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Abstract—Modern cars are equipped with sensors that can
detect other moving vehicles and obstacles on the road. However,
their range is usually limited to line-of-sight and their accuracy
is also limited. To provide information beyond the sensor range,
each vehicle broadcasts Basic Safety Messages (BSMs) with its
position and speed. For road awareness, it would be best if
multiple vehicles could confirm the position (redundancy), using
their on-board sensors for verification (diversity), and excluding
position and speed errors (plausibility). This paper presents
a decentralized solution that uses multiple vantage points to
provide more trust in moving vehicle position data. It extends
broadcast messages with sensor verification and plausibility
filtering. It processes a stream of data from nearby vehicles and
for short time periods, to achieve the safety benefits without
the privacy risks of long-term data retention. The proposal was
evaluated with detailed simulations with different levels of traffic
and misbehavior. It provides good detection results with only a
limited increase in network and computing resources.

Index Terms—Vehicle positioning, Location proof, VANET,
V2V, C-ITS, BSM, DSRC, WAVE

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) [1] are designed to
improve the automotive driving experience through communi-
cation among roadside infrastructure, road users, and vehicles.
VANETs must support heterogeneous environments and must
satisfy strict constraints for communication, such as: low la-
tency, security, and dynamic network reconfigurations. Once a
VANET is in place, Vehicle-to-Vehicle (V2V) communications
allow the broadcasting of periodic Basic Safety Messages
(BSMs) to announce vehicle position and speed, with transmis-
sion range up to 1000 meters in ideal conditions, beyond line-
of-sight. The increasing adoption of VANETs will enable a
new set of applications to reduce fuel/energy consumption and
increase travel comfort and safety. Some examples of the latter
are: blind spot warnings, do-not-pass warnings, intersection
crossing assistance, and general lane/road problems. Typically,
in these applications, each vehicle will receive messages
through the VANET, using its sensors and plausibility filters to
decide if there are any necessary changes to the status (speed
or direction) or if it is necessary to alert the driver about
some unexpected event. Another use case that can benefit from
position verification is platooning [2] where the participants
need to verify membership of other vehicles on the same road.

Despite its potential, V2V data sharing also raises security
concerns. External security for a VANET is given by using
cryptographic keys and algorithms to protect the exchanged
messages, supported by a Public Key Infrastructure (PKI).

Internal security is handled by various misbehavior detection
systems [3] that detect incongruences in a series of position
messages received by the vehicles, but they have only a local
perspective. Current state-of-the-art anomaly detectors cannot
detect some attacks [4], [5] and existing techniques for position
verification [6], [7] are not directly applicable in VANETS due
to the high mobility and speed of the nodes.

In this paper, we propose a novel mechanism for position
verification of moving vehicles. The core idea is to extend the
reach of vehicle awareness with transitive sensor readings, i.e.,
relying on sensors from other vehicles to confirm positions.
This turns each vehicle into a vantage point for observation
that verifies the position of vehicles with its sensors and ex-
tends BSM with a list of surrounding vehicles. Once received,
the vehicle positions can be tagged as trusted (if confirmed by
sensors), plausible, or as not trusted. This classification can be
used to improve decision-making in the road safety use cases.
We named the system Miradouros as it is the Portuguese word
for privileged observation spots.

The rest of the paper is organized as follows. Section II
describes the base knowledge required for understanding the
paper. Section III describes the details of the proposed solution
and its applicability is simulated in Section IV. Section V
describes other solutions for similar problems. The paper
concludes in Section VI.

II. BACKGROUND

This section presents a description of VANETs along with
solutions to increase the security of V2V communications.

