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ABSTRACT

Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and
Consensus, that assure the correct operation of the system even when some of the nodes of the
system fail. However, the development of distributed algorithms is a manual and complex process,
resulting in scientific papers that usually present a single algorithm or variations of existing ones.
To automate the process of developing such algorithms, this work presents an intelligent agent that
uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms.
We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms
with the same performance of others available in the literature, in only 12, 000 learning episodes.

Keywords Fault-Tolerant Distributed Algorithms, Reliable Broadcast, Automatic Code Generation, Reinforcement
Learning

1 Introduction

Distributed systems are made of multiple components interconnected by communication networks. By leveraging dis-
tribution, such systems can provide high availability and scalability. Examples of modern and widely used distributed
systems are cloud applications [3] and blockchains [50]. During normal operation, some of these components may
fail, e.g., due to power loss, software bugs, or malicious attacks. These faults can compromise the normal functioning
of the entire system. Therefore, it is necessary to provide fault tolerance properties so that the distributed system can
maintain its normal execution, even in the presence of faults. For that purpose, it is important to design and implement
fault-tolerant distributed algorithms [12, 42].

Fault-tolerant distributed algorithms have been widely studied and developed over the years [7–9, 14, 18, 19, 29],
exploring different aspects such as the problem to study [14, 29], the failures mode [19, 26] or the system architecture
[8, 18]. However, the process of studying and designing a fault-tolerant algorithm is a manual and complex endeavor
[26]. This is especially true in the presence of malicious actors, where the algorithms are very subtle, complicated
and slight changes often require a complete redesign of the algorithm. Moreover, current research on fault-tolerant
algorithms do not focus only on correctness: efficiency is also a very important concern in these algorithms, which
increases the complexity of the overall algorithm development process.

Typically, the journey to develop a fault-tolerant algorithm starts with assumptions about the environment or system
model, e.g., if the system is synchronous or asynchronous and the failures that can occur. Researchers then have to
define the problem they want to solve, e.g., Reliable Broadcast, shortened in this paper as RBcast. Next, researchers
think about the strategy to design the distributed algorithm. In this stage, besides the difficulty of creating the al-
gorithm, researchers may be biased by previous related papers and algorithms. After a trial-and-error process, the
distributed algorithm is generated. This also involves a validation process to assess whether the generated algorithm
achieves the goal and solves the problem correctly. This can be done by writing a proof and/or by doing verification
using a model checker or a theorem prover.
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In this work, our aim is to automate the process of generating fault-tolerant distributed algorithms by proposing
an intelligent agent [48] capable of generating and validating algorithms for a specific distributed problem.1 More
precisely, we aim to create an agent that can generate correct and efficient algorithms based on the inputs given by
researchers, i.e., assumptions about the environment, failures, and characteristics of the algorithm. Our solution aims
to be flexible so that researchers can change the specification with the objective of studying different problems that,
consequently, can lead to different algorithms. This is a novel research area, so in this paper we start with a single
problem: RBcast, but our work aims to be applicable to other distributed problems.

Our approach follows a process with two phases: generation, for obtaining candidate algorithms, and validation, for
assessing their correctness. The generation process is related to the problem of code/program generation but with
significant differences, as distributed algorithms are executed in parallel in several nodes and are subject to faults,
whereas local programs are not. Research on automatic code generation explored static techniques such as design
patterns [11], UML [46], and reverse engineering [49] but lately, supervised machine learning techniques have started
to be used [1, 4, 57] to improve the process. In this work, we use an unsupervised machine learning approach called
Reinforcement Learning [32, 54, 56]. To the best of our knowledge, this work is the first to present such an approach
on the automatic code generation field.

In terms of validation, the search for a validation process for distributed algorithms has been pursued for years [23,
25, 38, 51]. We identified four possible languages and frameworks to be used: the TLA+ language and tools [38], the
Spin framework with the PROMELA language [31], the ByMC framework [35], and IC3PO [24]. We opted to use
Spin/PROMELA, as explained later.

The main contributions of the paper are: (1) a new approach for generating correct and efficient distributed fault-
tolerant RBcast algorithms using machine learning, instead of manual development by human beings, (2) an intelli-
gent agent to generate such distributed algorithms and (3) an experimental evaluation of the approach and the agent,
showing a correct generation of RBcast algorithms.

2 Reliable Broadcast

This section presents RBcast, the distributed problem for which we want to find algorithms to solve.

2.1 System Model

The system model considered for the RBcast algorithms we want to generate is inspired on the modular approach to
fault-tolerant problems by Hadzilacos and Toueg [26]. The system is composed of a static group of N processes,
i.e., there are no joins or leaves during execution. We assume a fully connected point-to-point network, i.e., that
all processes are connected with each other through links and communicate by passing messages. We also assume
that the system is asynchronous, i.e., that the communication delays are neither upper bounded nor respect a global
stabilization time.

A process is the actor of the distributed system, that executes a set of specific ordered actions, designated an algorithm.
All processes of the system execute the same algorithm.

The communication links allow processes to exchange messages. The links have the task of transporting the message
from the output buffer of the sender to the input buffer of the receiver. We assume that the links are reliable, au-
thenticated, and provide integrity on the messages, meaning that there are no corrupted, lost or duplicated messages.
However, messages may arrive out of order.

Processes use messages to share data between them. Typically, a message contains data such as the message content
(used by the logic of the system) and an identifier that can contain protocol type, sender, and sequence number.

