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Abstract—Current research in Natural Language Processing
shows a growing number of models extensively trained with
large computational budgets. However, these models present
computationally demanding requirements, preventing them from
being deployed in devices with strict resource and response
latency limitations. In this paper, we apply state-of-the-art model
compression techniques to create compact versions of several of
these models. In order to evaluate whether the trade-off between
model performance and budget is worthwhile, we evaluate them
in terms of efficiency, model simplicity and environmental foot-
print. We also present a brief comparison between uncompressed
and compressed models when running in low-end hardware.

Index Terms—model compression, model evaluation, environ-
mental footprint

I. INTRODUCTION

Current research and developments in neural network tech-
nology has brought a revolution to the Natural Language
Processing (NLP) field, favoring bulky models, containing a
large number of parameters – model weights and coefficients
that change and learn with the training data. Examples of such
models are BERT [1] (up to 340 million parameters), Turing-
NLG1 (17 billion parameters) and GPT-3 [2] (a staggering
175 billion parameters), among many others. However, there
are several issues with such high-performing language models,
considering their demanding requirements. If hardware is
taken into consideration, fitting a model with a billion pa-
rameters in a single advanced data-center GPU is impossible.
Even for high-end hardware. Model parallelism circumvents
this issue by partitioning large models over several GPUs.
However, even with parallelism, the memory consumption
remains a major problem for less advanced hardware used
outside of data-centers, especially if we consider devices with
low-end hardware (usually for portability, cost, and power
consumption reasons) such as smartphones. Time is another
issue: the latency of the model (to infer a result) is heavily
dependent on the environment where the model is deployed.
Benchmarking tests2 have shown that the usage of a GPU
provides substantially lower latency than the usage of a CPU
for model inference. For devices with hardware constraints,
such as smartphones, this effectively leads to an undesir-
able trade-off between model accuracy and response latency.
Additionally, monetary cost and environmental footprint are
often overlooked yet important issues that should be taken

1https://www.microsoft.com/en-us/research/blog/
turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

2https://www.joyk.com/dig/detail/1576888233476928

into consideration. A recent review [3] estimates that training
a model with 1.5 billion parameters costs around $80k (in
U.S. dollars), scaling up to $1.6m with proper hyperparameter
tuning; these figures act as a paywall for developing new mod-
els, as few research labs can afford costs of this magnitude.
In addition, we are reaching a point where not even those
who can make such high monetary investments are willing
to do it: the authors of the GPT-3 model found a mistake
when implementing the system, but decided against fixing it
“due to the cost of training it was not feasible to retrain the
model” [2]. Considering the environmental footprint in the
training of such models, a recent study [4] reported that a fully
trained BERT model emits as much CO2 as a trans-American
flight from New York to San Francisco, and future models
may bring much more drastic effects to the environment.

Model compression techniques [5] aim to lower the re-
sources necessary for the model to perform, thus reducing the
budget required to train and execute the model while retaining
as much accuracy as possible compared to the original, uncom-
pressed model. Several of these techniques have been proposed
and studied over the past years, with some of them becoming
more common recently: knowledge distillation, pruning and
quantization. In this paper, we compare these three different
compression techniques, applied to three fundamental and
widely known tasks in NLP – sentiment analysis, named
entity recognition and dialog-driven sentence generation –
and compare the resulting compressed models, determining
whether the trade-off between performance and resource usage
is worth it. We also propose combining two of the compression
techniques, quantization and pruning. Furthermore, we test
the performance of quantized models in a Raspberry Pi, an
inexpensive computer.