Many standards have been proposed for regulating ve-
hicular communications, but the two with more momentum
are the Wireless Access in Vehicular Environments (WAVE)
for USA and the ETSI ITS-G5 for Europe. Both standards
are based on the IEEE-802.11p [8] for the physical and
medium-access layers. IEEE-802.11p uses frequencies from
5.850 to 5.925 GHz supporting 3 and 27 Mbps in a 10 MHz
channel bandwidth and 6 and 54 Mbps in a 20 MHz channel
bandwidth. Both standards support the broadcast of basic V2V
safety messages every 100 ms containing the core vehicle data
to provide situational data to surrounding vehicles up to 1000
meters (even in urban areas), with a maximum relative vehicle
speed of 110 km/h. In particular, for safety communications,
WAVE uses the IEEE Basic Safety Message (BSM), while
ETSI ITS-G5 uses the ETSI Cooperative Awareness Message
(CAM). BSM and CAM messages contain information about
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the vehicle, such as its position (latitude and longitude), the
level of accuracy of the GPS, the status of the braking system,
and other physical attributes (such as the length and the width
of the vehicle), to prevent or mitigate dangerous situations. In
this work, we consider the WAVE standard as reference. Our
focus is on the application level, so our proposal can be easily
extended and evaluated with the other standards.

Since VANETs are crucial for future V2X safety appli-
cations, different security solutions aimed to protect them
from malicious activities have been presented in literature.
Our discussion focues on two components: SCMS and MDS.
The SCMS (Security Credential Management System) is a
security solution for V2X communication and uses a PKI
(Public Key Infrastructure) for the generation and distribution
of the cryptographic certificates required by the vehicles to
ensure the authenticity and integrity of the communications.
However, given the scale and scope of the system, it is
unrealistic to assume that anyone with a valid cryptographic
certificate should be trusted. The MDS (Misbehavior Detection
System) is responsible for evaluating the truthfulness of the
messages sent by vehicles with valid certificates, and reporting
suspicious activities to an MA (Misbehavior Authority), that
can later issue certificate revocation requests. To guarantee pri-
vacy for the communication between the entities and prevent
tracking, multiple pseudonyms are assigned to the vehicles [9],
[10]. The cooperation between the SCMS and the MDS in se-
curing VANETs communication is extremely important, since
the former component provides security guarantees against
external attackers (as described in the IEEE 1609.2 security
standard [11]), while the latter is responsible for the detection
and mitigation of attacks coming from insiders (i.e. vehicles
or infrastructure elements).

III. PROPOSED SOLUTION

This section describes the architecture, data structures, and
algorithms of Miradouros.

A. Decentralized Architecture

In the proposed architecture, each vehicle runs its own
instance of the solution, relying on position messages received
through the VANET, obstacle detection made by on-board sen-
sors (e.g., cameras, radars, and lidars), and position plausibility
rules, akin to misbehavior detection, considering the current
and past positions. Each vehicle periodically broadcasts a
BSM, e.g., every 100 ms as recommended in the IEEE
1609 WAVE standard. The BSM includes all information
related to the current state of the sending vehicle. We assume
that each vehicle adds additional information relative to the
nearby vehicles’ position, as described in Section III-C. Each
element does its own computations and does not rely on the
computations made by others. As such, there is no centralized
source of truth as each vehicle broadcasts its own signals, and
the positions are computed by taking into account the history
and messages received during the given period.

Fig. 1: Sensor range for vehicle moving on a road.

B. Threat model

Miradouros helps detect misreported positions that malfunc-
tioning location systems may cause. However, Miradouros also
considers malicious adversaries. The adversary is interested
in attacking the position data protected by Miradouros. In
particular, it aims to convince the other participants of the
VANET that it is in a position different from its actual position,
probably to hide some traffic violations. If we consider a
VANET architecture composed of all the security countermea-
sures described in Section II, we can classify the adversary as
an insider attacker following the classification presented in [3].
An insider attack is a typology of attack in which the attacker
has acquired valid cryptographic credentials from the PKI to
participate in the communications.

Regarding the privacy of road drivers, the system is de-
signed to not store persistent information. The messages and
perceptions are processed in a short period, relevant for safety
applications, but no long-term information is retained.

C. Algorithm

The rationale of the proposed solution is that each vehicle
should broadcast additional information about surrounding
vehicles (illustrated in Figure 1). In that way, each receiver
vehicle can collect more information about the environment
and use this information to validate the vehicles’ position.