The processes of the system can be correct or faulty. We consider three failure modes: No-Failure, Crash-Failure, and
Byzantine-Failure. In the simplest, No-Failure, we assume there are no failures. In the Crash-Failure mode [6, 21],
processes may stop operating and never recover. Assuming a system with N ∈ N processes, the maximum number
of faulty processes F ∈ N due to a crash failure that can be tolerated in the system is F = b(N − 1)/2c [10]. In
the Byzantine-Failure mode [39] faulty processes may have arbitrary behavior, e.g., they may execute other actions
not defined by the algorithm or even not execute any action at all. Unlike a crash failure, when a process suffers a
Byzantine failure (or, “is Byzantine”), it can continue to work. Assuming a system with N processes, the maximum
number of faulty processes F due to a Byzantine failure that can be tolerated in the system is F = b(N−1)/3c [10,18].

1We take the term intelligent agent from the Artificial Intelligence area, where Reinforcement Learning appeared. If the term
“intelligent” makes sense is, of course, debatable.
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2.2 Problem Definition

A RBcast algorithm ensures, essentially, that every message broadcast by a correct process (an RB-Broadcast event)
is eventually delivered by all correct processes. The protocol is defined by the following properties [13, 26]:

• RB-Agreement: if a correct process delivers a message m, then all correct processes will eventually deliver
the same message m;

• RB-Validity: if a correct process broadcasts a message m, then it will eventually deliver that message m;

• RB-Integrity: for any message m, every correct process delivers m at most once and only if m was previously
broadcast by some correct process.

The term correct refers to a process that follows the algorithm. Otherwise, we call it incorrect or faulty.

2.3 Algorithms

RBcast algorithms can differ. In this section, we present the definitions of the algorithm adopted in this paper, namely,
the structure, messages, types, conditions and efficiency.

2.3.1 Structure

RBcast has been much studied over the years [7–9, 18, 29, 30]. The papers present RBcast algorithms with different
structures. For example, Bracha and Toueg presented algorithms organized in execution steps [9, 10], whereas more
recent work favors a structure in terms of event handling routines [29, 30]. We follow the latter, event-oriented,
structure.

We assume that the structure of the algorithm is composed of two events: the RB-Broadcast event, triggered only once
by the process that starts the execution of the algorithm; and a receive event, triggered every time a process receives a
message. Each event can contain a set of actions, i.e., instructions that are executed when the event is triggered. The
execution of the algorithm ends when there are no more messages to be received.

2.3.2 Messages and Types

As previously discussed in Section 2.1, messages typically contain multiple elements, e.g., content, sender, and pro-
tocol type. However, to solve the RBcast problem, it is necessary to add a new element, called type, to differentiate
between the different communication steps of the algorithm. In this work, we follow the definition of previous RBcast
algorithms [9, 30], by presenting the message in the format <t,m>, where t symbolizes the type of the message, and
m the message itself. Previous works define the types as words like echo or init [9, 29], but in this work, we designate
types type0, type1, type2, etc. The reason for this option is that the types are generated automatically, not by a human.
But afterwards, we can translate the type type0 into init and the type type1 into echo.

2.3.3 Conditions

Conditions are statements used to evaluate when a specific action can be executed and are associated with the if clause.
On RBcast, a condition is defined by two properties: the message <t,m> and the threshold, which is the number of
messages needed to satisfy the condition. For example, the condition if received (<type0,m>) from F + 1 distinct
processes means that the action can only be executed if the process has received a message m of type0 from at least
F + 1 processes (the threshold is F + 1).

2.3.4 Efficiency

To analyze the efficiency of an algorithm, we adopt a model, based on previous works [12,52], where the efficiency is
related to three properties: (1) the number of messages sent by the algorithm; (2) the number of communication steps
(which in the case of RBcast is the number of types, as there are no loops) and; (3) the number of messages that have
to be received for the algorithm to stop. All these metrics indirectly express the cost of computational power, storage
and network to execute the algorithm. As the algorithm sends more messages or contains more communication steps,
then the process will need more storage for messages, spend more network resources, and take more time to execute
the algorithm.
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Figure 1: Process/dataflow of generating one algorithm. One simulation involves many episodes.

Table 1: Simulation inputs.

Generation process inputs Possible Values Validation process inputs Possible Values
Number of simulations {1,2,3,...} Failure modes to model {No-Failure,Crash-Failure, Byzantine-Failure}
Number of episodes {1,2,3,...} Number N of nodes to model {3,4,5,...}
Rewards {...,-2,-1,0} Fault tolerance ratios {0,(N-1)/2, (N-1)/3}

for No-/Crash-/Byzantine-Failure, respectively
Heuristics to be applied (cf. Sec. 4.5) Properties to be validated {RB-Validity, RB-Agreement, RB-Integrity}

Event handlers where faults can occur {RB-Broadcast, receive}

3 Learning the RBcast Algorithm

Machine learning techniques can be divided into two broad classes: supervised machine learning – to learn from
labeled data – and unsupervised machine learning – to learn without labeled data. In this task of learning how to solve
a distributed problem, we decided to emulate the trial and error strategy used by a human researcher to solve this
problem. Therefore, we decided to use an unsupervised machine learning technique called Reinforcement Learning
[32, 54, 56].