Also, an important but often overlooked part of comparing
the performance of language models is the way the experiment
details and consequent results are reported. Papers often report
their best accuracy values, but omit details such as the time
spent training the model, or any finely tuned hyperparameter
values. Not only that, but displaying the best accuracy values
does not confidently portray the performance of a model since
accuracy values can often vary depending on several testing
factors, such as random weight initialization. Therefore, in
this paper we also propose a well-detailed evaluation of every
model: we display the expected validation performance [6]
for all evaluation metrics, the final size of the model, average
training and inference time, computing infrastructure used,
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model hyperparameters and dataset splits. Additionally, we
compare the training process in terms of training time and
power usage, as well as estimate CO2 emissions for the same
model to be trained in a data center, to understand whether the
reduction in model size and complexity translates to a decrease
in the computational budget required to further train and fine-
tune the model, as well as a decrease in the environmental
footprint of the overall training process.

Results show that knowledge distillation is the best compres-
sion choice for models such as the ones used for sentiment
analysis and named entity recognition, having a very low
reduction in model evaluation metrics while achieving a major
speed-up in inference time and a good reduction in model size.
For models such as the one used for sentence generation, we
conclude that pruning has the better effect on the quality of the
model, with sizable improvement over the evaluation metrics
and a faster inference time, though the effective size of the
model remains the same as the original uncompressed model.

II. RELATED WORK

In this Section, we describe model compression techniques,
how they are applied to NLP models, and also works con-
cerned with the energy consumption and carbon emissions.

A. Compression Techniques

Knowledge distillation [7], [8] or teacher-student learn-
ing, refers to the training of a small, compact model –
the student – to approximate the knowledge learned by a
highly-parameterized, complex model, trained over massive
amounts of unlabeled data – the teacher (Figure 1). This larger
model has higher knowledge capacity and can provide high
performance but is also computationally expensive to evaluate.

Transfer Set
(input)

Teacher Model
(previously trained)

Student Model

Combined Loss
(student output + 

teacher hint)

Backpropagation
(training)

Fig. 1. An overview of teacher-student learning.

By training a fast and compact model on a separate dataset
– called a transfer set – while regulating the training using the
soft outputs provided by the larger model’s output layer, the
student model starts learning the so-called “dark knowledge”
of the teacher model: it learns to mimic the output of the
larger model, therefore approaching the function learned by
the teacher model without having to be trained on the massive
dataset that made the model end up with said function.
Hopefully, the student model ends up performing only slightly
worse than the teacher model, while substantially lowering
the computational budget required to execute it. Knowledge
distillation is also independent from the architecture of the

Pruning connections

Fig. 2. Weight-based pruning applied to a network.

model, since it depends solely on the output provided by the
teacher model, making it a very versatile model compression
technique to apply.

Although knowledge distillation as a model compression
technique originally focused on the training of a fast and
compact model from scratch, research has been done to apply
it to pre-trained models instead [9]. This form of pre-trained
distillation has the compact student model pre-trained on
unlabeled language model data, turning the model into a well-
read student. The student can now take full advantage of the
teacher’s soft label outputs while training over the transfer
dataset, since pre-training mitigates the initial error present in
the otherwise randomly-initialized distillation process. A pre-
trained distilled model can then be subjected to fine-tuning, to
make the model more robust for the task at hand.

Pruning (Figure 2) refers to the removal of redundant and
non-informative connections within the network of the model
model, thus achieving a reduction in model size and potential
improvements in execution time and energy efficiency, while
only slightly degrading the quality of the model [10]. Despite
the improvements that can be obtained, such pruned models
often end up with sparse connection matrices, which have an
additional storage overhead compared to regular matrices and
require purpose-built hardware, capable of efficient loading
and operations.

Very early works on the pruning of neural networks per-
formed pruning by first computing an approximation of the
loss function of the model with respect to its parameters.
This allows for an iterative checking of increases in the loss
function of the model when setting a given weight to zero,
thus calculating the importance of that weight to the network
- its saliency. A parameter with small saliency will have a
minimal effect on the training error if it is removed.

More recent approaches [10], [11] use magnitude-based
weight pruning. This technique consists in picking a per-
centage of weights to be pruned, and removing that same
percentage of weights with values closest to zero [12]. Despite
creating pruned models with worse results in accuracy than
those obtained from both OBD and OBS, magnitude-based
approaches are often preferred due to being computationally
efficient and scaling better to large models and datasets, which
are particularly common in recent years.

