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ABSTRACT

Cyber-physical attacks on critical infrastructures (CI) or industrial
control systems (ICS) can compromise the integrity and operability of
physical systems, potentially damaging critical facilities. Specification-
based Intrusion Detection Systems (IDSs) can detect those attacks but
often require an accurate specification of the monitored ICS, which
is often a deterrent to their usage. This paper presents FingerCI,
a solution to automatically generate a model of an ICS, which we
name a fingerprint, based on network traffic inspection, business
process discovery, and physical behaviour analysis. An airport bag-
gage handling system testbed shows that the fingerprints can be
used to configure specification-based IDS with high accuracy results,
reducing the amount of effort required to use that detection approach.
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1 INTRODUCTION

The use of Information Technology (IT) in critical infrastructures
(CI), or industrial control systems (ICS), has increased quality of
service and reduced operational costs, but also exposed them to
cyber-physical attacks [10]. Although airport cybersecurity has been
able to withstand the increase of cyberattacks, airport systems are
considered at high risk of being attacked. Baggage handling systems

(BHS) ensure that bags left at check-in counters are properly screened
and routed to the correct destinations. On a recent report [2], ENISA
stated that BHSs are highly critical in the context of airport security.

Conventional intrusion detection fails to detect these cyberthreats,
missing the opportunity to trigger a prompt reaction. This happens
mainly because attacks on ICS devices often abuse legitimate ac-

tions to lead the ICS into an invalid physical state [1]. Examples
include continuously turning off physical equipment to cause denial-
of-service, or altering configurations, like equipment operation speed,
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to compromise quality of service and safety. These actions in the
right context are legitimate, so many intrusion detectors are not able
to flag them as malicious [3–8, 11, 12, 14–16, 21, 22]. Specification-
based IDSs (SBIDSs) detect deviations from a specification of the
behavior of the system or protocol, so their alarms are interpretable
and accurate. However, these specifications are created by humans,
which is deterrent to their use because of their high cost.

A recent approach to deal with these limitations of SBIDSs is to
use business processes (BP) as the specifications [9, 14, 17]. These
IDSs validate if the actions being executed are legitimate by checking
if they conform to the BP. This approach reduces the amount of
information the human expert needs to introduce into the system,
and offers good readability of the resulting specification. However,
they still require knowledge about the specification of the infrastruc-
ture being assessed. Namely, they require knowledge about network
infrastructure (hosts addresses and communication protocols) and
BPMN (Business Process Modelling Notation)1 specifications of the
processes that must be protected, which are often difficult to obtain
automatically by inspecting the monitored environment.

This paper presents FingerCI, a solution to automatically con-
struct a fingerprint specification of an ICS based on network traffic
inspection. In other words, a model of the normal behaviour of the
ICS system. This model can be used as configuration for a SBIDS
while maintaining the readability of BP approaches to still allow
human experts to interpret and perform corrections on the resulting
specification. FingerCI performs network reconnaissance based on
protocol dissection to interpret ICS network protocols and extract
information about the ICS infrastructure, including devices and com-
munications. The information gathered is further analysed using
business process model discovery techniques [23] to build a business
process representing all the activities in the ICS network. FingerCI
also constructs a behaviour model that infers the possible conditions
and number of times activities should occur.

An experimental evaluation on the proposed solution was con-
ducted using a high-fidelity BHS simulation platform, commonly
used by BHS providers to test their systems on contractual operating
conditions. Within the scope of the experimental evaluation, Fin-
gerCI was used to generate a fingerprint of the accepted network
behaviour of the BHS equipment and validate the correctness of the
BHS sortation and screening services. FingerCI was integrated with
BP-IDS, a BP-based SBIDS [14, 15, 20]. A FingerCI fingerprint was
used to configure BP-IDS, that was installed on the BHS network to
detect anomalous activity. The integration between FingerCI and
BP-IDS allowed this SBIDS to detect anomalous bags circulating on
the BHS with 100% accuracy.

1http://www.bpmn.org/
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Figure 1: FingerCI analysing an ICS network.