Reinforcement Learning is based on the idea of an agent choosing actions in specific states. The states are the
observations that the agent receives from the environment where it acts. The way in which the agent acts is defined by
the policy, in this case, a map from perceived states to actions to be taken in those states. Then, by choosing an action
in a state, the agent will receive a reward, reflecting its choice. With time, the agent will start learning the value of
each state, i.e., the total amount of reward the agent can expect to accumulate over the future, starting from that state.
While rewards are short-term indicators, the values reflect the long-term desirability of that state, taking into account
the states that are likely to follow and the rewards associated with them. We consider a model-free Reinforcement
Learning problem, meaning that the agent does not create a representation of the behavior of the environment, unlike
model-based approaches. A model-based agent would needed to have a model of the dynamics of the environment,
allowing to predict state transitions and rewards, e.g., giving the current algorithm, the agent could plan future actions
and their rewards.

Our solution considers an agent that has the goal of generating correct and efficient RBcast algorithms, i.e., algorithms
that satisfy the RBcast properties (cf. Section 2.2) and minimizes the efficiency metrics (cf. Section 2.3.4). The solution
is composed of a main agent, the RB-Learner, that collaborates with an auxiliary agent, the RB-Oracle, as represented
in Figure 1. The entire execution of the solution for one algorithm is designated a simulation. The process starts
with the definition of the inputs of the learning process. Table 1 summarizes these inputs. The generation process
inputs include the number of simulations and episodes to run and the rewards and heuristics to be used, the last two
containing domain knowledge about the problem (see Sections 4.3 and 4.5). The validation process inputs include the
specifications to validate the algorithm, such as the failure modes and their tolerance ratios, the number of nodes to
model, the properties and the event handlers to be validated. Then, the execution starts with the RB-Learner generation
process. After that, the RB-Learner gives the generated algorithm to the RB-Oracle, executing the validation process,
i.e., to assess whether the generated algorithm actually solves the problem. Then, the RB-Oracle returns the validation
result to the RB-Learner, which it uses as part of the learning process. These iterations RB-Learner → RB-Oracle
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Table 2: Actions available to the RB-Learner.
Logic Message type Condition threshold Message type
SEND to all(<t,m>) type0, type1 0, 1, F + 1, (N + F )/2, N − F type0, type1
SEND to neighbours(<t,m>) type0, type1 0, 1, F + 1, (N + F )/2, N − F type0, type1
SEND to myself(<t,m>) type0, type1 0, 1, F + 1, (N + F )/2, N − F type0, type1
DELIVER(m) - 0, 1, F + 1, (N + F )/2, N − F type0, type1
STOP - 0 type0

→ RB-Learner→ . . . are repeated many times. Each iteration is designated an episode. In the end, the RB-Learner
outputs the results of the execution: the most efficient algorithm generated.

With this technique, the idea is that the agent will be able to learn/generate a correct and efficient algorithm by
generating multiple algorithms – either correct or incorrect – without the need of prior knowledge of the state of the
art in RBcast.

4 RB-Learner

The RB-Learner agent uses Reinforcement Learning to learn not only an algorithm that solves the problem, but also
an algorithm that is efficient. Next, we explain the elements behind the learning process of the RB-Learner.

4.1 Actions

An algorithm is composed of a set of event handling routines – two in the case of RBcast, each of which contains a
sequence of actions. The RB-Learner selects an action from the set of possible actions to add to one of the routines.
Each action has two components: the logic – the part of the action that is executed – and the condition – a statement
that must be true in order for the logic to be executed. For example, in action

SEND to all(<type1,m>) if received (<type0,m>) from 1 distinct process

the logic component is the left-hand part (in red) and the condition is the right-hand part (in blue, starting with the
word “if”). Next, we present the logic and condition components that we assume in the paper.

4.1.1 Logic

We selected the following logic components taken from previous works that solve the RBcast problem [9, 26, 29]:

• SEND to all(<t,m>): sends the message <t,m> to all processes of the system (including itself);
• SEND to neighbors(<t,m>): sends the message <t,m> to all the processes of the system (excluding itself);
• SEND to myself(<t,m>): sends the message <t,m> only to itself;
• DELIVER(m): delivers the message m;
• STOP: end the execution of the event handler.

In addition to these, we could think of a generic component to send a message to N − X processes, for any X > 0
and X ∈ N. However, this generality is found only in probabilistic algorithms [12,22], which are outside the scope of
this work.

4.1.2 Conditions

In this work, each action is associated with a specific condition that defines when the action is executed, and each
condition is associated with a specific threshold. From a range of works analyzed [9, 26, 29, 52], we selected five
thresholds: waiting for 0 (always true, a tautology), 1, F + 1, (N + F )/2, and N − F messages from different
processes. We assume that two conditions are equal if they wait for the same message type and have the same
threshold.

4.1.3 Message type

As explained above, messages contain a type: type0, type1, and so forth. One parameter of the problem of generating
an algorithm is how many types of messages it uses. Clearly, the minimum number of types found in algorithms in
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the literature corresponds to the maximum number of types needed to solve the problem. For RBcast we found that
the number is of two types [29]. Both SEND actions and conditions are influenced by a certain type (except conditions
with threshold = 0 that wait for no messages).

Table 2 presents all actions available to our agent, resulting in a total of T = 64 possible actions – the total number
of possible combinations using the components of the table. All actions are associated with all possible conditions
except STOP that does not depend on messages being received (or, equivalently, it depends only on the tautology).