Before describing the algorithm, it is helpful to introduce the
two most crucial used data structures: the Surrounding Vehicle
List (SVL) and Observed vehicles Table (ObsTable). Both
SVL and ObsTable contain the same category of information
(e.g., identifier, position, timestamp). However, the concrete
type of information included is a parameter of the proposed
algorithm. It can be adjusted to include more information at
the expense of the size and network overhead (as discussed
in Section IV-A and IV-C). The SVL is populated by each
sender vehicle and included in the broadcast BSMs, while
each receiver manages the ObsTable. Each vehicle is both a
sender and a receiver, and the two roles are processed
simultaneously, so each vehicle processes and manages, at the
same time, its own SVL and ObsTable data.

The sender role is illustrated in Figure 2. Every cycle,
each vehicle produces a standard BSM, appends the SVL in-
formation about nearby vehicles, and broadcasts the message.
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Fig. 2: The flowchart of the sender role.
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Fig. 3: The flowchart of the receiver role.

The SVL is cleared at the end of each cycle (i.e., after each
message is broadcast) and populated in the receiver role.

The receiver role is represented in Figure 3. All the
depicted steps are executed for each received BSM. This
procedure allows to tag the sender’s position included in each
BSM as trusted or not trusted.

When a vehicle receives a BSM, it should first try to validate
the sender’s position using its own sensors (e.g., camera, radar,
lidar). If the vehicle’s sensors can confirm the position of the
sender, the receiver includes the information of the sender in
the SVL (SVL Update), updates the ObsTable (ObsTable
Update), and tags the position of the sender as trusted. In
this case, the BSM sender’s position is considered as sensed.

If the sender’s position included in the received BSM cannot
be verified using the vehicle’s sensors, it can be validated in
the next step. The receiver should check if the identity of
the sender is included in the ObsTable, and if yes, use one or
more plausibility checks to validate the sender’s position. If
the position of the sender is validated, the ObsTable is updated,
and the position of the sender is tagged as trusted. In this case,
the BSM sender’s position is considered as plausible.

Finally, if the sender’s position included in the received
BSM cannot be validated in either way, the BSM is tagged
as not trusted but still received.

D. Operation

The main difference between a sensed and plausible po-
sition is that only the sensed positions are included in the
SVL that will be added to the next BSM, i.e., only sensor
confirmations are communicated in the SVL.

Fig. 4: Traffic example: vehicle X overtook C in a curve,
crossing a solid line, and is endangering both B and A.

Time ObsTable State Messages/Perceptions

Tn−1

Sensed: BSM(B,SVL(A,C,X!))
Plausible: BSM(X)
Received: B, X, C BSM(C,SVL(X!,B))

Tn

Sensed: BSM(B,SVL(A,C,X!))
Plausible: B, X, C BSM(X)
Received: BSM(C,SVL(X!,B))

Tn+1

Sensed: B Sensed(B)
BSM(B,SVL(A,C,X!))
BSM(X)
BSM(C,SVL(X!,B))

Plausible: X!, C
Received:

TABLE I: Processing steps for vehicle A: Sensed is more
trusted than Plausible that is more trusted than Received. X!
is the actual position of X.

Let us consider the traffic example represented in Figure 4
and the operation steps of Miradouros shown in Table I. In this
example, we have the vehicle X doing a dangerous overtaking
on a road where the maneuver is prohibited due to a curve
and poor visibility. Also, X is an adversary, misreporting its
position to hide the traffic violation.

In Table I we can see a representation of the operation of
Miradouros in vehicle A.

At the time Tn−1, the vehicle A became aware of the
position of vehicles B, X , and C, thanks only to V2V
communications. However, the position of these vehicles is
not yet validated. In fact, the position of X is not correct. At
this time, the contents of the SVL from both B and C are still
being ignored because B and C are out of the sensors’ range.

At time Tn, vehicle A receives updated positions. Since the
changes are physically consistent with their previous position,
the new positions are plausible. At this time, the position of
B is still not confirmed by A’s sensors.