2 FINGERCI

This work aims at creating a fingerprint representation of processes
and devices present on an ICS infrastructure. To do so, the proposed
solution considers an ICS architecture and, by inspecting router
traffic, creates fingerprints of the interactions between supervisory
and control layer devices.

As illustrated in Figure 1, the solution is composed of four com-
ponents that work in sequence to produce a specification. The first
component, Network Reconnaissance Engine (NRE), receives captures
of communications between the IT components of the monitored
infrastructure, parses those captures using protocol dissection tech-
niques, and extracts information about the network and physical
components of the infrastructure. The second component, Specifica-
tion Extractor (SE), uses the output of the NRE to build a network
topology and a process specification based on feature extractionmeth-
ods. The third component, Process Discovery Engine (PDE), uses the
features selected by previous component and produces business pro-
cesses, using process discovery techniques. The fourth component,
Behaviour Discovery Engine (BDE), analyses the process model ac-
cording to features extracted by SE and produces a behaviour model,
that reflects the correct conditions of ICS physical devices before
and after activities are executed. The solution involves doing deep
packet inspection of the ICS communication protocols, and produces
valid process and behaviour models representing a fingerprint of the
whole ICS.

The NRE component is designed as a network analyser tool that
dissects ICS communications present in packet captures, and extracts
information about network and industrial control devices based on
the inspected packets. The output of this component is a log of all
packets captured and their attributes.

Dissection of ICS communication can be seen as two related tasks:
to identify ICS network device interaction packets based on the pro-
tocol stack; and to extract profiling information about the interaction
taking place, based on the information present in the network packet.
The solution addresses both tasks by using a set of dissection rules
based on network protocol specification standards, usually published
as RFCs (request for comments) in case of IT network protocols and
as International Air Transport Association Resolution Manual in case
of airport specific network protocols. The dissection rules, classify
network messages being exchanged according to protocol identifiers.

Once dissection rules have properly identified all communication
protocols enclosed in the packet, the NRE component analyses the
packets that use airport specific network protocols. The component
resorts to deep packet inspection for attribute extraction to properly
identify industrial control devices and profile the operations present
in each network packet. In this case, it considers the protocol struc-
ture described by the dissection rules of the packet and extracts the
protocol attributes. The component extracts network information to
profile the devices, such as device identifiers (e.g., Internet Protocol
(IP) and media access control addresses (MAC)), and information
about the ICS cyber and physical devices from industrial protocols.
Also, the NRE component pinpoints physical features about the ICS
devices and operations issued present on network packets. Namely,
for each extract, the operation (read/write), the ID (identifier) of the
operation, the name(s) of the physical devices accessed and their
state (based on variable(s) accessed and their values) are identified.

The SE component uses the packet log produced by NRE to
build the network model and identify an activity log that contains
all business processes and activities observed in the packets.

To build the network topology, SE traverses the packet log and
creates a dependency graph. For each different network protocol used
between two hosts, an association between those hosts is placed in the
graph. For each ICS network packet describing operations performed
over physical devices, an association between the executor IT device
and the physical device is also placed in the graph. The resulting
graph is the complete ICS infrastructure network specification.

The activity log for process discovery is built in two steps: business
activity identification and process instance inference. In the first
step, business activity identification, SE inspects each entry of the
log (data packet) attributes and for each industrial control protocol
creates a representation of an activity by concatenating the NRE
attributes into an unique activity identification pattern. This identifier
includes, network information (source/destination IP address and
network protocol used) and information about the ICS action (type
of operation performed and variable(s) accessed).

The PDE component inspects business activities and correspond-
ing process instances extracted from the previous components, and
creates a process model [24] which is a generalized specification of a
log that summarizes the order of which activities should executed to
achieve process correctness (most common way to represent these
models are BPMN, Petri nets or process trees). This generalization
into a process model is achieved using inductive miner process dis-
covery technique that studies the relationships between activities
based on the order of occurrence, and compile them into a generic
Petri Net or BPMN process representations.