In what respects quantization, a logical step in compressing
a model would be to trim down the model parameters them-
selves. Network quantization [13] refers to the compression



of the weights present in the inner layers of the model, such
that the weight values can be represented using a smaller
amount of bits. The parameter matrices end up occupying
less memory and any required arithmetic operations become
faster as a result. Previous works have shown that both network
pruning and quantization are effective not only in lowering the
complexity of the model, but also as a way to address over-
fitting to the training data. Furthermore, the two techniques are
compatible with each other and can be used simultaneously for
further model reduction.

Generally, quantization techniques are applied post-training;
this allows for immediate compression of the model in its fully
trained state, lowering the size of the model. However, for
most of these techniques, the model itself still computes using
floating-point arithmetic operations, so no improvements to the
model latency are achieved. Furthermore, the quantized model
does not take in consideration the error obtained from losing
precision in the weights of each layer, resulting in slightly
worse accuracy results.

B. Compressing NLP models

Model compression has been an especially important field of
study for any BERT-based models, which have a large memory
footprint and require heavy computing during inference.

Q8BERT [14] is a quantized version of BERT that achieves
a 4× smaller memory footprint while only losing less than
1% accuracy relative to the original model; this was achieved
by quantizing all weights within the Embedding and Fully
Connected layers – which contain over 99% of the weights
present in BERT – to 8 bit values. The weight quantization was
done during training, using a technique called Quantization-
Aware Training (QAT): during model fine-tuning, fake quan-
tization [13] is used to simulate the value errors obtained
when rounding down floating-point numbers. These values
are then back-propagated to the model, which ends up learn-
ing how to overcome quantization errors. To compare the
effectiveness between quantization-aware training and simply
performing quantization after fully training the model – also
called Dynamic Quantization (DQ) – testing was done on
several NLP tasks. Results show that QAT outperforms DQ
in every task, and even performs better than or equal to the
original uncompressed model in certain tasks. However, for
the moment, PyTorch does not directly support applying QAT
to models that require embedding layers. While solutions to
this problem exist, all of them require fundamental changes
to the architecture of the model, which in turn make QAT a
non-versatile compression technique to apply.

DistilBERT [15] was developed by teaching a smaller ver-
sion of BERT, reducing the amount of layers from the regular
12 to just 6, using the available pre-trained one as a teacher.
It manages to retain 97% of the accuracy from the original
model, while being 40% smaller and 60% faster. Due to the
common dimensionality between the teacher and the student
models, the small model was able to be initialized by directly
taking layers out of the teacher model. The authors also refer
to the orthogonality of other model compression techniques

relative to knowledge distillation; with additional pruning and
quantization, DistilBERT could be compacted even further, but
not without some expected losses in performance. Addition-
ally, the authors studied the performance of the compact model
on mobile devices; two smartphone applications were built
for question answering, one using BERTBASE and the other
DistilBERT, and both were deployed on an iPhone 7 Plus. The
average inference time was measured, with DistilBERT being
71% faster than the base model.

In what concerns pruning, the computer vision community
explored the Lottery Ticket Hypothesis [16], which states that
“dense, randomly-initialized, feed-forward networks contain
subnetworks (winning tickets) that – when trained in isolation
– reach test accuracy comparable to the original network in a
similar number of iterations”; simply put, conventional prun-
ing techniques can unveil smaller neural networks (mentioned
as subnetworks) which can be trained to reach performances
similar to the parent network. Based on this formulation,
several concurrent studies [12], [17], [18] focused on applying
the same line of thought to BERT. The results demonstrate that
the Lottery Ticket Hypothesis holds true for NLP, and valuable
conclusions arrived from this research:

• Matching “winning ticket” subnetworks can be found
between varying values of sparsity, from as low as 40%
to as high as 90%. This means that, for specific tasks, a
model consisting of roughly one tenth of the pre-trained
BERT model can hit similar performance;

• These subnetworks can be found with no extra training
required, by directly pruning the pre-trained BERT model
with no need for any fine-tuning beforehand. The pruned
model can still reach a similar performance to the full
model;

• For most models fine-tuned to accomplish downstream
NLP tasks, the subnetworks found appear to be specific
for that specific task, and are unable to be transferred to
other tasks.