We also assume that each action contains an implicit condition that forbids the action to execute more than once for
the same message. This means that if a process delivers a message with content m = 1, it will never deliver the same
message again. The same applies to SEND actions. This inner condition is introduced by previous articles that present
RBcast algorithms: for example, in [29] we have the conditions not yet broadcast or not yet RB delivered and in [26]
we have the condition if p has not previously executed deliver(R,m).

4.2 States

A typical Reinforcement Learning agent interacts with an external environment. In our case, the environment is not
external, but internal memory. This memory stores the actions already selected by the agent to form the algorithm.
Specifically, a state is the sequence of actions selected by the agent up to that moment. By following this representation,
the agent will be able to learn to select the best actions based on the actions that the algorithm already contains. Each
state follows the algorithm structure defined in Section 2.3.1, being composed by two event handlers and expressed as
State([]). We assume that State A and State B are equal if both contain the same actions, in the same number, in the
same event handlers. The order of the messages inside an event handler is not relevant.

4.3 Rewards

Rewards are used by the agent to learn which actions are suitable or not in each state – a technique called reward
shaping. In this work, the rewards are related with the efficiency (cf. Section 2.3.4) and correctness (cf. Section 2.2)
of the algorithm: the most efficient correct algorithm will generate the best reward. Rewards are defined as part of the
input, but it is important to mention that the agent generates the most efficient algorithm not because of the absolute
reward values that we have defined, but because of the relative values between them (the absolute rewards are the
result of testing multiple possibilities).

The RB-Agent receives a reward in two moments: (1) every time the agent selects an action – runtime reward – and
(2) when the agent receives the validation result from the RB-Oracle – bonus reward.

4.3.1 Runtime rewards

Runtime rewards are related with the efficiency of the produced algorithm, i.e., more efficient algorithms will generate
the best rewards. Table 3 summarizes the values we empirically established for calculating these rewards.

The SEND actions and the DELIVER action have a negative reward, as processes need to spend time and resources to
execute these actions, so there is a cost involved. For the SEND actions, the SEND to myself action has a better reward
than the SEND to neighbours and the SEND to all actions. This happens due to the number of sent messages metric:
SEND to myself only sends 1 message, whereas the others involve sending N − 1 and N messages, respectively.
The threshold of the conditions also influences the reward. Table 3 shows the rewards associated with each selected
threshold (c.f Section 4.1.2), following the idea that 0 < 1 ≤ F + 1 ≤ (N + F )/2 ≤ N − F , where N is the total
number of processes and F the maximum number of faulty processes.

Beyond what is presented in Table 3, the addition of a new message type to the algorithm also involves a (negative)
reward. Specifically, the reward is added when a SEND action introduces a new type. Each new type has an increasing
negative reward: type0 is associated with the reward 0, type1 is associated with reward −1, etc. The objective is for
the agent to add the minimum number of new types to the algorithm, as each new type involves more communication.

The last aspect that influences the reward obtained by the agent is the event handler where the action is selected. We
defined that each action selected for the RB-Broadcast event handler has an additional reward of 0, while the actions
selected for the receive event handler have an additional reward of −1. These rewards favor the addition of actions to
the RB-Broadcast event handler instead of to the receive event handler; this bias is needed because RB-Broadcast is
executed only once per execution of the algorithm, whereas receive is executed N times (one per process), meaning
that an action on the receive event handler will have a greater impact on the efficiency of the algorithm when compared
to an action on the RB-Broadcast event handler, e.g, a SEND to myself action will have a cost of 1 message if executed
on the RB-Broadcast event handler, but a cost of N ∗ 1 if executed on the receive event handler.

6



Learning to generate Reliable Broadcast Algorithms A PREPRINT

Table 3: Rewards given to each action and each condition.

Logic Reward Threshold Reward
SEND to myself(<t,m>) −1 0 0
SEND to neighbours(<t,m>) −2 1 −1
SEND to all(<t,m>) −3 F + 1 −2
DELIVER(<m>) −1 (N + F )/2 −3
STOP 0 N − F −4

To summarize, consider the example where the agent chooses the action:

SEND to all(<type0,m>) if received (<type0,m>)
from N − F distinct parties

The reward for this action will be −3 (the SEND to all logic) + 0 (type0 sent) −4 (the N −F threshold) = −7. Then,
if the action is selected for the RB-Broadcast event handler, it will receive an additional reward of 0 (still a total of
−7), while if selected for the receive event handler, it will receive an additional reward of −1 (total of −8).

4.3.2 Bonus rewards

After the algorithm is validated by the RB-Oracle, the RB-Learner receives the validation result from the RB-Oracle.
The RB-Learner will use that result – correct or incorrect – to get a bonus reward or not. In case the algorithm is
correct, there is a bonus of 100, from where we discount the runtime rewards accumulated during the generation.
For example, if the agent generates a correct algorithm with a runtime reward accumulated of −14 during the state
transitions of the generation process, the bonus will be 100 + (−14) = 86. This allows the agent to receive a better
bonus for the most efficient algorithms. In the case of an incorrect algorithm, the reward received by the agent will be
−1: the number of incorrect algorithms will tend to be greater than the correct ones, so we do not want the agent to
be severely penalized by finding an incorrect algorithm, since some actions of an incorrect algorithm can still lead to
a correct algorithm.

4.4 Generation Process

This section explains one episode of the generation process that generates one algorithm.