At time Tn+1, A can now sense B. Since the position of
B is validated, A can now accept the SVL contents of B and



update its own ObsTable with X! and C received within the
BSM sent by B. This is critically important, as the position of
X! is now updated, and the dangerous situation is detected.

IV. RESULTS

This section presents the assessment of Miradouros, based
on extensive simulations.

A. Simulation Setup

For the simulation, we used a subsection of the LuST
scenario [12], that includes 84 km of roads with different levels
of traffic (300, 400, 500, 700, and 1000 vehicles), and we
consider 5% level of misbehavior in simulation scenarios. In
particular, we consider as misbehavior the set of possible faulty
behaviors described in [13] in which a faulty or misbehaving
vehicle broadcasts an incorrect position. In our simulation, the
misbehaving vehicle broadcasts wrong or random positions
from the playground after a random time for a random period.
We simulated the considered scenarios by using VEINS [14],
an open source framework for vehicular network simulations
based on OMNET++ [15] for the simulation of networks
and on SUMO [16] for the simulation of the road traffic. In
our simulation, we adopted the IEEE 802.11p, IEEE 1609.4
DSRC/WAVE [17] module to extend the VEINS capabilities
in a way to enable the DSRC/WAVE stack, Quality-of-Service
channel access, Wave Short Message (WSM) management and
periodic beaconing of BSMs. We also used the Physical Layer
[18], Obstacle Shadowing [19], and Antenna Patterns [20]
modules to simulate the propagation and attenuation of the
wireless signals to recreate proper signal coverage of messages
in urban environments. The vehicles simulated in our scenarios
are programmed to send beacon messages every 100 ms, as
recommended by the SAE J2945-201712 standard [21]. For
the simulation of the vehicle’s sensors, we suppose that a
vehicle can percept the surrounding environment in a range
of 100 meters, in all directions, with an accuracy of 80%, so
the receiver can validate the sender with its sensors.

As described in Section III-C, the proposed solution can
be tuned with different parameters. In this paper, we consider
the following configuration. The lifetime of all entries in the
ObsTable is set to 20 cycles, so an entry in the table is
considered expired if not updated for more than 2 seconds.
As plausibility check, we used a consistency verification based
only on the position of the vehicles. We consider two positions
plausible if, given a maximum speed maxspeed and the
timespan, the distance between the two points can be traveled
by a vehicle with speed maxspeed. We set the maximum
vehicle’s speed in the simulation to be 55 meters/second
(approximately 200 Km/hour). Again, we remark that the
accuracy of the sensors, the expiration time of the ObsTable,
and the plausibility check algorithm are only parameters of
the proposal and can be tuned for more specific applications.

B. Simulation Results

The simulations were run and produced 60 seconds of data,
summarized in Table II. The rows report different Runs, and

the columns report the average results for each vehicle. For
each Run we indicate the number of vehicles (#V), the number
of malicious vehicles (#MV), the average percentage of sensed
positions (Sensed), the average percentage of ObsTable hit of
each vehicle (ObsTable Hit), and the average percentage
of ObsTable miss of each vehicle (ObsTable Miss). We
have an ObsTable hit if the sender of a received BSM is
already in the table and a miss if it is not.

The results show that we have more than 50% of probability
(Sensed + ObsTable Hit) that a received BSM can be
validated and that probability increases in scenarios with more
vehicles. The probability that the sensors validate a BSM is
stable in all the different densities (#V).

The columns True Negative (TN) represent the percentage
of BSMs correctly tagged as not trusted. We consider as TN
both a malicious BSM with the sender ID that is not included
in the table (Malicious ObsTable Miss MTM) and a BSM with
a sender id included in the table but tagged as non-plausible.
The column False Negative (FN) represents the percentage of
BSMs that are tagged as trusted but that are malicious, and
ObsTable Hit False Positive (THFP) the percentage of BSMs
with table hit tagged as not trusted but that are genuine. Finally
the columns Sent SVL Size and Recv SVL size report
the average size of the SVL for sender and receiver.