One of the conclusions opened up new possibilities: “win-
ning tickets” found at 70% sparsity using the task originally
used for pre-training BERT (masked language modeling) were
shown to be universal, showing that learning can be transferred
to other downstream tasks while maintaining accuracy. The
resulting implication of a pre-trained BERT model properly
pruned down to nearly a third of its size still being able
to accomplish similar accuracy values when fine-tuned to
a downstream NLP task is an breakthrough, especially for
low-end or otherwise budget-restricted hardware. Given the
positive results, proper pruning after the initial training could
be seen as a second stage of the BERT pre-training process in
the future.

C. Energy consumption and Carbon footprint

With larger and better performing models, comes greater
resource expenditure. While most NLP models from a decade
ago could be properly trained on end-user laptops and other
common hardware, training a state-of-the-art model nowadays
requires dedicated hardware with several GPUs or TPUs,



even if the goal is just to fine-tune an already existing pre-
trained model. With this in mind, and considering that properly
training and validating a model requires many executions to
experiment with different architectures and hyperparameter
configurations, the energy consumption is an important (but
often forgotten) evaluation detail when training a model.
Reporting this detail would allow for cost-benefit analysis
between different models, especially when the model is meant
to be retrained for downstream usage, such as fine-tuning for
a new NLP task.

The amount of energy consumed by a model during the
entire training process is not only important in terms of
monetary cost, but also due to the effect it has on the
environment. The European Environment Agency has reported
that, on average, for every kilowatt produced per hour, the
equivalent of 275g of CO2 is released to the environment
as greenhouse gases [19]. However, since the most popular
cloud compute service – Amazon Web Services – is hosted in
the United States, it is more reasonable to consider the value
reported by the U.S. Environmental Protection Agency (EPA)
as the average greenhouse gas emission for model energy
consumption: 947lbs per megawatt-hour [20], or 430g per
kilowatt-hour. Considering that data centers spend a substantial
amount of energy maintaining servers up and running, and
taking in consideration the impact of greenhouse gas emission
on the environment, reporting energy consumption is an ever-
increasing necessity for any trained models nowadays.

III. EXPERIMENTS

In this section, we describe our approach to evaluate the
effects of model compression applied to NLP tasks, namely:
sentiment analysis, named entity recognition and sentence
generation.

A. Datasets

To train the language models fine-tuned on the sentiment
analysis task, we used the IMDB review dataset [21] – a
group of positive and negative IMDB movie reviews. For the
named entity recognition task, we made use of the CoNLL-
2003 dataset [22] – a collection of phrases where every
word has a corresponding part-of-speech tag, syntactic tag
and named entity tag. To train and fine-tune the GPT-2 based
conversational model on the task of sentence generation, we
used the Persona-Chat dataset [23], which is a crowd-sourced
collection of over 160 thousand utterances between pairs of
personas. Additionally, to prune both BERT and GPT-2 based
models, we needed to pre-train the models on the NLP tasks
of masked language modeling and causal language modeling,
respectively; we made use of the WikiText corpus [24], a
bundle of several million tokens extracted from verified articles
on Wikipedia.

