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Abstract—Wearable devices are further connecting people to
the world, extending the reach of smartphones and the Internet.
New applications are possible such as activity and location track-
ing that allows health monitoring and increased access to health
services. Bluetooth Low-Energy (BLE) is a pivotal technology
for this vision, as it allows power-efficient network connections
to smartphones and to service infrastructure. However, there
are design flaws and implementation vulnerabilities in BLE that
affect the most widely used chipsets and operating systems.

In this paper, we present POSE, an end-to-end security
layer, that can mitigate attacks on BLE pairing and link-layer
communications. POSE uses protocol buffers for efficient message
data serialization/deserialization and, on top of them, provides
message confidentiality and authenticity, including message fresh-
ness. POSE was implemented and its processing time, packet
overhead, and CPU usage were evaluated. The results show that
POSE is an efficient solution for secure communication with
wearables and other constrained devices, especially when they
already use protocol buffers.

Index Terms—Internet of Things, Bluetooth Low-Energy, Se-
curity, Privacy, Protocol Buffers.

I. INTRODUCTION

Many people enjoy wearing gadgets such as smartwatches
or fitness trackers to keep track of their physical activities.
These wearable devices have great potential for health moni-
toring and can also provide increased access to health services.
Most of these devices connect to the Internet through the
smartphone. Bluetooth [9] is widely used for communication
between devices and smartphones, and through them, to the
back-end service infrastructure. Bluetooth Low-Energy [8] is
an energy-efficient variation of the classic Bluetooth short-
range communication technology, designed mostly for con-
strained devices [15], like wearables and other Internet Of
Things (IoT) devices [1].

There are important security problems in BLE, namely
design flaws and implementation vulnerabilities. These affect
different versions of the standard [34] that, in turn, affect the
most widely used operating systems, such as Android and iOS
[17]. Security in BLE is provided by the pairing protocols
performed at the end of the connecting process, where keys
are exchanged for data encryption in future communications.
Such pairing protocols have also shown design flaws, re-
garding Android-based devices, making the communications
vulnerable to Downgrade attacks [34], which exploit Android
mishandling errors to cancel the exchange of keys and leave
the communication in plain-text, without any warning to the

user. Even when the pairing is robust, BLE contains the
inherent limitation of providing only link security, i.e., the
protection only applies to the device-to-device connection.
In many use cases, the messages have to use intermediary
devices to reach the final destination. For example, a message
from a wearable device may need to go through a smartphone
before reaching a remote server. All of these problems and
vulnerabilities are detailed in Section II.

The existing solutions to provide end-to-end security, like
TLS [24], can be used, but require significant resources and
complex code that will likely exclude many IoT devices. We
detail this discussion in Section III.

The pairing limitations/vulnerabilities and the need for
lightweight end-to-end communication opens up a space for
solutions especially suited to the use of BLE by wearables
and other resource-constrained devices. COSE (CBOR Object
Signing and Encryption) [28] is such a solution to obtain object
security for end-to-end communications. It uses CBOR [3]
for efficient data encoding of objects. The implementation
of this standard in constrained devices by Tjäder [32] is
detailed in Section III-B. The COSE solution is suited to solve
the problem that we mentioned, but there is an additional
challenge. The devices and applications would need to use
CBOR directly, or, otherwise convert to it from other formats.
The challenge here is that CBOR is not a very popular format,
and there are already many applications that use alternative
formats. In constrained devices, this format conversion takes
up time and memory, and is a waste of power, with no benefit
other than the ability to communicate.

In our work, we developed a new solution that delivers the
benefits of a COSE-like approach but relies on a more popular
format. We chose protocol buffers (abbreviated as Protobuf )
because it has been increasingly used in applications with strict
performance requirements, since its public release in 2008
by Google. In public library repositories, like Maven Central
and PyPI, Protobuf libraries are an order of magnitude more
popular than CBOR libraries. We propose POSE (Protocol
buffer Object Signing and Encryption). It is inspired by the
COSE specification, but it has two key differences:

1) it uses Protobuf rather than CBOR;
2) we hardened the secure messages and solved a message

freshness vulnerability in COSE.
POSE relies on efficient and popular encoding language

to exchange secure messages on pairing-less BLE commu-
nications. We implemented our solution and tested it in a978-1-7281-8326-8/20/$31.00 ©2021 IEEE
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location certification system that relies on Protobuf for its data
messaging [26], [14], [6].

