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Abstract. In today’s interconnected world, robust cybersecurity mea-
sures are crucial, especially for Cyber-Physical Systems. While anomaly-
based Intrusion Detection Systems can identify abnormal behaviors, in-
terpreting the resulting alarms is challenging. An alternative approach
utilizes invariant rules to describe system operations, providing clearer
explanations for abnormal behaviors. In this context, invariant rules are
conditions that must hold true for a system’s different operational modes.
However, defining these rules is time-consuming and costly. This paper
presents IM-DISCO, a tool that analyzes operational data to propose
inference rules characterizing different modes of system operation. Devi-
ations from these rules indicate anomalies, enabling continuous monitor-
ing with incident detection and response. In our evaluation, focusing on
rail transportation, we achieved 99.29% accuracy in detecting and char-
acterizing operational modes using real-world train data. Additionally,
we achieved 99.86% accuracy in identifying anomalies during simulated
attacks. Notably, our results demonstrate an average detection time of
0.026 ms, enabling swift incident response to prevent catastrophic events.

Keywords: Anomaly detection · Cyber-physical systems · Invariants ·
Intrusion detection systems

1 Introduction

Cyber-Physical Systems (CPS) monitor and control physical processes using
embedded computers with sensor networks [20]. They are commonly found in
Critical Infrastructures (CI) such as transportation networks and power grids.
However, the growing complexity and interconnectivity of CPS make them es-
pecially vulnerable to cyber-physical attacks [16]. For instance, on October 29,
2022, a ransomware attack on a railway in Denmark caused a disruption on the
train services. The attack was not directly targeted at the train systems but
at a third-party IT service provider. The attack led to the shutdown of servers,
causing the mobile application used by train drivers to stop working. As a result,
the trains came to a standstill for several hours.

Intrusion Detection Systems (IDS) for CPS have been developed throughout
the years to prevent or mitigate cyberattacks [17]. An IDS passively collects
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and analyzes different data sources, such as network traffic and security logs. In
particular, anomaly-based IDS establish a model of the system’s normal behav-
ior, and deviations from this model raise alarms [15]. Most analysis techniques
are based on data mining and machine learning [25]. This type of IDS can de-
tect novel attacks, but it is difficult to interpret the cause of its alarms, and
occurrences of false positives are frequent.

An alternative approach is based on invariant rules [23]. An invariant is a
physical condition that must be sustained in a certain operational mode, charac-
terized by a unique combination of sensor readings and actuator states. In this
approach, an “anomaly” corresponds to any physical process value that violates
the rules. Invariant rules can be manually defined by CPS experts. However,
manually defining invariants can be costly, time-consuming, and incomplete for
complex CPS.

In this article, we present IM-DISCO (Invariant Mining for Detecting Intru-
sionS in Critical Operations), a tool that generates invariant rules for inferring
operational modes and anomalies on CPS. This tool utilizes CPS log data as in-
put to perform its analyses. Contrary to prior invariant rule mining approaches
[27, 11, 10], IM-DISCO uses expert domain knowledge to define CPS operational
modes and infers the invariants that describe the sensors and actuator conditions
that best describe those modes. As a result, the invariant rules help to explain,
based on observation, the current operational mode of a CPS. They can be used
to monitor, in real-time, sensors and actuators, detect changes in CPS states,
and identify anomalies. With IM-DISCO, experts are able to understand alerts
and easily attest, based on the mode reported by IM-DISCO, the veracity of
the alarm. Thus, IM-DISCO contributes to:

1. A novel approach for providing invariant rules for inferring operational modes
within CPS;

2. An IDS method that allows the detection of anomalies in a timely way and
that can be verified by human experts, as needed.

We performed an experimental evaluation with two real-world train datasets.
The results of this evaluation showed that IM-DISCO can accurately detect op-
erational modes. In addition, we used a simulated train ride containing attacks,
during which IM-DISCO was able to identify them. We also showed that our
solution maintained high accuracy even with low training data, demonstrating
its agility in generating rules with limited input. Finally, we evaluated the per-
formance of the different phases of our solution, and the results show fast rule
generation and verification. This allows expert assessment for validation and
implementation of suitable preventive actions.