B. Evaluation

Following a set of guidelines for best practices [6], for every
model trained and evaluated, we reported a description of
the computing infrastructure used during training, the average

Sentiment
Analysis

Named Entity
Recognition

Sentence
Generation

GPU 1080 Ti
(11GB)

TITAN X
(12GB)

1080 Ti
(11GB)

Data Splits
(tr./dev/test) 50/25/25 70/15/15 99/0.5/0.5

Epochs 5 5 3

Batch Size
(train/test) 8/8 32/8 2/1

Learning
Rate

3e-5, 1e-4,
3e-4, 5e-5

6.25e-5,
5e-5, 1e-4

TABLE I
GENERAL TRAINING SETUP FOR EVERY TASK, INCLUDING HARDWARE
AND HYPERPARAMETER CONFIGURATIONS. ALL SETTINGS REMAINED

THE SAME ACROSS EVERY MODEL, WHETHER COMPRESSED OR NOT.

runtime for each approach, the details of dataset splits, the
corresponding validation performance for each reported test
result, a link to implemented code, the response time of the
model during execution, and the size of the model. Addition-
ally, we used heuristics related to energy consumption and
environmental footprint [4] to compare the budget required
to train a model against its compressed alternative. For every
model trained, the average GPU power draw was obtained
to calculate the power consumption of the model, which will
then be used to estimate the amount of CO2 produced. While
it is not the only component consuming energy, we will only
be focusing on the GPU power draw as it is the main power
funnel when training a model.

C. General Training Setup

Across every model trained, we used the PyTorch frame-
work [25]. For the models themselves, we picked BERTBASE

[1] as the pre-trained base model to accomplish the sentiment
analysis3 and named entity recognition4 NLP tasks, and GPT-
2Small [26] for conversation-driven sentence generation5.

To obtain the baseline from which we can compare the
compressed models, we fine-tuned the pre-trained model for
the task at hand.

D. General Testing Setup

We set up a controlled testing environment by maintaining
the same testing hardware and hyperparameters across models
for the same tasks; all of these testing configurations are
presented in Table I. The framework used to train the models
accurately took note of the evaluation details, such as the
time it took to train and evaluate each model and the metrics
measured during inference; the average GPU power draw for
every model trained was queried from the NVIDIA System
Management Interface (nvidia-smi6) in parallel to the
model training itself, which gathered and registered the current

3https://github.com/Uziskull/lightning-text-classification
4https://github.com/Uziskull/BERT-NER
5https://github.com/Uziskull/lightning-convai
6https://developer.nvidia.com/nvidia-system-management-interface



power draw of the GPU being used, with an interval of 5
seconds.

Every model run was made deterministic by setting a fixed
seed for randomness, which prevented variations in weight
initialization and data order across runs, thus limiting the
variable testing details to just the different learning rates and
the different compression techniques applied. This decision
meant that our fine-tuned models did not obtain the best results
reported by the authors of the different models, however this
was outside the scope of our work since our focus was set on
the effects of compression techniques themselves.

E. Knowledge Distillation

To distill knowledge, we created a small student model
using only the first k Transformer layers from the pre-trained
model (BERTk). Afterwards, the previously fine-tuned uncom-
pressed model (used as baseline) act as the teacher model
and perform Patient Knowledge Distillation (PKD) [27]. The
network architecture of the smaller model is identical to the
base model used for the task, but the number of hidden
layers was cut in half and only the first six layers of pre-
trained weights were used for initialization. To train the student
models, we followed the PKD-Skip strategy outlined by the
authors.

To transfer the knowledge from the teacher model to the
target student model, we took the entire training dataset used
for the student model and ran it through the teacher model; the
resulting output from the intermediate and final layers was the
knowledge set to be distilled to the student model. We were
unable to perform the same teacher knowledge gathering for
the sentence generation task since the resulting dataset with
extra knowledge was too large to be able to be loaded during
student training. To get around this issue, we ran the teacher
model during the student training to get the necessary resulting
values on-the-fly; while the models were successfully distilled,
the resulting overloading of the GPU had some drawbacks
related to training time and power spent.

F. Pruning

Following the Lottery Ticket Hypothesis, to prune every
task-specific model, we first took the pre-trained base model
for each task and trained it further while applying Iterative
Magnitude Pruning (IMP) [17], which prunes the attention
heads of the model over several training epochs. The original
code supplied by the paper authors only worked for BERT
models, thus some changes were made to the code to also
accept and prune GPT-2. We used WikiText-103 [24] corpus
for the required extra training on the pre-trained base models.