A. Use case: Location Certification System

The example system is called SurePresence, and it is part
of a health use case, where a patient is able to verify his
presence towards a medical appointment, using a wearable
device to communicate with a kiosk. This example application
is represented in Figure 1.

Fig. 1. POSE deployment in the wearable to kiosk communication in a
location certification system.

The core concept of the location certification systems is
the Location Proof [27]. The idea of having the users of the
system working as witnesses for other users and certifying
their location claims is also a method used by multiple
systems to prevent location spoofing. In this case, the witness
is the kiosk at the medical office. In APPLAUS [36] and
CREPUSCOLO [4], the communication between both roles
is made in a direct way, meaning that there is no intermediary
in the communication, making it faster. Both systems make
efforts to minimize collusion attacks but cannot eliminate the
attack in all cases. This is true even in more recent systems,
such as PASPORT [16]. Recently, there has been an effort
to provide better tools for using location proofs, such as the
SureThing framework [6]. In all of these systems, it is essential
to have proximity to witnesses and, on top of that, to have
secure communication with them, including authentication and
integrity protection. This is where POSE fits in. Since it
natively supports Protobuf, no data format conversions are
necessary, and the wearable and kiosk shown in Figure 1 can
communicate and mitigate all the security risks of using BLE.

B. Contributions

The main contributions of the paper are the following:
• architecture and implementation of POSE;
• evaluation of POSE with an application developed with

actual wearable and other constrained devices;
• performance assessment of POSE.

C. Outline

The remainder of this paper is structured as follows: details
on BLE attacks that we want to mitigate are in Section II.

Alternatives to communication security are presented in Sec-
tion III. POSE is specified in Section IV; the implementation
and use in a real-world use case is detailed in Section V; the
evaluation results are shown and discussed in Section VI; and
the conclusion is presented in Section VII.

II. BLUETOOTH LOW-ENERGY ATTACKS

There are four different BLE pairing mechanisms to be se-
lected at the end of the connecting process [22]. The “Numeric
Comparison” is the most secure method but requires both
devices to have input/output capabilities, which is an issue
for most IoT devices. The remaining three pairing protocols
have been shown to be insecure [18], leaving communications
vulnerable to Eavesdropping and Man-In-The-Middle (MITM)
attacks. Pallavi and Narayanan [19] have shown the feasibility
of such types of attacks on devices without any input/output
(I/O) capabilities. The only possible pairing mechanism, in
this case, is “Just Works” which is the most simple pairing
protocol, allowing the capture and manipulation of data, as
well as command injection. This pairing mechanism generates
the Long Term Key (LTK) from a Term Key (TK) always set
to 0x00, which causes the messages to be exchanged in plain-
text and without authentication from any of the two devices.
An application-based authentication phase after the pairing
phase is necessary to ensure protection against MITM attacks
[13].

Zhang et al. [34] showed that such pairing protocols also
present four specific design flaws in Android, the most widely
used operating system for mobile and for interactions with
wearables and other IoT devices [2]. These design flaws are
serious security problems as they make the BLE exchanged
messages vulnerable to Man-In-The-Middle and Downgrade
attacks, as well as Information Disclosure from the connected
devices. The four Android BLE design flaws are:

• An Android application cannot enforce a specific pairing
protocol even if it knows the capable pairing protocols of
the peer BLE device;

• Android applications cannot cancel insecure pairing pro-
cesses until conclusion or remove suspicious pairing
connections;

• Android mishandles pairing errors, without notifying the
application or the user, being vulnerable to rogue devices
attempting MITM attacks;

• There are no mechanisms to obtain the negotiated pairing
protocol on time or even start a new secure pairing
process with the same peer BLE device.

Zhang et al. also showed [35] how to explore such flaws
with practical attacks using fake devices. These attacks include
Downgrade and injection of false data on the vulnerable device
and Denial-of-Service (DoS). The security flaws are shown to
be extended to other major OSes including Windows, Linux,
and iOS [17]. The same authors present countermeasures for
all security issues which include the pairing error handling at
the application level and enforcing a specific pairing method
and notifying the application in time about it. However, the
countermeasures carry a usability trade-off for users.