2 Related Work

Detecting anomalies on CPSs is a topic of research that has been studied for
many years in different industrial ecosystems [25]. We classify three different
types of techniques used in Anomaly-based IDS: Fingerprinting [3, 4, 6], Artificial
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Neural Networks (NN) [12, 13], and Invariants [27, 11, 10, 23, 5, 1, 28, 26]. On the
one hand, the initial two methodologies represent the system’s behavior using
black-boxes, which allows to accurately detect anomalies in high-dimensional
datasets but are difficult to be interpreted by the system expert. On the other
hand, invariant-rule-based anomaly detectors employ explicit rules that define
the expected behavior of a system. These rules can be understood and interpreted
by humans, as they represent specific conditions or thresholds that should be
met. When an anomaly is detected, the violated rules can be used to explain the
cause of the alarm. For this reason, we focus on invariant-based works.

Invariants are properties that must be held to maintain the normal behavior
of the system. For instance, an invariant rule of an actuator A, a sensor S, and
an operational mode M for a railway CPS can be:

A.doors=ON ∧ S.velocity=0 =⇒ M=“on station”

In this rule, each smallest subequation is a predicate. This rule states that if the
doors of a train are opened and the velocity is equal to zero, then the train must
be in the operational mode on station.

Invariant rules can be derived from data logs and the system’s design. Data-
driven approaches rely on data mining and machine learning techniques to dis-
cover invariants. Typically, these approaches are divided into two steps: predicate
generation and invariant rule mining. Some methods to generate predicates use
the distribution of sensor value updates and estimate the parameters of this dis-
tribution [11]. Another set of predicates can be derived from sensor values that
trigger changes in actuator states [11]. The manual definition of events with
their associated data variables [5] and simple threshold calculations [27] repre-
sent other possible predicates. After obtaining sets of predicates, the goal is to
find associations between them to generate invariants.

Association Rule Mining (ARM) is the technique most commonly used for
this task [11, 23, 5, 26]. ARM is a rule-based method to uncover relationships
between multiple state variables [19]. These relationships represent the final
invariant rules. General dynamic analysis-based tools can also be used to mine
associations [10]. From the system’s design, it is possible to derive invariants from
Process and Instrumentation Diagrams (P&ID), State Condition Graphs (SCGs)
[26], and Automata [1] or use axiomatic design theory to decompose functional
requirements into invariants [28]. Table 1 depicts the various techniques found
in the literature to generate invariant rules, and our proposal, IM-DISCO.

System design approaches have the advantage of deriving invariants directly
from the architecture of the system. However, it can have extensive documenta-
tion, which makes the process of deriving invariants impractical, and sometimes
the documentation does not follow the evolution of the system. Due to these
limitations, we opt to follow a data-driven approach as an alternative.

To the best of our knowledge, IM-DISCO is the first data-driven tool that
generates predicates using out-of-bounds approaches, allowing the mining of in-
variants using Association Rule Mining to create understandable invariant rules
that characterize operational modes that can be attested by CPS experts, opti-
mizing the detection of anomalies, and improving CI protection.
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Table 1. Key attributes of invariant-based anomaly detectors.

Related Work Source Predicate Generation Invariant Mining Knowledge-based

[27] Data Logs Thresholds - No

[11] Data Logs Distribution, Events Association Rules No

[10] Data Logs - Dynamic Analysis No

[23] Data Logs Manual Craft Association Rules Yes

[5] Data Logs Manual Craft Association Rules Yes

[1] System’s Design Manual Craft Hybrid Automata Yes

[28] System’s Design Manual Craft Axiomatic Design Yes

[26]
Data Logs,

System’s Design
Manual Craft

P&ID/SCGs,
Association Rules

Yes

IM-DISCO Data Logs Thresholds Association Rules Yes

3 IM-DISCO

Fig. 1. Example of IM-DISCO generating invariant rules of a CPS with two actua-
tors, two sensors, and four operational modes. IM-DISCO employs historical data logs
encompassing CPS sensor and actuator values in distinct operational modes to create
invariant rules.