The inductive miner [26] used by this component to construct
process models follows a two-step procedure. The first step, involves
classifying process instances according to activity patterns. The sec-
ond step, involves identifying the conditions for those patterns to
occur. The first step identifies the sequence of activities while the
second step determines the conditions to which activities can occur
on a given process instance.

The BDE component extracts behaviour rules for an activity to
be considered as a legitimate action (e.g., bags can only be routed to
the destination flight if they have clear screening result). The rules are
extracted in two stages, the activity and gateway condition extraction
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Figure 2: Example of a FingerCI specification for a BHS

(process model in blue, and behaviour model in yellow).

stages. The resulting behaviour model contains the validation rules
required for the IDS to validate the process activities.

At the first stage, activity extraction is performed by traversing
the activity log obtained in the specification extractor component
and registering as activity preconditions the physical state of the
referenced device before the action took place, and registering as
post-condition the device physical state after the action took place.

At the second stage, the gateway extractor stage, BDE specifies the
necessary conditions for gateway validation, which include activity
frequency counting to identify the number of times activities can occur
on gateway loops, and branch precondition discovery by evaluating
based on the activities preconditions present in the branch. The
resulting process behaviourmodel is in Figure 2 for the example log of
a baggage handling system (BHS). The model provides the validation
rules for intrusion detection systems to detect non-legitimate actions
performed on the ICS physical systems.

3 EVALUATION

The evaluation of FingerCI is based on the Airbus simulation plat-
form2. This platform is a training environment that offers virtualized
airport systems digital twins. The systems installed on the platform
include an airport network infrastructure (with virtual machines con-
nected on VLANs), with virtual machines mimicking airport cyber
systems and physical hardware machines (e.g., PLCs with sensors
and actuators) to reproduce the overall functioning of a real BHS. The
FingerCI evaluation focused on three airport systems represented
in the simulation platform (the FIMS, the AODB and BHS) manufac-
tured by Alstef3 4. The evaluation assessed the quality of FingerCI
fingerprints for validating BHS service operations. To validate the
accuracy of its fingerprints, FingerCI was integrated with Business
Process Intrusion Detection System (BP-IDS). BP-IDS is a SBIDS that
uses the network topology, business process specification and infor-
mation about the conditions for critical operations to be executed,
to model the accepted behaviour of an ICS infrastructure. BP-IDS
detects in real-time machine abnormal operations on ICS services
by comparing the behaviour observed by network sensors with its
specification.

Under this setting, the experiments conducted to evaluate Fin-
gerCI used network packet captures (pcaps) recorded on the Airbus
simulation platform of the baggage handling system operating con-
tinuously during 25 hours. This simulation included a virtualized
airport database that provided to the BHS sortation unit identifiers

2https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
3https://www.alstef.com/Baggage-handling-and-screening
4https://alstefgroup.com/baggage-handling/software/simulation-and-emulation/

AS Bags Anomalies FN FP Accuracy FPR

Screening 1914 42 0 0 100% 0%
Sortation 1920 36 0 2 100% 6%
Both 1956 78 0 2 100% 3%

Table 1: SBIDS with FingerCI accuracy results

of fictitious bags and the corresponding fictitious flights assigned to
physical locations of the BHS. The simulation used for this experi-
ment, represented a high-fidelity representation of a real BHS avail-
able on airports, by using Emulate3D5, a testing platform commonly
used by BHS service providers to test their systems on contractual
operating conditions before they are installed on airports.

The experiment answered the following research question: Are
specifications generated by FingerCI reliable for ICS intrusion detec-

tion?

