP if received (<type0,m>) from 0 distinct parties;

Algorithm 3 Most efficient RBcast algorithm for a Byzantine-
Failure experiment generated by the RB-Learner.

1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if received (<type0,m>) from 0

distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: SEND to all(<type1,m>) if received (<type0,m>) from 1

distinct party and not already sent;
6: DELIVER(<m>) if received (<type1,m>) from (N + F )/2

distinct parties and not already delivered;
7: SEND to all(<type1,m>) if received (<type1,m>) from

F + 1 distinct parties and not already sent;
8: STOP if received (<type0,m>) from 0 distinct parties;

GH6, we increased the maximum number of actions in each
event from 4 to 5, but did not turn this heuristic off, to avoid
that the agent would generate algorithms with too many actions.
For GH10, we increased the maximum number of types from
2 to 3 but did not turn it off, as the agent could explore too
many types. We executed one simulation with 10, 000 episodes
for each experiment.

Figure 4 shows the evolution of the number of algorithms
generated with each GH turned off, from where we conclude
that all heuristics are important to reduce the number of states
explored until a correct and efficient algorithm is obtained.

VIII. RELATED WORK

Automatic code generation works has been focusing so far
on local, non-distributed, single-threaded code. Work started
by using static techniques such as design-based approaches
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Fig. 4. Number of algorithms generated during each experiment without the
identified GH. The All line represents a experiment with all GH turned on.

[11], UML [45] or reverse engineering [48]. More recently,
work started using machine learning [1], [3], [56], mostly
supervised learning [39], [57]. For distributed code, we identi-
fied two works: one that automatically finds mutual exclusion
algorithms [4] and another that automatically investigates and
validates consensus algorithms [58], both using brute-force
approaches. In our case, we use a machine learning technique
called Reinforcement Learning [30], [53], [55], that allows
the agent to learn without the need of prior knowledge about
solutions to the problem to be solved. Reinforcement Learning
has been explored mainly in games [35], [44], [52] and robotics
[26], [32], [42], so our work applies it to an entirely different
problem. Compared to our approach, the most interesting works
that use this technique are those that use an agent to generate
GPU compiler heuristics [16], an agent that chooses the most
suitable algorithm [34], or an agent that is capable of generating
experiment input data [31]. Nevertheless, these problems are
very different from ours.

For the validation of fault-tolerant algorithms [21], [23], [36],
[50], we have identified and used the Spin/PROMELA [25]
model checker [21], [29] framework, since it allows us to model
and validate the generated algorithms, it is used by a significant
number of related works [18], [21], [29], [43] and it also has
good community support resources. Other possible languages
and frameworks could have been used: TLA+ [36], ByMC [33],
IC3PO [22].

IX. CONCLUSION

Fault-tolerant algorithms have been studied over the years,
discussing different problems and variants. However, this study
is complex and was always based on a human-oriented pro-
cess.To automate this process, we propose a solution based on
two agents, RB-Learner and RB-Oracle, capable of learning to
generate a distributed algorithm, the RBcast algorithm. As we
have presented during the experimental evaluation, our solu-
tion is capable of generating correct and efficient algorithms,
depending on the properties of the problem. To our knowledge,
this work is the first that merges both areas of generation
and validation into an automatic process capable of generating
correct and efficient RBcast algorithms. Additionally, this is
the first work to use a machine learning approach to generate
correct and efficient algorithms to solve a specific distributed
problem. For further research, we aim to apply our approach
to different distributed problems, like Consensus, and try to
decrease the number of inputs needed, to further decouple
our agent from knowledge based on previous works, e.g. the
threshold expressions.
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Algorithm 4 New Byzantine-tolerant algorithm generated by
the RB-Leaner.

1: when RB-Broadcast(m) do:
2: SEND to neighbours(<type0,m>) if true and not already

sent;
3: STOP if true;

4: when receive(<t,m >) do:
5: SEND to neighbours(<type1,m>) if received (<type0,m>)

from 1 distinct parties and not already sent;
6: SEND to neighbours(<type1,m>) if received (<type1,m>)

from F + 1 distinct parties and not already sent;
7: DELIVER(<m>) if received (<type1,m>) from F + 1 distinct

parties and not already delivered;
8: STOP if true;

N & F Algorithm Total number of messages sent
N = 4 & 3 42 + 4 = 20
F = 1 4 (4− 1) + 4 ∗ (4− 1) = 15
N = 10 & 3 102 + 10 = 110
F = 1 4 (10− 1) + 10(10− 1) = 99
N = 100 & 3 1002 + 100 = 10100
F = 1 4 (100− 1) + 100(100− 1) = 9999
N = 1000 & 3 10002 + 1000 = 1001000
F = 1 4 (1000− 1) + 1000(1000− 1) = 999999

TABLE 9. Total number of messages during the execution of both algorithms.

meaning a total of (N − 1) + N(N − 1) messages sent.
Table 9 summarizes the total number of messages sent by
each algorithm, assuming different system configurations; (2)
Algorithm 3 needs (N + F )/2 messages of type1 to deliver
a message, while Algorithm 4 only needs F + 1 messages of
the same type to deliver. Since, for F = 1 and N ≥ 4 ∈ N
we have that (N + F )/2 > F + 1, then Algorithm 4 is
more efficient from the message delivery point of view. More
precisely, the new generated Algorithm 4 will always require
F + 1 = 1 + 1 = 2 messages, while on Algorithm 3, the
number of messages needed increases with the increase of
the total number N of processes, since threshold (N + F )/2
depends on N .

