
Smart meter data processing: a showcase for simple
and efficient textual processing

Miguel Ferreira, André Neves, Rodrigo Gorjão, Carlos Cruz
Unicage Europe

Email: {miguel.ferreira, andre.neves, rodrigo.gorjao,
carlos.cruz}@unicage.com

Miguel L. Pardal
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
Email: miguel.pardal@tecnico.ulisboa.pt

Abstract—The increase in the production and collection of data
from devices is an ongoing trend due to the roll-out of more cyber-
physical applications. Smart meters, because of their importance
in power grids, are a class of such devices whose produced data
requires meticulous processing. In this paper, we use Unicage,
a data processing system based on classic Unix shell scripting,
that delivers excellent performance in a simple package. We use
this methodology to process smart meter data in XML format,
subjected to the constraints posed by a real use case. We develop a
solution that parses, validates and performs a simple aggregation
of 27 million XML files in less than 10 minutes. We present a
study of the solution as well as the benefits of its adoption.

Index Terms—Unicage, Shell scripting, Data Processing, Big
Data, Smart Meters

I. INTRODUCTION

Files are universal. Although implementations may differ,
all computational systems use files as part of their normal
operation. Text files are the simplest data container, where
one can save data in a flexible and convenient manner. Data
saved in text files can be easily moved around and directly
used by most applications. The direct use of files, without a
mediator other than the operating system, has the potential to
lower the usage of system resources and the total processing
time. However, this has to be done in a way that still manages
large amounts of data effectively.

We propose the use of the Unicage tools1 to develop a
big data system based on text files. These tools are a set
of small, simple and highly efficient programs that can be
combined in a modular way to build robust, yet flexible, data
processing pipelines. These programs cover a wide variety
of basic procedures such as string formatting, mathematical
functions, and also common operations used in relational
queries such as joins and selections. A detailed comparison of
the approach proposed by Unicage against other alternatives
can be found in [1], where a study is performed in the context
of batch and query processing of Internet of Things data.

To showcase the simple and efficient textual data processing
using Unicage, we present a smart meter use case. Smart
meters play a central role in smart grids, producing data that
is fundamental for the management of the grid itself [2]. This
data needs to be efficiently processed, not only to produce
outputs in a timely way, but also to check for possible errors or

1https://unicage.eu/

unexpected events in the grid. To achieve these requirements,
we followed the Unicage methodology to develop a system
that processes the raw data from smart meters, in an efficient
and simple way.

We structure this paper as follows: in Section II we
introduce Unicage and its methodology, along with some
background regarding smart meters and smart grids. In Sec-
tion III we present the challenges of the smart meter use
case. In Section IV we present an approach to deal with such
challenges using the Unicage tools. In Section V and VI we
characterize and evaluate the performance of the proposed
approach and assess its adequacy to a production system.
Finally, in Section VII, we present the conclusions.

II. BACKGROUND

For the majority of computer users, the fundamental data
storage abstraction is the file. Out of all the possible file
types, the simplest one is the text file. These files may contain
structured or unstructured data in a human readable form.
Moreover, having data on text files gives one the possibility of
using all the built-in operating system (OS) utilities to manip-
ulate, process and format its contents. Unix-like systems [3]
ship with a plethora of such utilities that survived the test of
time, being reliable and presenting good performance. It is in
this context that Unicage is positioned.

A. Unicage

Unicage offers additional tools geared towards performance
to cover some gaps in the toolbox of built-in OS utilities,
still following the Unix philosophy [4]. This paradigm ensures
that systems can be customized and adapted to new needs
according to the circumstances.