Wu et al. [33] explore the vulnerabilities of the BLE link-
layer to spoofing attacks by designing an attack (BLESA)
where a rogue device pretends to be a previously-paired
server device. This attack showcases the security flaws in the
reconnection process of two previously paired devices. The
rogue device rejects the authentication requests and can feed
spoofed data to the client device. The authors also present
mitigation techniques including fixing implementation bugs
in the BLE stack and adjusting the security level of the
connection based on the attributes access requirements, before
sending the reading request.

All of these attacks show that BLE security is not good
enough and there is a need for additional security solutions.

III. ALTERNATIVES FOR COMMUNICATION SECURITY

We analyze alternatives for secure communication when
using BLE. There are transport and application-level solutions.

A. Transport-level security

TLS [24] can be used above the BLE link-layer, but it
requires significant resources to keep session context that
excludes many constrained devices [7]. DTLS [25] is also
not a direct option, even though there are optimized versions
for IoT [5], [21]. However, they are not widely available and
consume significant power resources [31]. Overall, the use
of session-based security communication that assumes 1-to-
1 communication, between the same client and server, with a
strict correspondence is not possible to assure in many cases
when constrained devices are involved, because there is the
need to keep the same security context. There are also other
uses that require the protection to be verified later, for example,
when the results are cached.

B. Application-level security

Another possibility is to use an application-layer protocol to
obtain all necessary security guarantees. There can be custom
solutions, but each application is at risk of re-implementing
cryptographic protocols that are not reviewed enough. The
ideal would be to rely on a standard that has been defined,
revised, and implemented by a significant community effort.

Tjäder [32] has shown how to guarantee message confiden-
tiality in BLE exchanges by protecting those communications
with COSE [28]. COSE specifies how to process signatures,
encryption, and Message Authentication Codes (MAC) com-
putations for CBOR (Concise Binary Object Representation)
message-encoding format. This standard is based on JOSE
(Javascript Object Signing and Encryption) [11] a similar
standard that uses JSON (JavaScript Object Notation) as the
underlying format. CBOR is more efficient for data transport
than JSON, as the former is binary-based, and the latter is
text-based.

COSE has been used in RESTful Environments to pro-
tect CoAP messages exchanged between constrained devices,
through OSCORE [29]. The OSCORE (Object Security for
Constrained RESTful Environments) specification describes
how to protect the payload and the metadata header fields

of CoAP messages, using COSE to ensure confidentiality and
integrity. However, OSCORE still uses the CBOR data format.

COSE does not address message freshness, making all
messages vulnerable to replay attacks, unless the application
itself adds some robust repeated message detection.

In summary, COSE ensures object security by providing
confidentiality, authenticity, and integrity of the exchanged
messages, but it does not assure freshness and it is coupled
with the CBOR data format.

IV. POSE DESIGN

We now present POSE (Protocol buffer Object Signing and
Encryption) an application-layer protocol on top of pairing-
less BLE communications, providing all security guarantees
while increasing the usability of BLE, thanks to the absence of
any pairing process. Fundamentally, POSE follows the COSE
specification. However, it takes full advantage of Protobuf as
its underlying data encoding format to represent the exchanged
messages over BLE communications. Protobuf provides a
convenient way to structure data in a compact way and then
use Protoc, a protocol buffers code generator, to easily
write and read those structured data in the most popular
programming languages [12].

A. Choice of data format

CBOR [3] is a standardized data format similar to JSON,
whose goals include small message size and extensibility to
binary fields. Unlike JSON, it is not a universal data format
among all types of devices, which causes constant conver-
sion from other formats, which is not practical, especially
for resource-constrained devices. Moreover, Jenkov [10] has
shown in practice that CBOR messages with five different
fields have a significantly smaller read and write throughput
than equivalent Protobuf messages. Protobuf, originally pro-
posed by Google, has already been introduced in the world
of heterogeneous constrained devices as a lightweight and
interoperable alternative to standardized message encoding
schemes like CBOR, JSON, or BSON [20]. This data format
has surpassed CBOR in popularity over the years, showing a
much higher number of usages in multiple code repositories,
including Maven Central1 (3589 and 446, respectively) and
PyPI2 (13301 and 37, respectively). The “universality” of the
data format is especially important in limited devices because
they may not have the means to convert from and to other
formats, at least, not without wasting precious energy. POSE
opts to use Protobuf to leverage its popularity, and compare
favorably to COSE in this regard.