As illustrated in Fig. 1, the goal of IM-DISCO is to provide Invariant Rules
composed of Predicates that represent the physical conditions of system opera-
tion. These predicates will be extracted through the use of multiple techniques.

IM-DISCO uses a historical data log to generate invariant rules. This data
log registers CPS sensors and actuator values while the system was operating in
different modes. To generate invariant rules, IM-DISCO first calculates predi-
cates that express the normal functioning of the CPS. These predicates are rep-
resented by statistical bounds of actuator and sensor values for each operational
mode. Once the predicates are obtained, the tool finds associations between them
to mine invariant rules. The final invariant rules can later be used by a detector
to infer, based on sensor and actuator data, the current operational mode of the
system and detect abnormal variances in the physical values.

3.1 Formalization of Concepts

A CPS comprises a group of S sensors that measure, at each timestep, some
physical quantities of the environment (velocity, acceleration, position, etc.).
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Specifically, each sensor Si performs measure(Si, t) = x where x ∈ Q and t is
the respective timestep. Additionally, there is a group of A actuators that control
physical processes, such as moving the wheels of a train or adjusting the flow
rate of a fluid. The sensors in a CPS are responsible for collecting data from
the physical environment and transmitting it to the control system. The con-
trol system processes this data and sends commands to the actuators to adjust
the physical processes in response to changes in the environment. Specifically,
each actuator Ak can change its state state(Ak, t) = y at a certain timestep t
according to the physical values measured by the sensors and that can cause a
change in the system mode. At each timestep, a CPS can be represented as vec-

tor
−→
Cm of |S| × |A| dimensions, where each dimension is the value of a physical

sensor/actuator. The CPS can operate in different modes m that belong to a
set M. These modes can be observed by an expert, and correspond to a given
set of CPS vector observations CM. The main objective of IM-DISCO is thus,
provide invariant rules that infers the operation mode based on a CPS vector,

i.e., imdisco(
−→
C ) = m.

3.2 Railway Example

For instance, consider a train that uses a CPS to control its movement. The CPS
comprises a group of sensors that measure the velocity measure(Svelocity, t) and
acceleration measure(Sacceleration, t) of the train at each timestep t. The CPS
also has a group of actuators, including the brakes and throttle, responsible for
applying power to the train, making it go slower or faster. The system can op-
erate in different modes: m1 = arriving station, m2 = leaving station, m3 =
on station, or m4 = riding. To maintain the proper operation of the train, each
mode has to respect a certain limit of velocity and acceleration, which are con-
trolled by specific actuator state changes, such as state(Abrakes, t) = ON to re-
duce the speed of the train when arriving at the station, state(Athrottle, t) = ON ,
to increase the speed of the train when leaving the station, or state(Adoors, t) =
OFF when the train is moving.

It is possible to establish relationships between the boundaries of the physical
values and the corresponding states of the actuators for each operational mode of
the CPS. This allows us to properly model the correct behavior of the CPS in the
form of physical conditions. By incorporating these conditions into a detector, we
can easily identify the current operational mode of the system and give context
in the event of a detected anomaly.

3.3 Predicate Generation

The Predicates generated in IM-DISCO correspond to different types of bound-
aries for the sensor measurements and actuator states based on observation of
previous runs of the CPS. The discovery of the CPS predicates will not only pre-
vent malfunctions and attacks on the physical values, but will also constitute the
sub-conditions of invariant rules. This approach is based on the fact that many
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values fall within safety limits, while others are binary in nature (i.e., ON/OFF
switches).

Specifically, for each sensor Si, actuator Ak, and mode m, we define a set
of Predicates Pm. To obtain these predicates, we applied techniques used by
SIMPLE [27] in which different thresholds are defined for each sensor/actuator
based on their characteristics. The difference between both systems is that SIM-
PLE models rules based on the individual actuator and sensor thresholds, while
IM-DISCO uses them to uncover the CPS predicates and mine invariant rules.
The approaches used by SIMPLE include: MinMax; Gradient; and SteadyTime.