The “glue” that brings everything together is shell scripting.
The data processing pipelines are composed of shell scripts
that manipulate text files using a combination of Unicage tools
and built-in OS utilities. The different stages of data processing
inside a shell script are connected through pipes2, allowing
the OS to split each stage in several processes. This, in
turn, potentiates a better use of the system resources, namely,
each process can be executed in a separate processor core,
as available; also, the process context switches are aligned

2A pipe is an inter-process communication mechanism where the output of
one command is connected to the input of the next command [5].

https://unicage.eu/
Miguel
Note
@TechReport{Ferreira_2021_HPBD,
 author = {Miguel Ferreira and André Neves and Rodrigo Gorjão and Carlos Cruz and Miguel L. Pardal},
 title = {{Smart meter data processing: a showcase for simple and efficient textual processing}},
 year = {2021},
 month = {September},
 note = {Presented on Workshop on High-Performance and Reliable Big Data (HPBD)},
 school = {Instituto Superior Técnico, Unicage Europe},
}

File Data

DB Data

ETL Extracts

Source
System

Streaming

API’s

XML

</>

JSON

i

Data Parsing Constraints

XLM row 1
Column

XLM row 2 2
1

C1 C2 C3

3
5
4

6
8
7

9XLM row 3

JSON row 1
Column

JSON row 2 2
1

C1 C2 C3

3
5
4

6
8
7

9JSON row 3

!
Analytics
Tools}}

Fig. 1. Simple data parsing representation using Unicage. It is possible to
acquire data from different sources and file formats, for example XML or
JSON, and then parse it using the Unicage tools to obtain uniform and ready-
to-use data for analytic tools, databases or other software.

with the flow of the data across the pipeline. Furthermore, the
modularity of Unicage solutions allows them to be applied in
multiple situations associated with changing environments or
with data in several formats, as illustrated in Figure 1.

B. Smart Meters

In recent years, there have been efforts by several companies
and countries [6] to invest in the implementation of smart
meters for energy infrastructures. Smart grids [2], [7] are a
type of electrical power grid that allows two-way flows of
electricity and information. Smart meters [8] are devices that
record and communicate information regarding the consump-
tion of energy or other resources. Having smart meters in
place allows the grid to automatically respond to conditions
and events within it, which can lead to optimized energy
distribution. However, for this to be possible, it is crucial to
gather and disseminate data with strict time requirements [9].
This creates the need for a system that can process and manage
large amounts of data efficiently. The amount of data generated
by smart meters depends on the frequency with which readings
from the smart meters are collected. Supposing that:

• each reading file has 1kB in size;
• each smart meter makes one reading per day;
• the grid has 27 million smart meters installed;

one would have, approximately, 27GB of data produced every
day by the smart meters. However, given that the frequency
at which readings are collected tends to increase, so does the
amount of data required to be processed, as can be seen in the
projection shown in Figure 2. Therefore, if we consider the
same grid but increase the frequency to 1 reading per minute,
then each smart meter produces 1,5MB per day; this means
that, approximately, 38 TB of data are produced each day.

100 101 102 103 104 105

102

103

104

105

106

measurements per month

by
te

s
pe

rd
ay

pe
rs

m
ar

t-
m

et
er

Use case

One measurement
per minute

Fig. 2. Relation between the amount of data collected daily per smart meter
and the frequency at which the readings are sent. As the number of readings
collected increases, so does the amount of data sent daily by each smart meter.
In addition, we signal the amount of data considered in 1 reading per day (our
use case), along with the case of 1 reading per minute for each smart meter.

III. USE CASE

Company T was collecting data from smart meters3, once
per month, from a total of 27 million devices (check Figure 2).
An upgrade in the grid infrastructure allowed the company to
collect data once every day from each device, i.e., approxi-
mately 30 times more data to manipulate, organize and store.
With this increase in the amount of received data, Company T
decided it would be important to calculate daily metrics based
on the readings from the previous day. Company T also wanted
to save the data from the readings in a database on the cloud.
However, any reading that contained ambiguous data needs to
be presented to a team of experts for review before being sent
to the database. The validation step is important given that a
wide range of decisions about the grid are made based on such
data. The software solution the company had in place for the
previous data demand was not capable of delivering the output
in the required time limit for the new data volumes. Moreover,
upgrading the hardware was not an option. The decision taken
was to look for new software solutions that would process the
data as efficiently as possible using the existing hardware.