The generation process is composed of two development phases: the phase of the RB-Broadcast event handler and the
phase of the receive event handler. Both phases are based on Q-Learning [55], one of the most adopted Reinforcement
Learning algorithms. This algorithm uses a table designated QTable to map the values of each action to each state.
Furthermore, each development phase is divided in four steps: (1) heuristic analysis; (2) action selection; (3) reward
feedback; and (4) learning update. Next, we explain how the development phases generate the entire algorithm during
the generation process.

The generation process begins with the development phase of the RB-broadcast event handler. The agent starts with
the internal state empty: State([]). Then, comes a loop-based on the current internal state, where the agent applies
a set of heuristics (a topic we defer for Section 4.5) to discard the actions not suitable for the current state, from the
set of all possible actions (step 1). Then, the agent selects one of the suitable actions based on a policy (step 2). In
this work, the agent follows the Upper Confidence Bound (UCB) policy [54], a policy based on the idea of optimistic
under uncertainty. We selected this policy because it allows the agent to find a balance between actions less frequently
chosen and actions with higher value, solving the exploration/exploitation problem [16]. Then, based on the action
selected, the agent receives a runtime reward (step 3) that it uses to update its learning base, the Qtable, by associating
the reward received with the action select on the current state. Moreover, the selected action is added to the current
internal state and to the current event handler – the RB-Broadcast, originating a new state. For example, if the agent is
in the state State([]) and chooses action A, the action is added to the algorithm and the RB-Broadcast event handler,
originating the new state State([action A]). Finally, the agent defines its current state as the new state and re-executes
the development phase, returning to step 1.

The agent continues to re-execute the development phase of the RB-Broadcast event handler until the moment when
it chooses the STOP action in step 2. By choosing this action, the development phase of the RB-Broadcast event
handler is completed and the development phase of the receive event handler is started. The agent executes this second
development phase, but now adds the actions to the receive event handler, until the moment when it chooses the STOP

action again. This marks the end of the development phase of the receive event handler and the completion of the
algorithm. The process used in the second development phase (receive) is the same as in the first (broadcast).
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Table 4: Heuristics used on the generation process.

Heuristic Definition
GH1 Do not allow repeated actions on the algorithm
GH2 Allow to define the actions available in each event handler
GH3 Allow to define the conditions available in each event handler
GH4 We can only use a SEND action for each type of message sent and condition
GH5 Messages sent on the RB-Broadcast event handler must be of type type0
GH6 Allow to define the minimum and maximum number of actions that each event handler can have
GH7 Only select an action that waits for a message type already sent on the algorithm
GH8 The algorithms generated must contain, at least one DELIVER action
GH9 The incorrect states are blocked, in order to never explore them again
GH10 Allows to define the maximum number of types that the algorithm can contain

With the algorithm generated, the generation process ends, and the RB-Learner gives the algorithm to the RB-Oracle
that, in turn, will validate it. After validating the algorithm, the RB-Oracle returns the validation result to the RB-
Learner that receives a bonus, based on the algorithm being correct or not. This bonus reward will also be used to
update the QTable of the agent.

In the first episodes, the generation process will produce random algorithms, led by the policy that allows to explore
new actions and states. As the simulation progresses, based on the values of the QTable, the policy used by the agent
will lead it to exploit the actions that have the best value on each state, allowing it to converge to the most efficient
algorithms. We use the terms explore and exploit with the precise meanings they have in Reinforcement Learning:
explore is related with the search for new and unfamiliar states, whereas exploit refers to the examination of familiar
states [16].

4.5 Heuristics

The number of possible algorithms grows exponentially with the base given by the number of actions T (a constant),
i.e., has complexity O(T i), where i is the number of actions. Although the agent has T actions to choose from, there
are clearly some bad choices in some cases. For example, it is a bad option to choose STOP as the first action since that
would generate an empty algorithm.

To reduce the explosion of possibilities and guide the agent during the generation process, we define a set of heuristics
[41, 47] for the agent to avoid bad choices. Notice that the heuristics do not help obtaining correct and efficient
algorithms; they only reduce the number of possibilities to explore by discarding invalid actions in specific states and,
consequently, reducing the time required to find solutions.

Table 4 presents the generation heuristics (GH) that we use to guide the agent in the case of RBcast. These heuristics
were defined on the basis of a logic of discarding undesirable actions. Every time the agent is in a state, the agent uses
the heuristics to know which actions are available in this specific state, thus to reduce the options from T to Th < T .

GH1 says that the entire algorithm cannot contain duplicate actions (except the STOP action). GH2 allows to define
the actions available in each event handler. For RBcast, we define that the agent can select all actions in both event
handlers, except the DELIVER action on the RB-Broadcast event handler; as the RB-Broadcast event handler is only
executed by one process, the DELIVER action must exist on the receive event handler, so that all processes can deliver
the message, thus the possible existence of the DELIVER action on the RB-Broadcast event handler is redundant. GH3
allows to define the conditions available in each event handler. Based on this heuristic, we define that on the receive
event handler, all considered conditions are allowed (see Section 4.1.2). In the RB-Broadcast, we only allow conditions
based on condition 0, since in that event handler the processes do not receive any message. GH4 allows to define that,
for each condition and message type sent, the agent must choose between sending to all, to the neighbours or only to
itself. GH5 allows to define a message type for the first communication step of the algorithm (RB-Broadcast event
handler). GH6 allows to restrict the size of the algorithm generated in terms of the number of actions for each event
handler. As previously explained, we took inspiration in one of the most efficient RBcast algorithms [29], so we
defined a minimum number of 2 and a maximum number of 4 actions in each event handler. GH7 forces to select
actions based on conditions that can be validated, e.g., we forbid the agent to select actions that wait for message
types not yet contained in the algorithm. GH8 forces the generation of algorithms with at least one DELIVER action, as
that action clearly must exist in the algorithm. GH9 allows to decrease the convergence time by discarding incorrect
algorithms that are not related to the solution, which is equivalent to give an infinite negative reward. GH10 allows to
define the maximum number of types that the algorithm can contain – in this work, we defined only two possible types
(cf. Section 4.1.3).
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Table 5: Number of lines of code and programming language used.