MinMax extracts the minimum (Min) and the maximum (Max) values ob-
served by each sensor. This approach is grounded on the premise that the phys-
ical values that constitute these systems are inherently constrained by well-
defined limits. Consequently, measurements outside these limits have the po-
tential to disrupt certain operations of the system. The resulting predicates are
defined as minmax : min(Vm) < measure(Si, t) < max(Vm), in which Vm rep-
resents all the physical values captured in a certain mode m.

Gradient establishes the limits of each sensor’s observed slope. Unlike the
MinMax approach, the Gradient method is capable of detecting subtle attacks
that aim to abruptly modify the physical values within operational limits. Such
arbitrary changes to physical variables have the potential to cause critical dis-
turbances to the system. The resulting predicates are defined as gradient :
min(Gm) < gradient(measure(Si, t)) < max(Gm), in which Gm represents
all the gradients of the physical values captured in a certain mode m, and
gradient(measure(Si, t)) = measure(Si, t)−measure(Si, t− 1).

Steadytime detects any instances wherein an actuator’s value remains static
for a duration shorter or longer than what has been previously observed. This
approach is based on the observation that each actuator state should endure for
a specific interval of time. The resulting predicates are defined as steadytime :
min(Tm) < (state(Ak, t) = y) < max(Tm), in which, Tm represents the totals of
consecutive timesteps that the actuator Ak was in the state y in a certain mode
m.

To complement these predicates, we can also define predicates of the form
state(Ak, t) = y for each timestep. This allows us to represent all the states that
the actuator k can have during mode m.

With these techniques, we are able to extract predicates based on the phys-
ical values of the sensors and actuators. Associating these predicates allows the
formation of invariant rules that characterize a certain mode. For instance, using
the railway station example introduced earlier in Section 3.2, we can generate
multiple predicates Pm for its sensors and actuators for when the train is leaving
the station, i.e., m = leaving station. For example:

– minmax : 0.0 < measure(Svelocity, t) < 29.9. This predicate establishes the
safety limits of the velocity of the train;

– gradient : 0.0 < gradient(measure(Sacceleration, t)) < 2.42. This predicate
states that the acceleration slope of the train must be between 0.0 and 2.42;
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– steadytime : 90 < (state(Athrottle, t) = ON) < 142. This predicate states
that the throttle must be “ON” between 90 and 142 timesteps and only
during this period;

– state(Abrake, t) = OFF . This predicate represents that the brake was “OFF”
at a certain timestep.

3.4 Invariant Rule Mining

From the generated predicates, it is now possible to derive the invariant rules
that characterize the operational modes of the CPS. The main goal is to identify
the relationships that express the correct functioning of the CPS for each mode,
which represent the rules that are critical for maintaining the infrastructure’s
normal operation. Specifically, from the sets of Predicates Pm, we want to mine
a set of Invariant Rules Im in which each rule is of the form A =⇒ C, where A
represents a subset of Predicates and C represents an operational mode m.

Invariant Rule Mining (IRM) is achieved through a data mining technique
known as association rule mining, which discovers patterns and associations
between variables in large datasets. ARM is typically divided into two phases:
Frequent Itemsets Extraction (FIE) and Association Rules Generation (ARG).

Identifying frequent itemsets involves finding sets of items that commonly
appear together – co-occur – in a dataset [2]. The most widely used algorithms
to identify these itemsets are Apriori [22] and FP-Growth [18]. The items corre-
spond to the predicates contained in Pm.

The first step in identifying frequent itemsets is to define a minimum support
threshold, which specifies the minimum proportion of entries that an itemset
must appear in to be considered frequent [2]. After that, the algorithm scans
the dataset to identify all the individual items and their support values. It then
generates candidate itemsets, which are sets of items that have not yet been
determined to be frequent. The algorithm then scans the dataset again to count
the support of each candidate itemset. A candidate itemset is added to the list
of frequent itemsets if its support is above the minimum support threshold. This
process is repeated iteratively until no new frequent itemsets are found.

Given a dataset D, where each dataset entry d is a set of predicates d ∈ Pm,
and a minimum support threshold minsup, find all frequent itemsets F such
that the support of I in D, denoted supp(I), is greater than or equal to minsup
ca be expressed as: F = {I ⊆ Pm|supp(I) ≥ minsup} where Pm is the set of all
predicates in the dataset D, and supp(I) is the proportion of entries in D that

contain all the predicates in I, or supp(I) = |{d∈D|I⊆d}|
|D| .