This result shows the capability of RB-Learner to adapt
to the specified problem with modifications and learn to
generate efficient algorithms for that case also. Moreover, re-
inforces the possibility of this approach to help develop new
distributed fault-tolerant algorithms, allowing to advance the
state-of-the-art in the distributed computing field.

VIII. RELATED WORK
Fault-tolerant algorithms have been widely studied over the
years [6], [8], [9], [12], [13], [16], [17], [33], [47], [48],
[60], [67]. These algorithms: solve different problems, such
as Reliable Broadcast [47], Consensus [12] or Leader Elec-
tion [63]; tolerate different failure modes, like Crash [26]
and Byzantine [17]; use different communication models,
namely fully-connected [16] and partially-connected [8]; and
tolerate different fault ratios, such as ⌊(N − 1)/3⌋ [9] and
⌊(N − 1)/2⌋ [17], where N is the number of components in
the system. However, as far as we know, all works are based
on manual processes.

Program Synthesis [29], [35] is the task of automati-
cally discovering and developing programs that satisfy re-

quirements expressed in some form of specification by a
user. In this work, our goal is to develop a tool capable
of developing algorithms – in pseudo-code – that, later,
can be implemented by a program – in a specific pro-
gramming language. Program synthesis has been applied
to generate security protocols [69], control plane opera-
tions [27] or switch code [32]. Applied to the field of
distributed algorithms, we identified seven works: three fo-
cused on the generation and discovery of mutual exclusion
algorithms [4], [36], [37], two that automatically generate
consensus algorithms [30], [74], another that synthesizes
fault-tolerant distributed algorithms [56], and one focused
on the synthesis of leader election algorithms [38]. How-
ever, all previous work is based on techniques different
from machine learning, such as brute-force approaches that
generate all possible algorithms [4], [30], [74] or solutions
using genetic programming [36]–[38]. Moreover, a majority
focus on shared memory systems [4], [30], [36], [37] and
some only consider the correctness of the algorithms gener-
ated [4], [30], [56]. In this work, we present a novel solution
that generates correct and efficient Reliable Broadcast using
a machine learning technique – Reinforcement Learning
– so that the software can learn to generate fault-tolerant
distributed algorithms.

Recently, supervised machine learning techniques have
been used to automatically generate local and non-distributed
code [3], [18], [58], [68]. In this work, we propose the use of a
different machine learning technique – Reinforcement Learn-
ing – to generate fault-tolerant distributed code. Based on this
technique, we have found a work that presents a framework to
improve pre-trained language models for program synthesis
tasks through deep reinforcement learning [57], a work that
uses reinforcement learning to generate matrix multiplication
algorithms [22], a work that uses reinforcement learning
to generate tests for Android GUI applications [39], and a
work that uses reinforcement learning coupled with deduc-
tive reasoning to program synthesis [28]. However, unlike
ours, the first work uses deep reinforcement learning only for
the optimization of the pre-trained language models, and the
others are focused on a problem very different from ours.

Program Verification [31], [44] is the process of ensuring
that a given program behaves as intended and meets its
specified requirements, helping to ensure the correctness,
reliability, and security of the programs. For the verification
of fault-tolerant algorithms [23], [24], [53], [66], we have
identified and used the Spin/PROMELA [46] model checker
[23], [49] framework. This decision is based on the fact that
Spin is a very flexible tool that allows modeling different
fault-tolerant distributed algorithms such as Consensus [71],
Reliable Broadcast [49] or Leader Election [1]. Moreover,
Spin is a very mature and robust framework with extensive
documentation and an active community 5.

5https://spinroot.com/spin/whatispin.html
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IX. CONCLUSION
Fault-tolerant algorithms have been studied over the years,
discussing different problems and variants. However, this
study is complex and has always been based on human-based
processes. To automate such processes, we propose a novel
solution based on a machine learning technique. We present
a first implementation of the approach based on two agents,
RB-Learner and RB-Oracle, capable of learning to synthesize
the RBcast algorithm. As we have presented during the
experimental evaluation, our solution can synthesize correct
and efficient algorithms, depending on the properties of the
problem, proving the effectiveness of the proposed approach
in solving distributed problems when compared with the
manual process. To our knowledge, this work is the first
that merges both areas of generation and verification into an
automatic process capable of generating correct and efficient
RBcast algorithms using machine learning techniques. For
further research, we aim to apply our approach to different
distributed problems, like Consensus, and try to decrease
the number of inputs needed, to further decouple our agent
from knowledge based on previous works, e.g. the threshold
expressions.
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