Module Lines of Code Programming Language
RB-Learner 4216 Python3
Utils 1005 Python3
RB-Oracle 573 Python3 and PROMELA
config 150 Python3 and JSON

5 RB-Oracle

The RB-Oracle is the agent responsible for validating the algorithms generated by the RB-Learner agent, i.e., to
implement the validation process. This section explains the validation process executed in the context of one episode.

The validation process is responsible for assessing the correctness of the algorithms generated, i.e., for assessing if
each algorithm satisfies the RBcast properties (Section 2.2) within one of the variants of the system model (Section
2.1). Every episode, the RB-Learner generates an algorithm and the RB-Oracle validates it.

Automatic validation of a fault-tolerant distributed algorithm can be achieved using different techniques such as model
checking [23,31] or theorem proving [51]. In this paper, we use a model checking tool called Spin [27], a widely used
framework on the validation of fault-tolerant algorithms [20,23,31,44] that allows to build models and validate them.

Spin supports a few modes. We use Spin in simulation mode, i.e., we use it to simulate the execution of the generated
algorithm in a specific system model, doing an exhaustive exploration of the state space. In essence, during the state
space exploration, Spin verifies if none of the three RBcast properties (RB-Agreement, RB-Validity, and RB-Integrity)
is violated. The three properties, the protocol, the values of N and F , the system architecture, the behavior of each
failure mode (No/Crash/Byzantine-Failure mode), the process that initiates the verification (randomly selected), and
the faulty processes (also randomly selected, for F > 0) are all specified in PROMELA (Process or Protocol Meta
Language).

The RB-Oracle validates algorithms considering three failure modes: No-Failure, Crash-Failure, and Byzantine-
Failure.

For the No-Failure mode, the RB-Oracle verifies the algorithm considering that all processes are correct, i.e., by
following the actions of the algorithm without deviations. In this mode, in the experiments, we assume a system with
N = 3 processes and F = 0. Moreover, we model only one possible verification of the system: since the algorithm
that runs in each process is the same, more than one model would be redundant.

In the Crash-Failure mode, we simulate the crash of the process assuming the worst case possible: crash failures
happen between the sending of messages, since the impact of a crash failure is the highest when it leads a message to
be delivered only to a fraction of the processes. In this mode, in the experiments, we assume a system with F = 1
faulty processes and N = 3 processes, the minimum necessary to have F = 1 failures (see Section 2.1). Moreover,
for this mode we build two models: when the process that initiates the algorithm is correct and when it is faulty. This
allows verifying cases when either of the event handlers fail.

For the Byzantine-Failure mode, the RB-Oracle models a range of attacks where all faulty processes send the same
malicious message to a predefined group of correct processes – from a group with 0 processes, and consequently, not
sending to anyone, to sending to N − F processes, and consequently, sending to all correct processes. In this mode,
in the experiments, we assume a system with F = 1 faulty processes and N = 4 processes, which is the minimum
number of processes necessary to have F = 1 faulty processes (see Section 2.1). Moreover, similar to the process on
the Crash-Failure mode, in this mode we also build two models: one to model a failure on each event handler of the
algorithm.

6 Implementation

As explained in earlier sections, our approach is based on two agents. Table 5 shows the number of lines of code and
the programming language used to implement the entire solution. The Utils module corresponds to the functions used
by both the RB-Learner and RB-Oracle agents and the config module to the configuration files used as inputs for our
system.

The RB-Learner uses the Q-Learning algorithm and the UCB policy to implement the generation and learning of the
algorithms. The RB-Oracle models a distributed system, with N processes and F faulty processes, simulating the
execution of the algorithm generated using the Spin framework. After receiving the algorithm from the RB-Learner,
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the RB-Oracle creates a validation model and stores it in a PROMELA language file (.pml extension). Then, based
on the .pml file, the RB-Oracle generates a verification file (pan.c) – a C program that performs a verification of the
correctness requirements for the system – and compiles it using gcc, generating an executable file. Lastly, the agent
uses Spin to run the executable file and, with that, check the correctness of the algorithm.

The normal functioning of our solution is, as introduced in Section 3, organized in episodes and simulations: one
episode is composed by one generation process and one validation process, while one simulation corresponds to the
entire execution with usually many episodes.

7 Experimental Evaluation

Our experimental evaluation aims to assess the effectiveness and correctness of our solution. It will answer the fol-
lowing questions:

1. How many states does the agent explore until finding the first correct algorithm and converging to the most
efficient algorithm?

2. How many algorithms are generated in total, in each experiment?
3. How many algorithms are generated until finding the first correct algorithm?
4. What is the proportion of correct and incorrect algorithms, from the total number of generated algorithms?
5. How does each proposed heuristic influence the learning process?