To apply IMP, pruned BERT to 70% sparsity with a 10%
pruning step every Y iterations, varying the number of itera-
tions to find which model would display better results overall.
Since the research conducted on the Lottery Ticket Hypothesis
was done on BERT based models, the universality of task
transferal observed at 70% sparsity could not be directly
inferred to the GPT-2 model; as such, we decided to conduct
some extra testing to observe what the ideal sparsity should

be, by applying IMP to the pre-trained GPT-2 model, pruning
the model to X% sparsity with a 10% pruning step every
Y iterations, varying both the number of iterations and the
sparsity itself (between 10% and 70%).
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Fig. 3. Experiment results for GPT-2 models after applying IMP.

Figure 3 shows the results after applying iterative magnitude
pruning to X% sparsity, by pruning 10% of the weights every
Y training steps. The models were trained on the WikiText-
103 dataset. The perplexity of the base GPT-2 model is
displayed for comparison. The obtained results show a trend
throughout all the different sparsity percentage models: the
resulting perplexity is lowered until the model becomes 30%
sparse, then it steadily begins to rise as the sparsity grows.
As such, we chose 30% sparsity as a valid sparsity percentage
for pruning GPT-2, and focused on comparing the results from
the different training iterations used when performing IMP at
that sparsity.

With both base models successfully pruned, we decided to
use the perplexity metric to choose which model was better,
since it is an evaluation method intrinsic to the model itself and
does not directly evaluate the task at hand; this resulted in the
two chosen models being BERT pruned to 70% sparsity with a
10% pruning step every 15000 iterations, and GPT-2 pruned to
30% sparsity with a 10% pruning step every 20000 iterations.
These models were then fine-tuned in the same manner as the
baseline models.

G. Quantization

To quantize every model, we applied DQ to the fine-tuned
models used as baseline with no additional training time, since
it is a post-training compression technique; the weights of
the models were quantized to 8bit (using the QNNPACK7

backend). GPT-2 based models make use of one-dimensional
convolutions over incoming data (Conv1D layers), which are
not supported by the DQ backend. In order to be able to
quantize GPT-2, every Conv1D layer had to be swapped
with Linear layers after loading the model; while this change
allowed for GPT-2 models to be quantized, it had some
negative effects on the performance of those models.

7https://github.com/pytorch/QNNPACK
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Model Size (MB) Inf. Time CPU (s) Inf. Time GPU (s) Accuracy F1

Baseline 440 10.000 0.003 0.938 0.937
DQ 175 4.850 0.286 0.934 0.927

(c) Experiment results for quantized models (DQ) fine-tuned in sentiment analysis

Fig. 4. Excerpt of compressed model results compared against the respective baseline models.

Additionally, to evaluate the performance of compressed
models on low-end hardware, we ran both the baseline and
the quantized models on a Raspberry Pi 4 (4GB RAM) to
compare the inference time between the executed models, as
well as between the models ran on the Raspberry Pi CPU
versus the ones ran on the cloud computing environment with
the dedicated GPU.

H. Quantization + Pruning

Taking advantage of the compatibility between both com-
pression techniques, we used quantization-aware training on
the previously pruned model during fine-tuning of the task.
To test the combined effects of quantization and pruning, we
applied DQ to the models previously pruned via IMP and
evaluated the resulting models. Due to the nature of DQ,
applying it to pruned models was a simple task, although the
same workaround had to be done for the pruned GPT-2 model.
Furthermore, the quantized and pruned models were also ran
on the Raspberry Pi to compare inference times.

IV. RESULTS

In this section, we present the obtained results. Table II
shows the results of all model compression techniques, and
the variance percentage compared to the baseline results. The
arrows represent whether the variance is positive or negative.
Filled cells signify the best scores between the compression
techniques, and bold cells signify that the score obtained
for that compression technique is better than or equal to the
baseline score.