B. Message Types

In the context of a single recipient one-way BLE commu-
nications, POSE specifies three message types, each offering
different security guarantees. These messages depend on the
knowledge of who is the recipient and on an implicit sym-
metric key/asymmetric key pair, previously established. The

1https://search.maven.org/
2https://pypi.org/



TABLE I
POSE MESSAGE TYPES.

POSE Message Type Semantics

POSE Sign1 Signed data object
POSE Mac0 Mac data object

POSE Encrypt0 Encrypted data object

message POSE_Sign1{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes payload = 3;
bytes signature = 4;

}

Listing 1: POSE Sign1 Protocol Buffer definition.

different POSE message types can be seen in Table I and they
follow the same grammar and present the same fields as all
the remaining COSE objects, as detailed in Section IV-C.

1) Signed data object: The POSE_Sign1 message type
object ensures the non-repudiation of the transmitted data, by
one signer only. It makes use of the same signature algorithms
as used in the COSE standard, which is the Edwards-curve
Digital Signature Algorithm (EdDSA) and the Elliptic Curve
Digital Signature Algorithm (ECDSA). The protected bucket
and payload are both signed, where the latter can even include
another POSE message type, allowing the creation of sealed
objects. The POSE_Sign1 protocol buffer definition can be
seen in Listing 1.

2) Mac data object: The POSE_Mac0 message type object
ensures integrity and authenticity of both the payload and the
protected bucket by generating a tag with a Message Authen-
tication Code (MAC). It makes use of the same algorithms
as COSE, which can either be a block cipher algorithm, like
AES-MAC, or a hash algorithm, like HMAC. The Protobuf
definition of the POSE_Mac0 message type can be seen in
Listing 2.

3) Encrypted data object: The POSE_Encrypt0 message
type object is the one that offers the most security guarantees
and is the type in which we focused on in our implementation
(Section V). This type ensures message confidentiality and
integrity and message freshness. The Protobuf definition of the
POSE_Encrypt0 message type can be seen in Listing 3.

C. Message Format

POSE protocol supports the same primitive types as de-
fined in the COSE specification, like Booleans, Integers, Byte

message POSE_Mac0{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes payload = 3;
bytes tag = 4;

}

Listing 2: POSE Mac0 Protocol Buffer definition.

message POSE_Encrypt0{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes ciphertext = 3;

}

Listing 3: POSE Encrypt0 Protocol Buffer definition.

strings, etc. Each field in a POSE object message can be
a primitive type or Protobuf-defined message, depending on
the type of the message, however, it always starts with the
three fields: protected header parameters, unprotected header
parameters, and the content of the message. Both protected
and unprotected headers are ‘label’-‘value’ maps. Each label
is a well-defined Integer, while a value is a primitive type
or another POSE message. The protected bucket contains
parameters about the current layer and information about
the used cryptographic algorithms, allowing flexibility on the
chosen algorithms. All this information is protected since it
is used in the cryptographic computation, where is either
signed, hashed, or used as associated data in the encryption,
as explained in Section V-A. The unprotected field is similar
but not protected, meaning that it may not be authentic when
it reaches the recipient. Both fields are serialized into a byte
string. The content of the message field can be either plain-
text, cipher-text, or another POSE message.

D. Message Confidentiality and Integrity

The different security guarantees are provided by the dif-
ferent message types, detailed in Section IV-B. To ensure
both the confidentiality and integrity of the transmitted data,
the POSE_Encrypt0 message must be used. It uses the
Authenticated Encryption with Associated Data (AEAD) as
the form of encryption and the Advanced Encryption Standard-
Galois/Counter Mode (AES-GCM) as the mode of operation
for the encryption computation of the payload.

AES-GCM takes full advantage of pipelining and processing
techniques unlike the remaining modes of operations of block
ciphers, making it fit for constrained devices with inexpensive
resources and lower rate applications of the IoT world [30],
although other modes may offer better security-space tradeoffs.
Other cryptographic algorithms can be used thanks to the
specific format of POSE messages, detailed in Section IV-C,
allowing exchange information about the algorithms used by
the sender and that should be used by the recipient. This
promotes flexibility on the encryption algorithms and opens
a door for the usage of other more lightweight algorithms.