Table 6: Experimental evaluation inputs.

Generation process inputs Value
Number of simulations 5
Number of episodes 12.000
Rewards Defined at Table 3
Heuristics to be applied and Configured as presented on Section 4.5
configurations associated
Validation process inputs Value
Failure modes to test No-Failure, Crash-Failure

and Byzantine-Failure modes
Number N of nodes to model 4
Fault tolerance ratios F = 0 for the No-Failure, F = b(N − 1)/2c

for the Crash-Failure and F = b(N − 1)/3c
for the Byzantine-Failure

Properties to be validated RB-Agreement, RB-Validity and RB-Integrity
Events where faults can occur Both RB-Broadcast and receive events

We ran our experiments on a single machine with 32 vCPUs, 64 GB of memory and Debian 10. We made experiments
for three cases: (1) No-Failure mode only; (2) No-Failure and Crash-Failure modes; and (3) No-Failure, Crash-Failure
and Byzantine-Failure modes. Each experiment is referred to by the last failure mode of the list (the most generic):
No-Failure, Crash-Failure and Byzantine-Failure experiments. All results shown in the next sections are, except when
noticed, averages of 5 simulations runs, each with 12, 000 episodes – the minimum number of episodes that we have
found to be possible for the agent to converge to the most efficient algorithms in all experiments. The 12, 000 episodes
took ±9 hours to run on the No-Failure experiment, ±3 days to run on the Crash-Failure experiment and ±7 days to
run on the Byzantine-Failure experiment. This increase in time is due to the time needed for Spin to verify the models.
Table 6 summarize the inputs considered for the experimental evaluation.

7.1 States Explored

For each algorithm generated, the agent explores multiple states when selecting the actions. This first set of experi-
ments assesses the number of states explored in each experiment. Figure 2 shows the total number of states explored
by the agent for each episode, on the entire experiment. Table 7 shows the number of states explored until the agent
generated the first correct algorithm.

As expected, we can see in both figures that the agent needs to explore more states when the complexity of the problem
to solve increases, i.e., the agent needs to explore more states when trying to find a Byzantine-tolerant algorithm –
almost 20, 000 states – when compared to a Crash-tolerant or a non-fault-tolerant algorithm – around 12, 000 and
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Figure 2: Number of states explored during each experiment.

Table 7: Number of states generated until the first correct algorithm is generated.

Experiment States
No-Failure 15.4± 0.0
Crash-Failure 33.4± 16.9
Byzantine-Failure 13462.8± 6909.4

3, 000 states, respectively. Additionally, the agent also takes more time to converge when trying to find a Byzantine-
tolerant algorithm – between 8, 000 and 10, 000 episodes – when compared to the other cases – between 1, 000 and
2, 000 episodes for the No-Failure algorithm and between 4, 000 and 6, 000 episodes for the Crash-Failure algorithm.

7.2 Algorithms Generated
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Figure 3: Number of algorithms generated during each experiment.

The agent generates multiple algorithms with the objective to learn from them and, therefore, we decided to assess
how many algorithms the agent generates in each experiment. Figure 3 shows the number of algorithms generated by
the agent per episode. Table 8 shows the number of correct and incorrect algorithms generated, as also the number
of algorithms generated until the first correct algorithm. As expected, and similarly to what happens with the number
of states, the agent needs to generate more algorithms, as also takes more time to converge, with the increase of the
complexity of the problem to solve. Moreover, another interesting aspect is the percentage of incorrect algorithms
generated by the agent in each test: ±60% on the No-Failure test, ±89% on the Crash-Failure test and 99.9% on the
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Table 8: Number of correct and incorrect algorithms generated in each experiment and number of algorithms generated
until the first correct algorithm.

Experiment Correct Algo. Incorrect Algo. Number Algo.
No-Fail. 341.8± 23.2 502.0± 53.3 2.6± 1.9
Crash-Fail. 420.2± 32.1 3355.6± 256.6 6.8± 4.1
Byzantine-Fail. 2.0± 0.0 9369.6± 6.8 6260.0± 3467.9

Byzantine-Failure test, which means that, even with all the Heuristics defined, the agent still has a difficult task to
generate a correct algorithm.

The final algorithms generated by each experiment are presented in Algorithms 1, 2 and 3, one for each failure mode.

Algorithm 1 Most efficient RBcast algorithm for a No-Failure experiment generated by the RB-Learner.
1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if received (<type0,m>) from 0 distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: DELIVER(<m>) if received (<type0,m>) from 0 distinct parties and not already delivered;
6: STOP if received (<type0,m>) from 0 distinct parties;

In the No-Failure mode, the agent converged to Algorithm 1 in 4 of the simulations executed. This algorithm is
equivalent to one presented in [12]: both exchange, at most, N messages, require 1 communication step and 1 message
type (or none) and need to receive 1 message.

On the Crash-Failure mode, the agent also converged to Algorithm 2 in 4 of the simulations executed. Note that
the algorithm sends a new message type on the receive event handler (type1), when it could send the type0. This
happens because of the heuristic GH5, that only allows to send messages of type0 on the RB-Broadcast event handler.
This algorithm is similar to the one presented in [26, 52]: both exchange, at most, N2 − N + 1 messages, require 1
communication step and 1 message type (or none) and need to receive 1 message.