A. Knowledge Distillation

For the sentiment analysis and named entity recognition
tasks, PKD proved to be a very effective compression tech-
nique; none of the recorded metrics for the distilled models
degraded more than 1% compared to the fine-tuned baseline.
The expected performance ranges of the compressed model
and the baseline overlap (as displayed in Figure 4(a)), implying

that a well-trained distilled model could outperform the origi-
nal uncompressed model, although this verification is outside
the scope of this work. The small size of the distilled models
(270MB – a 39% reduction) resulted in shorter training and
inference times, with the sentiment analysis task achieving a
79% latency improvement over the baseline model. However,
PKD was detrimental to the sentence generation task, with
a severe 16.37% drop in the BLEU score compared to the
baseline. We attribute this to the architecture of the student
model being too compact to properly learn from the complex
GPT-2 teacher model, and believe that distillation could be
viable for this task with a different student model architecture.
Additionally, due to the distilling workaround described in
Section III-E, the training time of the model was extended by
52%, consequently increasing the power spent and estimated
CO2 emissions.

B. Pruning

Overall, IMP showed reasonable worsening of model qual-
ity for the sentiment analysis and named entity recognition
tasks, with no major difference in training or inference time,
and consequential power expenditure or CO2 emissions. On
the other hand, for sentence generation, the pruned models
improved considerably compared to the baseline (shown in
Figure 4(b)), with a substantial 13.56% increase of the BLEU
score; additionally, the training and inference times for the
pruned model are 4% and 9% smaller than the ones reported
for the baseline, which we attribute to the more efficient
computation of the complex convolution layers present in
GPT-2 models, given that 30% of the weights are set to zero.

Ultimately, no size improvement was obtained since no
method of sparse matrix representation would allow for a
smaller sized weight storage without additional detrimental
computational overhead [28]; additionally, PyTorch currently
offers no way of saving or loading sparse weights.
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Recall 0.936 0.928 (↓ 0.85%) 0.933 (↓ 0.25%) 0.908 (↓ 2.94%) 0.884 (↓ 5.51%)

N
am

ed
E

nt
ity

R
ec

og
n. Accuracy 0.988 0.985 (↓ 0.27%) 0.981 (↓ 0.68%) 0.979 (↓ 0.91%) 0.956 (↓ 3.19%)

F1 0.941 0.928 (↓ 1.38%) 0.907 (↓ 3.53%) 0.894 (↓ 5.00%) 0.775 (↓ 17.66%)
Precision 0.936 0.922 (↓ 1.54%) 0.903 (↓ 3.54%) 0.890 (↓ 4.99%) 0.798 (↓ 14.78%)

Recall 0.945 0.934 (↓ 1.21%) 0.912 (↓ 3.53%) 0.898 (↓ 4.96%) 0.768 (↓ 18.72%)

Se
nt

en
ce

G
en

er
at

io
n

BLEU 2.362 1.975 (↓ 16.37%) 2.682 (↑ 13.56%) 2.076 (↓ 12.10%) 2.373 (↑ 0.50%)
TER 1.016 1.035 (↑ 1.86%) 1.024 (↑ 0.78%) 1.016 (↓ 0.01%) 1.009 (↓ 0.68%)

BERTScore 0.852 0.849 (↓ 0.28%) 0.854 (↑ 0.24%) 0.849 (↓ 0.24%) 0.852 (↑ 0.00%)
Hits@1 0.817 0.024 (↓ 97.10%) 0.812 (↓ 0.60%) 0.809 (↓ 0.96%) 0.803 (↓ 1.72%)
Hits@5 0.977 0.140 (↓ 85.67%) 0.976 (↓ 0.10%) 0.974 (↓ 0.30%) 0.973 (↓ 0.39%)

Hits@10 0.996 0.356 (↓ 64.24%) 0.996 (↓ 0.01%) 0.995 (↓ 0.10%) 0.995 (↓ 0.07%)
TABLE II