AEAD ensures the authenticity of the associated data used
in encryption along with the integrity and confidentiality of
the cipher-text. The encryption makes use of a pre-shared 128-
bit symmetric key. We leave a possible handshake for a key
agreement for future work. This mode of operation requires a
nonce which is also used to protect against replay attacks, as
shown in Section IV-E.



message Enc_Structure{
string context = 1;
bytes protected = 2;
HeaderMap unprotected = 3;
POSE_Encrypt0 body = 4;

}

Listing 4: Enc Structure Protocol Buffer definition.

E. Message Freshness

As previously described in Section III, the COSE standard
does not protect from replay attacks nor addresses message
freshness. POSE solves the first problem by adding the nonce
used in the AEAD encryption to the protected field of the
exchanged message. This nonce is verified and remembered
by the message validator, in the receiving end. The nonce per-
sistence time in memory is application and machine resources-
dependent.

The message freshness problem is addressed at the applica-
tion level. Our location certification system used to implement
POSE issues location proofs with daily granularity timestamps,
which means it does not accept or validate messages con-
taining location proofs from past days, hence guaranteeing
location proof freshness.

V. POSE IMPLEMENTATION

We implemented POSE in a two-component example appli-
cation. The first component is an Android client application
written in Java and deployed on a quad-core HUAWEI Watch
2 running Android Wear OS. The second component is a kiosk
application written in Python 3 deployed in a Raspberry Pi 4
equipped with a touchable screen.

In Section V-A we detail how to build the
POSE_Encrypt0 message object according to format
and fields previously explained. In Section V-B we show how
POSE is used in an example application.

A. Security processing

The first step to produce a POSE_Encrypt0 message
object is to generate the associated data that will be used
in the cryptographic computation. For that purpose, we need
to create a structure that will include all the protected fields
that require to be authentic when they reach the recipient and
then create a consistent byte stream from it, so that it can be
computed. That new structure is the Enc_Structure object
and its Protobuf definition is shown in Listing 4, as defined
by the POSE protocol. The subsequent sections describe how
to process the security protection and verification.

1) Payload protection: We describe the steps required to
securely protect any payload using the POSE_Encrypt0,
from the generation of the associated data to the content of
the final message.

i Create the Enc_Structure message object and fill
it with the appropriate fields such as the context string
and the protected attributes. The context string is a well-
defined string that identifies the type of the payload.

{
context: "Encrypt0"
protected: map: {5: E090434C972...}
unprotected : {}
body { //POSE_Encrypt0

protected: map: {1: 10}
unprotected {}
ciphertext: 1FDF435D9C2C80B...

}
}

Listing 5: Enc Structure implementation.

ii Serialize the created Enc_Structure object into byte
stream using protocol buffers encoding to create the
associated data.

iii Call the encryption algorithm with the previously
loaded encryption key K, the plain-text of the
POSE_Encrypt0 message object, and the associated
data (AD). Then include the result in the cipher-text field
of the POSE_Encrypt0.

2) Payload verification: Similar to the previous section, we
describe the steps required to securely verify the contents of
any received POSE_Encrypt0 message.

i Create an object of Enc_Structure message similar
to the one received but without the cipher-text.

ii Serialize the created Enc_Structure object into byte
stream using protocol buffers encoding to create the
associated data.

iii Call the decryption algorithm with the previously
loaded decryption key K, the cipher-text of
the POSE_Encrypt0 object from the received
Enc_Structure message, and the associated data
(AD).

B. POSE in SurePresence

The example application, SurePresence, allows a patient
to prove his presence at a medical clinic. The implemented
process of this medical appointment use case is represented in
Figure 1

The smartwatch to kiosk exchange was achieved through
one-way BLE communication that allows the patient, using a
running app on his smartwatch, to exchange messages with
a kiosk device at the medical clinic to prove his presence.
The patient acts as a location prover and the kiosk as a
witness to endorse the presence of the patient at the clinic.
The security needs to be guaranteed by successfully applying
the POSE protocol to provide the desired BLE application
security level. The exchanged BLE packet between the smart-
watch and the kiosk device uses our implementation of the
Enc_Structure, which can be seen in Listing 5.