On the Byzantine-Failure mode, the agent converged to Algorithm 3 in all the simulations executed. This algorithm is
one of the most efficient algorithms developed and it is similar to the one presented in [29]: both exchange, at most,
N2 +N messages, require 2 communication steps and 2 message types and need to receive (N + F )/2 messages.

7.3 Impact of the Heuristics

The heuristics we defined (see Section 4.5) guide the agent by helping it to avoid incorrect algorithms and reduce the
number of states to explore. In this evaluation, we analyzed the importance of each heuristic with the Crash-Failure
experiment.

To achieve this, we ran one experiment with each GH turned off and all others turned on. There were two exceptions.
In GH6, we increased the maximum number of actions in each event from 4 to 5, but did not turn this heuristic off, to
avoid that the agent would generate algorithms with too many actions. For GH10, we increased the maximum number
of types from 2 to 3 but did not turn it off, as the agent could explore too many types. We executed one simulation
with 10, 000 episodes for each experiment.

Figure 4 shows the evolution of the number of algorithms generated with each GH turned off, from where we conclude
that all heuristics are important to reduce the number of states explored until a correct and efficient algorithm is
obtained.

8 Related Work

Fault-tolerant algorithms have been widely studied over the years [2, 7–9, 14, 15, 18, 19, 29, 30, 52]. These algo-
rithms: solve different problems, such as Reliable Broadcast [29] and Consensus [14]; tolerate different failure modes,
like Crash [26] and Byzantine [19]; use different communication models, namely fully-connected [18] and partially-
connected [8]; and tolerate different fault ratios, such as b(N−1)/3c [9] and b(N−1)/2c [19], where N is the number
of components in the system. However, as far as we know, all works are based on manual or brute-force processes,
without any kind of artificial intelligence helping with the process of generating the algorithms.
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Algorithm 2 Most efficient RBcast algorithm for a Crash-Failure experiment generated by the RB-Learner.
1: when RB-Broadcast(m) do:
2: SEND to myself(<type0,m>) if received (<type0,m>) from 0 distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: SEND to neighbours(<type1,m>) if received (<type0,m>) from 0 distinct parties and not already sent;
6: DELIVER(<m>) if received (<type0,m>) from 0 distinct parties and not already delivered;
7: STOP if received (<type0,m>) from 0 distinct parties;

Algorithm 3 Most efficient RBcast algorithm for a Byzantine-Failure experiment generated by the RB-Learner.
1: when RB-Broadcast(m) do:
2: SEND to all(<type0,m>) if received (<type0,m>) from 0 distinct parties and not already sent;
3: STOP if received (<type0,m>) from 0 distinct parties;

4: when receive(m) do:
5: SEND to all(<type1,m>) if received (<type0,m>) from 1 distinct party and not already sent;
6: DELIVER(<m>) if received (<type1,m>) from (N + F )/2 distinct parties and not already delivered;
7: SEND to all(<type1,m>) if received (<type1,m>) from F + 1 distinct parties and not already sent;
8: STOP if received (<type0,m>) from 0 distinct parties;

Automatic code generation works focused on local, non-distributed, single-threaded code, started by using static
techniques such as design-based approaches [11], UML [46] or reverse engineering [49], but lately has been focused
on using machine learning techniques [1,4,57] mostly supervised learning techniques, such as Deep Learning [40,58].
For distributed code, we identified two works: one that automatically finds mutual exclusion algorithms [5] and another
that automatically investigates and validates Consensus algorithms [59], both using brute-force approaches. However,
in our case, we use an unsupervised machine learning technique – Reinforcement Learning [32, 54, 56] – that allows
the agent to learn without the need of prior knowledge about solutions to the problem to be solved. Reinforcement
Learning has been explored mainly in games [37,45,53] and robotics [28,34,43], so our work applies it to an entirely
different problem. When compared to our approach, the most interesting works that use this technique are those that
use an agent to generate GPU compiler heuristics [17], an agent that chooses the most suitable algorithm [36], or an
agent that is capable of generating experiment input data [33]. Nevertheless, these problems are very different from
ours.

For the validation of fault-tolerant algorithms [23, 25, 38, 51], we have identified and used the Spin/PROMELA [27]
model checker [23, 31] framework, since it allows us to model and validate the generated algorithms, is used by
a significant number of related works [20, 23, 31, 44] and also has good community support resources. Besides
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Spin/PROMELA, other possible languages and frameworks could have been used: TLA+2 [38], the ByMC3 frame-
work [35] and the IC3PO4 [24].

9 Conclusion

Fault-tolerant algorithms have been studied over the years, discussing different problems and variants. However, this
study is complex and was always based on a human-oriented process.

To automate this process, we propose a solution based on two agents, RB-Learner and RB-Oracle, capable of learning
to generate a distributed algorithm, more precisely the RBcast algorithm. As we have presented during the experimen-
tal evaluation, our solution is capable of generating correct and efficient algorithms, depending on the properties of the
problem, which proves that our approach can be used to generate distributed algorithms.

To the best of our knowledge, this work is the first that merges both areas of generation and validation into an automatic
process capable of generating correct and efficient RBcast algorithms. Additionally, this is the first work that uses a
machine learning approach to generate correct and efficient algorithms to solve a specific distributed problem.

For further research, we aim to apply our approach to different distributed problems, e.g. Consensus, and try to
decrease the number of inputs needed, to further decouple our agent from knowledge based on previous works, e.g.
the threshold expressions.
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