After identifying the frequent itemsets, the next step is to generate asso-
ciation rules. Association rules are statements that describe the relationship
between different items in the dataset. The process of generating association
rules involves setting a minimum confidence threshold minconf . The confidence
of an association rule measures how often the rule is valid for the entries in the
dataset [2]. The minimum confidence threshold specifies the minimum level of
confidence that an association rule must have to be considered significant.
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Once the minconf is set, the algorithm generates all possible association
rules from the frequent itemsets. Each association rule consists of an antecedent
and a consequent, and the support and confidence of each rule are calculated.
The algorithm then filters out the association rules that do not meet minconf .

The resulting set of association rules can be sorted by their support and
confidence to identify the most significant rules. Other metrics can also be used
to evaluate association rules, such as lift, which measures how much the presence
of the antecedent increases the likelihood of the consequent, or conviction, which
measures how much the absence of the antecedent decreases the likelihood of the
consequent [8].

Hence, an association rule is an implication expression of the form A =⇒ C,
where A is a subset of Pm and C is the respective operational mode, if and only
if conf(A =⇒ C) ≥ minconf , where conf(A =⇒ C) is the respective
confidence and can be calculated as:

conf(A =⇒ C)=
supp(A∪C)

supp(A)

In the end, we are able to derive invariant rules from the obtained predicates.
Considering again the railway scenario presented in Section 3.2. An example

of an invariant rule for m = leaving station would be:

minmax:0.0<vt<29.9 ∧ steadytime:90<(throttlet=ON)<142 =⇒ leaving station

By providing invariant rules, such as this one, our solution allows for straight-
forward interpretation and understanding of the system’s behavior. The rule
provides clear criteria for determining whether the system is operating correctly
during the leaving station mode in which the velocity of the train (vt), given
by measure(Svelocity, t), can not be lower than 0.0 or higher than 29.9 units and
the state of the throttle (throttlet), given by state(Athrottle, t), can not be “ON”
less than 90 or more than 142 timesteps. Any deviation from these conditions
would indicate the presence of a problem. By continuously monitoring the actu-
ator states and comparing them to the defined rules, our solution can identify
deviations or abnormal behaviors that may compromise the safety or efficiency
of the system.

3.5 Summary

IM-DISCO is a tool that generates invariant rules composed of predicates to
characterize the operational modes and detect anomalies in CPS. It utilizes his-
torical sensor and actuator data to calculate predicates representing the normal
functioning of the CPS. These predicates define the statistical bounds of physical
values and actuator states for each operational mode.

IM-DISCO employs association rule mining to generate invariant rules. It
extracts common co-occurring predicates and then finds relationships between
them. The support and confidence of the generated rules are calculated, and the
final rules are selected based on a minimum confidence threshold.
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Overall, the use of easily understandable invariant rules facilitates effec-
tive preventive measures, enabling operators or experts to promptly respond
to anomalies, mitigate risks, and ensure the smooth operation of the system.

4 Implementation

The IM-DISCO tool is composed of the phases presented in Fig. 1, namely:
Predicate Generation and Invariant Rule Mining. We used Python programming
language to develop our tool.

The Predicate Generation phase is responsible for generating predicates based
on the input CPS data log, which includes telemetry from sensors and actuator
states. To this data, the expert adds the observed operational modes. For each
sensor and actuator, we calculate the appropriate thresholding approaches as
described in Section 3.3. These thresholds determine the ranges of values that
define different modes. Once the predicates are generated, they are combined to
form itemsets, which are then used as input for the Invariant Rule Mining phase.

To associate the predicates and generate invariant rules, we used theMLxtend
library [24], which offers a range of machine learning and data mining tools. We
now describe the two subphases of the Invariant Rule Mining step: Frequent
Itemset Extraction and Association Rule Generation.