The cipher-text is an encrypted location claim. The patient
generates a location claim with his app, containing the user,
location, and time information. Then the patient signs the
claim to guarantee the non-repudiation of his claim. This
discards the necessity to use the POSE_Sign1 message
object, previously explained. The smartwatch advertises the



BLE packet with the Enc_Structure object to the kiosk
device. Without POSE, the signed location claim would be
in plain-text and, therefore, an attacker could read the user-
sensitive information. However, with POSE implemented, we
guarantee the authenticity and confidentiality of the location
claim generated by the patient. The kiosk device on the other
end follows the decryption methodology, previously explained,
and signs the location claim creating a location endorsement
to be submitted to a location service provider as part of the
location certification system.

VI. EVALUATION

This Section presents a comparison between the developed
POSE protocol and the COSE standard on the same exam-
ple application. As mentioned before, POSE was developed
mainly for constrained devices and IoT applications. Thus, we
evaluated POSE with respect to: time required to create and
serialize/deserialize the exchanged messages, packet overhead,
and performance metrics including the CPU usage. The com-
parison baseline was COSE.

This evaluation will help us answer the following questions:
1) Is POSE faster than COSE in serializing/deserializing

the exchanged BLE messages?
2) How large is the packet overhead of POSE in the

exchanged messages compared to COSE and BLE
alone?

3) How significant is the CPU usage of POSE when
compared to COSE?

The creation and serialization of the exchanged messages
includes the following operations:

• Creation of the Enc_Structure object with the re-
quired protected and unprotected fields

• Generation of associated data based on the Proto-
buf/CBOR serialization of the Enc_Structure to
bytes

• Encryption of the payload using the AEAD algorithm
• Creation of the POSE_Encrypt0 object inside the
Enc_Structure.

The deserialization of the exchanged messages includes
similar operations, with a decryption computation instead of
an encryption one.

A. Processing time

The processing time measures the required time for the
serialization and deserialization of the 150 messages that have
been exchanged between the smartwatch and the kiosk devices
during the experiments using POSE and the standard COSE
protocol. The results are presented in Table VI-A.

The obtained results show high processing time and mostly
similar values in both protocols with slightly lower processing
time in COSE serialization.

B. Packet Overhead

Packet overhead measures the additional data that POSE
requires to securely exchange payloads between the prover

TABLE II
TIME REQUIRED TO PROCESS THE POSE AND COSE MESSAGES.

Serialization (ms) Deserialization (ms) Total Time (ms)

avg. std. avg. std. sum
COSE 144.66 15.188 257.79 2.102 402.45
POSE 164.85 24.301 257.09 2.544 421.94
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Fig. 2. Packet overhead of exchanged messages in multiple protocols.

device (smartwatch) and the witness (kiosk). In this experi-
ment, we compared POSE packet overhead against the COSE
overhead and also against the BLE configuration with no
security features (without pairing) as well as BLE pairing with
authenticated LE Secure Connections [23].

Figure VI-B illustrates the obtained results. For simplicity,
we merged the overhead results of the two BLE levels into just
BLE, as both showed similar results in the experiments. The
results were captured on the kiosk device using the Wireshark
tool3.

As shown in Figure VI-B, packet overhead generated by
POSE protocol stays linear as the size of the application
payload increases, showing around 66 bytes overhead. This
is justified due to the mandatory added protected and un-
protected fields of the message types in the POSE protocol.
The generated packet overhead by the COSE protocol presents
the same behavior, showing around 57 bytes overhead, which
is slightly less than POSE. On the other hand, the packet
overhead of both BLE modes is residual, showing around 5
bytes overhead. However, the increasing packet overhead of
POSE is justified by the increasing security guarantees and the
added message freshness feature. Overall, the packet overhead
difference between the two protocols can be seen as the trade-
off between efficiency and protection against replay attacks.

C. CPU Usage

The CPU usage metric is used to quantify how the smart-
watch of the prover and the kiosk processor have been utilized

3https://www.wireshark.org/



TABLE III
CPU USAGE MEASUREMENTS ON THE SERIALIZATION OF MESSAGES

CPU cores
used

CPU execution
time (%)

Wall Clock
Duration (s)

CPU duration (s)

COSE 2 76.01 16.25 14.16
POSE 2 80.53 17.13 14.97

when creating and serializing/deserializing data packets. High
CPU usage may indicate that the protocol has high demands
for processing power. The experiment here is similar to the
processing time experiment, described in section VI-A. We
collected measurements of 150 messages. These messages
were generated on the wearable device (smartwatch) and read
through BLE on the kiosk device. The reading cycle period
for each message was 4 seconds, to allow for the smartwatch
to restart Bluetooth, since each interaction needs to start from
the radio activation. During this experiment, we obtained CPU
usage measurements on both constrained devices: CPU usage
of the main thread responsible for the data payload on the
smartwatch and the CPU usage on the receiving kiosk device.
We divided the evaluation into the following sections based
on the main processes of the protocol.