RESULTS OF THE MODEL COMPRESSION TECHNIQUES

C. Quantization

Unlike the other compression techniques, DQ is applied
post-training; therefore, we cannot analyze the expected vali-
dation performance development over the training epochs, nor
is there any training time or power usage to compare against.
Observing the final results, we can see minor quality degra-
dation on the BERT based models, with the task of sentiment
analysis (displayed in Table 4(c)) only lowering its accuracy
and F1 scores by 0.51% and 1.00%, respectively. For the
sentence generation task, DQ showed lowered scores overall,
which we attribute in part to the architectural change required
for quantizing GPT-2 based models, previously mentioned in
Section III-G. All models showed a reduction in model size,
with BERT based models being compressed to 60% of the
original model size and GPT-2 based models ending up with a
size of 280MB (57% of the starting size); this reduction is only
reflected in the size loaded in memory, however, since there
is no current way of saving or directly loading a quantized
model in PyTorch.

Regarding the CPU testing done on the Raspberry Pi,
there was a noticeable improvement on inference times, with
51.50%, 59.89% and 63.10% faster performance on the tasks
of sentiment analysis, named entity recognition and sentence
generation, respectively. However, this inference speedup is
only seen within low-end CPU-optimized hardware; GPUs
manage to execute integer weight operations faster than the
Raspberry Pi and obtain lower inference times for both
quantized and baseline models, with baseline models being
several orders of magnitude faster.

D. Quantization + Pruning

Quantizing the already pruned models showed a minor
overall improvement to the pruned sentiment analysis task, a
major decline in quality in the pruned named entity recognition
task, and a lower-than-expected degradation on the sentence
generation task, all relative to the pruned models themselves.
These changes were related to both the performance of the
pruned models, as well as the influence of quantization on the
models. While the performance of the model on CPU was still
improved (much like the former quantization results show),

Original Model

Knowledge
Distillation

Is the model complex?
(has many non-linear transformations, 

such as convolutions)

Yes

Pruning

No

Will the model be deployed 
in low-end hardware?

Quantization
Compressed

Model

Yes No

Fig. 5. A simplified flowchart guide on how to best compress a NLP model.

the effects of quantizing the pruned models were somewhat
inconsistent across tasks, further confirming that quantization
should only be applied on a case-by-case basis.

E. Environmental Footprint

Overall, compression techniques that require lower training
time spend less energy doing so, resulting in lower estimated
CO2 emissions. DQ was applied post-training, thus having
a null CO2 emission value. For the compression techniques
applied pre-training, PKD was the one with lower energy
expenditure and consequential environmental impact, due to
the smaller model being able to be trained faster; this was
not the case for the sentence generation task which, due to
the workaround described in Section III-E, spent the energy
required to both train the student model and execute the
teacher model. IMP had an ecological footprint similar to the
baseline models, even showing smaller energy costs for the
sentence generation task, but when accounting for the energy
spent pruning the pre-trained models to the required sparsity
before fine-tuning, the estimated CO2 emissions become much
higher, with increases as high as 342% (for the named entity
recognition task).



V. CONCLUSION AND FUTURE WORK

In this paper, we applied several common model com-
pression techniques to NLP tasks and compared the trade-
off between performance and computational resource usage.
Based on our results, we outlined a flowchart (shown in
Figure 5) for effectively compressing a language model; this
flowchart is based on preliminary conclusions we drew from
our study, and more research and experiments would have
to be done in order to generalize this across all language
models targeted for NLP usage. Furthermore, we conclude
that the usage of model compression techniques that require
extra training besides fine-tuning are noticeably detrimental
to the ecological footprint of the model, and compression
techniques that reduce the complexity and size of the model
before training (or that require no additional training, in the
case of post-training compression) should always be preferred.

For future work, we believe more extensive research could
be done on each of the compression techniques, such as testing
several student model architectures for knowledge distillation
and experimenting with different compression schemes and bit
depths for quantization. We also believe model compression
should be fully integrated and properly implemented in popu-
lar model frameworks like PyTorch, instead of being available
only as experimental features, to promote its usage across
future language models and further reduce computational costs
for training such complex models.
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