The results show that we have about 100% detection rate of
the malicious BSMs in all scenarios, while the rate of THFP
increases in more dense scenarios. A message is classified
as THFP by the plausibility check, so improved plausibility
algorithms will help to reduce the false positives.

We tag the ObsTable Miss messages as not trusted because
we do not have enough evidence to classify them as trusted.

We do not consider this a disadvantage because we prefer
to have high reliability instead of a high recall, i.e., we prefer
not to tag a malicious message as trusted at the cost of losing
some genuine messages. Since the cycles are short and the
BSMs are repeated, the positions will eventually be detected.

In Table III we further investigate if the messages included
in the ObsTable Miss column of Table II can be useful in
some scenarios. In particular we consider the communication
requirements defined by the NHTSA [22], which considers
multiple vehicle communication scenarios and defines the
constraints that must be satisfied to guarantee safety.

The report identifies 8 high-priority and safety-critical sce-
narios, and for each of them defines the allowable latency and
communication range, respectively:

• Pre-Crash Sensing: 20 ms, 50 m;
• Traffic Signal Violation Warning: 100 ms, 250 m;
• Curve Speed Warning: 1000 ms, 200 m;
• Emergency Electronic Brake Light: 100 ms, 300 m;
• Cooperative Forward Collision Warning: 100 ms, 150 m;
• Left Turn Assistant: 100 ms, 300 m;
• Lane changing Warning: 100 ms, 150 m;
• Stop Sign Movement Assistance: 100 ms, 300 m.
Following the setup proposed in this paper (c.f. Sec-

tion IV-A), we consider the distances less than 100 m managed
by the vehicle’s sensors. Table III reports for each Run the



Run #V #MV Sensed ObsTable
Hit

ObsTable
Miss

TN FN THFP Sent
SVL Size

Recv
SVL SizeMTM Plausibility

1 300 5% (15) 35% 21% 44% 97% 3% 0% 20% 2.23 3.17
2 400 5% (20) 37% 23% 40% 95% 3% 2% 23% 2.45 3.63
3 500 5% (25) 36% 26% 38% 96% 4% 0% 25% 3.68 4.70
4 700 5% (35) 36% 31% 33% 95% 5% 0% 29% 5.20 6.80
5 1000 5% (50) 36% 33% 31% 96% 3% 1% 30% 7.13 8

TABLE II: Results for simulations with a duration of 60 seconds (600 BSM cycles).

percentage of ObsTable Miss with different distances between
the sender and the receiver.

Run #V ObsTable Miss
100-150 m 150-200 m 200-250 m 250-300 m

1 300 13% 20% 19% 11%
2 400 13% 20% 15% 10%
3 500 9% 17% 17% 13%
4 700 8% 15% 22% 10%
5 1000 7% 14% 19% 14%

TABLE III: Analysis of the distances of ObsTable Miss.

The percentage of table miss in the short-medium distances
(100-150 m and 150-200 m) decreases with an increase of the
number of vehicles, showing that our proposal works better in
a scenario with more dense traffic. In medium-long distances
(200-250 m and 250-300 m), there is no strong correlation
between the percentage of table misses and the number of
vehicles. In fact, the value of table miss for the 200-250 m
distance range is included between 15% and 22%, while for
the 250-300 m distance, between 10% and 14%. For all the
scenarios we have, there is about a 0% of table miss for
distances < 100 m because these distances are validated mainly
by the vehicles’ sensors, while we have more than a 45% of
table miss for messages with positions over 300m in all the
scenarios. Since most of the table misses are for medium and
long distances (> 200 m), an application that relies on the
trustness of the positions can delay the decision of non-safety
critical maneuvers to the following cycles.

C. Applicability of the proposed solution
Based on the results reported in [23] and specifications of

the NHTSA report [22], the average size of a signed BSM
that follows the security recommendation of the IEEE 1609.2
standard [11] is 460 bytes, and with a network bandwidth
of 6 MiB/s the maximum number of messages supported by
the network is 163 messages. The proposed solution requires
each vehicle to add additional information about the positions
of the surrounding vehicles, causing an increment in the size
of the BSMs and an extra overhead on the entire network.
In particular, we consider that each row of the SVL and the
ObsTable contains an ID, a position, and a timestamp.
Let us consider that the reported position is expressed using
standard GPS coordinates using one word of 32 bit for each
field. We can assume that the overhead is 64 bit (or 8 bytes) for
each coordinate included in the BSM, 4 bytes for the identifier,
and other 4 bytes for the timestamp.