The objective of FIE is to identify itemsets, which correspond to the gen-
erated predicates, that occur frequently in the dataset. First, we transform the
dataset containing the predicates into a binary matrix representation using the
MLxtend function fit transform(). This binary matrix indicates the position
of each predicate in the dataset. We then apply the frequent itemset extraction
algorithm. In our case, we utilized the FP-Growth implementation provided by
MLxtend, which is reported to be approximately five times faster than the Apri-
ori algorithm1. To capture the maximum number of frequent predicates, we set
a minsup of 0.05, the minimum allowed value by the FP-Growth algorithm.
Having a larger set of predicates enables us to generate a greater number of
associations, resulting in more robust rules.

ARG aims to derive associations between the frequent predicates and gen-
erate invariant rules. We employed the association rules() function from MLx-
tend, which takes the frequent predicates as input and returns the association
rules that satisfy a certain confidence level. In our case, we set minconf to 1,
ensuring that only rules with perfect confidence are generated. This choice min-
imizes the risk of false positives and ensures that the derived rules are highly
significant.

5 Evaluation

We performed several experiments using different train travel scenarios to eval-
uate the performance and efficacy of IM-DISCO in critical infrastructure. The
evaluation aimed to answer the following research questions:

1 https://rasbt.github.io/mlxtend/user guide/frequent patterns/fpgrowth/
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RQ. 1) Can IM-DISCO infer the correct operational mode?
RQ. 2) Can IM-DISCO be applied for anomaly detection?
RQ. 3) How much time does IM-DISCO take to generate and verify rules?

By addressing these questions, we can obtain an understanding of the tool’s
accuracy, sensitivity to anomalies, and performance of rule generation and ver-
ification. The evaluation will provide insights into the practicality of the IM-
DISCO tool and its ability to support anomaly detection in cyber-physical sys-
tems. The evaluation was performed on a computer with Intel Core i5-7300HQ
CPU 2.50GHz processor, 16GB of RAM, and running Windows 10.

5.1 Data Collection and Experiment Setup

The datasets used to assess our solution correspond to two real-world suburban
train rides on the same railway. The data, such as the geographic points and
velocity, were collected at 1-second intervals using the Strava application run-
ning on a smartphone. This app is used to track physical exercise using Global
Positioning System (GPS) data.

The first ride, or departure ride (Rd), was from Lisboa - Entrecampos to
Portela de Sintra had a duration of 35 minutes and 22 seconds, and compre-
hended 12 stops until it arrived at the final one, which gives a total of 2122
datapoints. The second ride, or return ride (Rr), represents the return trip, had
a duration of 34 minutes and 28 seconds, and comprehended the same number of
stops totaling 2068 datapoints. The mean time between stops is approximately 3
minutes and the mean velocity of the train was 40.7 kilometers per hour (km/h).
From this data, we have derived other metrics, such as acceleration, the state
of the brakes, and throttle (on and off). We have also annotated the state of
the doors (opened or closed), and more importantly the operational mode of
the train (on station, leaving station, riding, and arriving station). From this
scenario, we have modeled the train as a cyber-physical system with a set of ac-
tuators A and sensors S (recall Section 3.2). Actuators are the brakes, throttle,
and doors. The sensors are the speedometer and accelerometer.

However, the collected datasets have limitations in representing the diverse
conditions of real-world train operations; the sample size may not capture the
full range of train behaviors and potential anomalies; and abnormal values were
captured due to low GPS signals in tunnels. These values were used to assess
IM-DISCO’s detection capabilities in this specific scenario.

5.2 Evaluation Metrics

In the evaluation of our solution, we employed a set of commonly used metrics
to assess its efficacy, namely: false positives (FP), false negatives (FN), true
positives (TP), true negatives (TN), recall, precision, F1-measure, and accuracy.
An FP is the number of instances that do not belong to a specific class but
are incorrectly classified as belonging to that class. An FN is the number of
instances that belong to a specific class but are incorrectly classified as not
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belonging to that class. A TP is the number of instances that are correctly
classified as a specific class. A TN is the number of instances that are correctly
classified as not belonging to a specific class. Recall measures the proportion of
correctly classified instances out of the total instances that actually belong to a
specific class and is computed as TP

(TP+FN) . Precision is calculated as TP
(TP+FP )

and measures the proportion of correctly classified instances out of the total
instances predicted as belonging to a specific class. The F1-measure, also known
as the F1-score, is the harmonic mean of precision and recall that determines
the overall performance. Its formula corresponds to 2∗Precision∗Recall

(Precision+Recall) . Accuracy

measures the overall correctness of the classification model, and it is calculated

as (TP+TN)
(TP+TN+FP+FN) . We consider this a multiclass classification problem [14]

where the goal is to classify instances into multiple categories or classes. In this
context, each class represents a specific operational mode or anomaly.