To validate accuracy of an SBIDS configured with FingerCI, BP-
IDS was configured with the fingerprint generated by FingerCI. The
fingerprint was produced by inspecting FIMS, AODB, control unit,
and sortation unit interactions during one hour. During this hour,
FIMS sent flight information messages, bag check-in operations were
inspected, with messages about the bags sortation and screening
decisions. The rest of the network traffic (24 hours) was used for
monitoring the BHS, summing on a total of 1956 bags monitored.
During two hours, the simulation platform was used to force the BHS
to two abnormal situations. The first one, “screening anomaly”, where
the EDS screening results of 42 bags were changed by the simulation
platform to route unclear bags to flight instead of the contingency
chute,and clear bags to the contingency chute. The second abnormal
situation, “sortation anomaly”, the simulation platform overwrote
the BHS sortation messages to falsely route bags to different flight
destinations.

As can be seen in Table 1, the fingerprints generated by FingerCI
for profiling the BHS behaviour were very accurate for detecting the
two abnormal situations (AS) with accuracy of 100%. This is due to
the fact that, the combination of process mining with the behaviour
model created by FingerCImakes the verification deterministic. This
reasoning can be seen by the fact that BP-IDS did not have any false
negatives (FN) regarding the sortation and screening anomalies, and
displayed two false positives (FP) from the 1956 bags inspected on
the 24 hours of BHS functioning. The FP in this case were due to
the reintroduction of anomalous bags in the system6. In this case,
BP-IDS had information cached of the previous inspections of the
sortation anomaly and considered bags as anomalous when in fact
no anomaly was taking place. Due to the false positives reported
in the tests, when inspected on a isolated manner, BP-IDS achieved
0% false positive rate (FPR) on the screening anomaly, while the
fingerprints obtained 6% FPR for sortation anomaly, resulting on
total of 3% FPR for the whole abnormal period. These results show

5https://www.demo3d.com/Baggage-Handling/
6Reintroduction of bags can often happen on airports due to logistic reasons. Bags can
be stored on early bag store (EBS) systems and reintroduced in the sorting system when
required to be delivered to baggage handlers. In this evaluation, bags are introduced in
random order to simulate the EBS reintroduction of bags. For more information about
EBS, refer to the following video (not created by authors): https://www.youtube.com/
watch?v=d6_OeC0qZPE
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that using FingerCI process and behaviour models allow SBIDS to
successfully identify abnormal situations that may affect ICSs.

Based on the results presented in this evaluation, it is possible
to conclude that FingerCI integrated with a SBIDS automates the
work required from experts on writing specifications for the ICS,
with accurate detection results and low false positive rate.

4 RELATEDWORK

There are a few previous process discovery techniques, but they
require the logs of all machines involved, something that is not prac-
tical in ICSs [13, 17–19, 23, 24, 26]. The three major difficulties would
be accessing control layer devices that are normally on a restricted
network, making the data logs in an uniform format to be analysed
by those process discovery methods, and the absence of logs on the
several low computing resource devices present on the ICS control
network that could lead the absence of critical data required for build-
ing a process model. FingerCI solves these challenges by relying
only on packet captures and converting them into a uniform data
log. Although some techniques have been tested to perform process
discovery on specific network protocols (e.g., TCP [25]), to the best
of our knowledge, the solution proposed is the first to accomplish
process discovery based on network traffic inspection that supports
multiple network protocols simultaneously. Furthermore, the Fin-
gerCI behaviour model is novel since previous works that employed
process discovery techniques for anomaly detection, only evaluated
the causal relation between activities based on the ordering of their
execution. The behaviour model complements the process diagram
by providing the semantic meaning to the diagram that cannot be
interpreted otherwise, namely it represents the environment precon-
ditions for activities to occur, (i.e., the state of variables, system device
state, etc.), represents the effect activities can have on the system,
and the frequency cyclic activities occur on normal conditions.

5 CONCLUSION

This paper presented FingerCI, a solution that automatically fin-
gerprints an ICS infrastructure and collects the necessary network,
process and behaviour configuration required to setup a SBIDS. To
the best of our knowledge, the solution proposed is the first capable of
automating SBIDS setup by performing process mining solely based
on ICS network traffic, looking beyond the causal relations between
business activities and providing detection rules based on behaviour
analysis. Moreover, the evaluation conducted shows FingerCI that
it produces very precise and accurate specification models that can
be used by SBIDS to detect abnormal activity.
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