1) Serialization: The results obtained for the CPU usage
using the Android Profiler tool4 are shown in Table III.

The example application for the experiment ran using two
cores. The information about the frequency of the CPU cores
was not available for this kind of equipment. The CPU execu-
tion time gives us information about the percentage of time the
CPU was used to execute the scheduled job when compared
to the main thread. This means that 76.01% of the total CPU
execution time of the main thread of the application was seri-
alizing the COSE messages. Regarding this metric, the results
for both protocols were similar. The Wall Clock Duration is
the total elapsed real-time of the serialization, while the CPU
duration is the total time the serialization process consumed
CPU resources. The Wall Clock Duration includes the time the
main thread responsible for the experiment was idling. Overall,
the CPU usage of both protocols is very similar, consuming
similar resources, with close execution times. We leave for
future work a more thorough analysis of the CPU cores used
behavior.

2) Deserialization: The total waiting time of the deseri-
alization part was 10 min (4s x 150 samples); while the
total deserialization time was 21 seconds (21699 ms) for
all messages. We obtained the CPU usage during the whole
experiment using the uptime5 Linux command, with a polling
rate of 1 second. Therefore, the more meaningful and more
representative measurement is the “Last 1 Minute” one, which
can be seen in Table VI-C2.

The reference value for CPU full utilization is 4.0 since
the Raspberry Pi 4 is quad-core. The average CPU usage
values measured for the last 1 minute for both protocols are

4https://developer.android.com/studio/profile/android-profiler
5https://man7.org/linux/man-pages/man1/uptime.1.html

TABLE IV
CPU USAGE ON THE DESERIALIZATION OF THE POSE AND COSE

MESSAGES.

Load average on Deserialization (%)

Last 1 Minute Last 5 Minutes Last 15 Minutes

avg. std. avg. std. avg. std.
COSE 0.310 0.1254 0.416 0.2534 0.306 0.1753
POSE 0.463 0.4685 0.384 0.2938 0.296 0.1418

similar, justified by the overlapping confidence intervals. The
CPU utilization in both COSE and POSE (0.310 and 0.463,
respectively) is low and shows the CPU bottleneck is not a
problem for POSE, regarding constrained devices.

D. Discussion

The obtained results of the packet overhead were surprising
considering Protocol Buffer messages are more efficient and
lightweight than most data formats. Although, the 9 bytes
difference of POSE when compared to COSE is explained
by the bytes required to identify each field of the Protobuf
message. We consider a trade-off between these 9 bytes
overhead and protection against replay attacks since COSE
does not address message freshness.

Both protocols showed a low CPU usage which was ex-
pected regarding the complexity of the exchanged messages.
Although, the similarity of the results between both protocols
on both sides was surprising. Serialization and deserialization
of Protobuf messages should be much more efficient, which
leads us to think that the processing power of the CPU is much
more important rather the data format. The total time required
to process POSE messages is too high and can jeopardize the
scalability of our protocol.

VII. CONCLUSION

In this paper, we presented POSE, an application-layer
security protocol that can be used over Bluetooth Low Energy
(BLE) communications on wearables and other constrained
devices, and mitigate its security risks. It follows an approach
very similar to COSE, but replaces CBOR with the much more
popular Protobuf data-encoding format, and also adds mes-
sage freshness protection. POSE was tested with an example
application for location certification that allows users to prove
their locations and presence with their devices. The results
show the feasibility and efficiency of POSE protocol on top
of pairing-less BLE connections with similar processing times
as COSE on both serialization and deserialization and just a
small increase of packet overhead when compared to COSE.
Our results also show efficient CPU usage.

POSE shows great promise to increase the communication
security for many other mobile and IoT applications, with
wearables and other constrained devices, especially the ones
that already use Protobuf for its messages.
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