5.3 Operational Mode Inference (RQ. 1)

To evaluate the accuracy of our rules in correctly identifying the operational
modes of the system, we conducted a training and testing process. Following the
same approach of previous works [27, 11], we have trained IM-DISCO with 80%
of the dataset, and tested with 20%. Specifically, we used the data collected from
the first 10 stops to generate invariant rules that characterize each mode. Then,
we trained a detector with the resulting rules and tested it using the remaining
data. Table 2 demonstrates the results of this experiment.

Table 2. Results of using invariant rules for detecting Rd and Rr operational modes.

Precision Recall F1-score Accuracy
Rd Rr Rd Rr Rd Rr Rd Rr

arriving station 100% 100% 98.53% 97.89% 99.26% 98.94%

leaving station 100% 43.75% 100% 100% 100% 60.87%

on station 100% 100% 100% 100% 100% 100%

riding 99.60% 100% 99.60% 93.21% 99.60% 96.48%

IM-DISCO 99.90% 85.94% 99.53% 98.22% 99.71% 89.07% 99.29% 95.17%

These results demonstrate that our solution can accurately detect the mode of
the train using only two sensors and three actuators. The achieved high accuracy
indicates the effectiveness of our approach. In addition, our solution successfully
detected two out of the three abnormal datapoints caused by the low GPS sig-
nal. The third abnormal datapoint went undetected as the train maintained a
constant movement during the interference.

However, we can observe by the precision metric inRr that the leaving station
operational mode was wrongly inferred by the detector. This happened due to
the overlapping of predicates in different invariant rules. Specifically, the Min-
Max predicate for velocity and acceleration overlapped between the riding and
leaving station states. For example, the predicates for riding were 29.452 ≤
velocity ≤ 96.98 and −13.676 ≤ acceleration ≤ 21.078, while the predicates for
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leaving station were 0.007 ≤ velocity ≤ 29.974 and −6.469 ≤ acceleration ≤
13.018. As a result, when the predicates of the two sensor values overlap, and
the predicates for all actuators are the same, the detector chooses the first mode
that meets its invariant rules. Having a larger set of sensors and actuators would
significantly reduce the likelihood of this occurrence.

Moreover, to evaluate how well our solution maintains its high accuracy in
detecting OMs, we use different training/testing split datapoints. Fig. 2 displays
a graph of the accuracy values for both rides for different training sizes. Our
approach consistently achieves high accuracy, exceeding 95%, even with small
training sizes. This shows that our solution effectively generates accurate rules
despite limited data. The ability to achieve high accuracy with low training data
is significant, as it allows our approach to be applied in challenging scenarios
where obtaining large amounts of data is impractical. This is valuable in real-
world situations with limited data collection due to constraints.
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Fig. 2. Accuracy of IM-DISCO (y-axis) across different training sizes (x-axis).

5.4 Anomaly Detection (RQ. 2)

To evaluate the capability to detect anomalies, we developed a train ride simula-
tor, since we could not implement attacks in the real-world datasets used before.
The simulated train ride uses the same operational modes as previously men-
tioned, comprising a throttle, a brake, and the doors that open when the train
arrives at a station. Sensors were utilized to capture the velocity, acceleration,
throttle force, and brake force at each second.

The resulting training dataset consisted of a 48-minute ride with 13 stops,
providing substantial and representative data for training IM-DISCO. The test-
ing dataset, obtained under the same conditions, encompassed a 12-minute ride
with 3 stops. The stops were unevenly spaced to accurately replicate a real train
ride. Additionally, an attack was introduced in the testing dataset, involving
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tampering with the brakes. The locomotive driver was unable to use the regular
brakes and instead had to rely on an emergency brake that exerted a force 2.5
times stronger than the regular brake. This attack was enacted twice in the test-
ing dataset. From this experiment, IM-DISCO generated a total of 76 predicates
and 4 invariant rules, one for each operational mode.