As described in Section III-C, each vehicle should include
the position of a surrounding vehicle in a BSM only if this

position was validated by its sensors. In a worst-case scenario,
like the one depicted in Figure 1, we can suppose that the
maximum number of positions that a vehicle can include is 8,
which gives an overhead of (8+4+4)*8 = 128 bytes, so a BSM
of size 590 bytes and a reduction of network capacity from 163
to 127 messages in term of the size of the SVL, that is enough
to support the scenarios proposed in [23]. However, from the
results in Table II, we can see that, on average, the size of the
SVL depends on the traffic density, with a value from 2 and
3 for the less dense scenario to 7 and 8 for the more dense
scenario for the sent and received SVL, respectively. These
results show sustainable network overhead in all scenarios.

The size of the ObsTable that each vehicle should use
depends on the number of received BSMs and the expiry
time of each row. The time required for a lookup is O(1),
on average, assuming the use of hashtables.

V. RELATED WORK

Sharma et al. [24] present a novel machine-learning ap-
proach for detecting false positions in BSMs. Several BSMs
are used to combine information and get more reliability.
The authors claim to detect several falsification attacks with
the increased knowledge of groups of BSMs using Machine
Learning (ML). The ML approach has the potential to detect
a broader set of attacks than Miradouros. However, this
approach would delay the time taken for detecting the same
subset of attacks that Miradouros does due to the faster local
management of BSMs with in-vehicle processing.

Ilango et al. [25] propose NPFADS (Novel Position Falsi-
fication Attack Detection System) that can learn and detect
novel position falsification attacks using several RSU and fog
computing nodes. These nodes are connected to the Internet
to detect emerging attacks on the network using BSM. Unlike
Miradouros, the authors use a distributed set of components
to share information about attacks inside the network. This
system provides a larger knowledge of attacks in several
locations, being able to share that information between distant
vehicles However, this approach requires increased infrastruc-
ture support and can also increase processing needs in vehicles,
unlike our solution that works on a local context only.

Dokur et al. [26] demonstrated three V2V safety applica-
tions (Front Collision Warning, Emergency Electronic Brake
Light and Blind Spot Warning) using only exchanged BSMs
to accurately predict the relative positions of vehicles. They do
not rely on camera-based sensors due to the less reliability of
such devices under special weather conditions. However, this
solution can leave out the use of valuable information taken



by car sensors and delay the time taken for safety applications
like emergency braking. Miradouros runs an instance of the
solution in each vehicle, using todays state-of-the-art on-board
sensors and can provide a faster perception of traffic to trigger
safety actions.

Tsai et al. [27] propose a solution for enhancing vehicles po-
sition using relative positioning instead of relying only on the
GPS position. Like Dokur’s work, this work aims to provide
drivers with a braking warning signal without the obscurity
caused by weather using V2V communication. However, this
work has privacy implications that do not affect our proposal,
because it uses and stores license plate numbers to identify
vehicles in BSMs. Miradouros stores sensible information, i.e,
vehicle identities, but only for a short period, soon discarding
all used and unnecessary information about vehicles.

VI. CONCLUSION

This paper presents a novel decentralized proposal for the
validation of the position of moving vehicles in VANETs. As
a first contribution, we propose a distributed algorithm that
fuses the perception of the enviroment that each vehicle is
able to construct thanks to its sensors, with the information
collected from all the received BSMs broadcast by each nearby
vehicle. As a second contribution, we performed an evaluation
of the proposal using simulations of realistic scenarios, using
different levels of traffic and misbehavior in position reporting.
These results have shown that we can obtain good detection
results making our proposal suitable for road safety applica-
tions that rely on the correct position of vehicles.
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