Table 3. Results of using invariant rules for anomaly detection in a simulated ride.

Precision Recall F1-score Accuracy

anomaly 95.24% 100% 97.56%

arriving station 100% 99.56% 99.78%

leaving station 100% 100% 100%

on station 100% 100% 100%

riding 100% 100% 100%

IM-DISCO 99.05% 99.91% 99.47% 99.86%

Table 3 shows the obtained evaluation metrics. The experiment’s results
demonstrated the capability of our solution to accurately identify both anomalies
and the other operational modes, achieving 99.86% accuracy in detection. This
high accuracy was mainly due to the efficiency of the generated predicates and
invariant rules, and also due to the good representativity of the training data.
For instance, our tool detected an acceleration outside the values captured in
training for each operational mode and considered it an anomaly. However, we
got one FN inferring the mode arriving station due to a velocity value that fell
outside the range of values captured during training. Nonetheless, these results
showcase the effectiveness of our approach in identifying abnormal situations.

5.5 Invariant Rules Verification and Validation (RQ. 3)

To evaluate the performance of rule generation and verification, we benchmarked
the time taken to generate and validate invariant rules. We utilized different
training/testing split datapoints and ran our tool 30 times to avoid skewed
benchmarks. The duration of three key processes was recorded: predicate genera-
tion (Section 3.3), invariant rule generation (Section 3.4), and operational mode
detection. By running our tool multiple times and calculating the means of the
duration for each process, we assess the average speed our solution performs.
Fig. 3 depicts the results of these experiments.

The results indicate that there is a direct relationship between the size of
the training data and the time required for predicate and invariant rules gen-
eration. As expected, larger training datasets require more computational re-
sources, leading to increased processing times in both processes. However, it is
noteworthy that the rule generation process exhibits a lower rate of increase in
processing time compared to the predicate generation process. This can be at-
tributed to the fact that the number of sensors and actuators, and the number of
predicates/itemsets remains constant throughout the experiments (2 sensors, 3
actuators, and 52 predicates). Despite this, we can observe that both processes
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Fig. 3. Performance of our solution across different dataset sizes (x-axis, number of
datapoints).The y-axis is the average performance in milliseconds (ms) of 30 executions.

are relatively fast, which will be advantageous in deploying the solution in a
real-world scenario. Moreover, the low detection times, averaging around 0.026
ms per datapoint, further enhance the responsiveness of our solution, allowing
prompt identification and preventive actions.

6 Conclusion

In this work, we described IM-DISCO, a solution for inferring the operational
modes and detecting anomalies in cyber-physical systems using historical data.
Our approach generates invariant rules based on different types of predicates
that represent the physical conditions of the CPS. Through the evaluation of
our solution, we have demonstrated its effectiveness, agility, and performance.
The generated invariant rules exhibited an accuracy above 95% in detecting the
correct operational modes with low training sizes. This indicates that our solu-
tion can reliably characterize and identify the different CPS operational modes
even with limited training data available. In addition, we verified that the invari-
ant rules are able to detect anomalies with 99.86% accuracy. We also assessed
the performance of our solution in terms of rule generation and verification. The
results showed that our solution is able to generate invariant rules in less than
150ms for 1697 datapoints, which can be verified in around 0.026 ms.

From the obtained results, we can conclude that IM-DISCO provides an
effective approach for detecting and characterizing the operational modes or ab-
normal behavior of a cyber-physical system. It demonstrates high accuracy and
agility in rule generation and fast detection of operational modes. Our solution
facilitates timely anomaly detection and aids in the prevention of potential dis-
ruptions or catastrophes. IM-DISCO could be applied in infrastructures as an
additive security tool: correlation with network detection tools [7], can reveal
a network intrusion that originated the CPS anomaly; correlation with process
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monitoring tools [21], may identify anomalous processes; integration with impact
assessment [9] may enable the investigation of CPS anomaly cascading effects.
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