In summary: Company T wanted a fast, reliable process
that validated and processed the readings before sending them
to the cloud for archival. For the use case, we also consider
specific requirements: validate the readings based on their
“Reading Type” and process the data to obtain the sum of the
“Value” of the readings according to each “Reading Type”.

A. XML Files

The smart meters in the use case send the data in a custom
XML format. The eXtensible Markup Language [10] is a text-
based format that allows the storage of data in an hierarchical
structure. This structure is defined by tags that compose the

3This use case is based on a real challenge encountered by Unicage
engineers. For confidentiality reasons, we do not use real names, data or
infrastructure details; we present a stripped down version of the problem,
keeping only its essential characteristics.

elements of the structure. These tags are customizable and can
be described in an XML-Schema with specified data types.

There are many4 XML file standards for smart meter
readings communication. Listing 1 shows an example of the
used format. In our example, we have a set of tags that are
used to identify the device5, then we have a section that
contains the readings themselves. Each reading, under the tag
Readings, contains a timestamp, a value and a given type
of measurement, which is identified by the ReadingType.
<MeterReadings>

<MeterReading>
<Meter>

<Names>
<name>SM000999VG</name>
<NameType>

<description>This is a meter
identification number.</description>

<name>MeterID</name>
</NameType>

</Names>
</Meter>
<Readings>

<timeStamp>2021-03-08T22:22:18Z</timeStamp>
<value>17.8280</value>
<ReadingType ref

="0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0"/>
</Readings>
<Readings>

<timeStamp>2021-03-08T22:22:18Z</timeStamp>
<value>17.9735</value>
<ReadingType ref

="0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0"/>
</Readings>
<Readings>

<timeStamp>2021-03-08T22:22:18Z</timeStamp>
<value>16.3959</value>
<ReadingType ref

="0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0"/>
</Readings>

</MeterReading>
</MeterReadings>

Listing 1. Smart meter readings XML file example.

IV. APPROACH

Using the Unicage methodology, we developed 3 scripts
that, combined, solve the problem. Each script performs a well
defined task. The whole process is represented in Figure 3.
These scripts were developed to be run after all the XML files
have been received by the a dedicated machine. Once received,
the XML files are fed to the parsing script (see Section IV-A),
where the resulting data is all merged into a single tabular
file (see Listing 4). Then, the file is separated in valid and
invalid data according to the reading code (see Section IV-B);
the valid data is ready to be sent to client’s database6. The
valid data is also used to calculate the aggregated reading
values (see Section IV-C) which will be made available to a
subsequent process that will produce a report for the client. A
detailed account of each step is made in the following sections,
where we describe each script, summarizing their action and
illustrating the most important pieces of code.

4See, for instance, the “Meter Data File Format Specification NEM12 &
NEM13” from the Australian Energy Market Operator for more information

5Most standards establish a much longer and more detailed section of this
type, containing more information that characterizes the device.

6The data upload procedure is out of the scope of the current solution.

XML files

...

Parsing Validation

Aggregation

Client's Database

Data for
Report

XML files

XML files

Parsed
file

Validated
file

Fig. 3. Data-flow representation of the solution comprising 3 scripts that per-
form the steps required by the use case: parsing, validation, and aggregation.

After running the scripts, the result is a set of plain text
files with the data ready to be introduced in a database and a
file containing the aggregated data to be used in a report.

A. Parsing

In a first step, we concatenate all the XML files and
parse the resulting stream of data, separating it afterwards
using the data characteristics. We achieve this by using the
find command to identify all the XML files present in the
given directory and then, using the -exec option, apply cat
(concatenate) to all the identified files. This way, we can
overcome the limited number of arguments imposed by bash
when using the cat command.

In a second step, we pass the output of the previous
commands through a pipe – the vertical bar in the end of the
line – to Unicage’s xmldir. The xmldir command takes as
input the hierarchy of the XML file that we want to parse and
the file itself (in this case, the file is fed to xmldir through
the pipe) and outputs a parsed version of the data in tabular
form – with an example shown in Listing 3.

Then, we use a combination of Unicage’s self (from
“select field”) and delr (from “delete row”) with the awk
command [11] to prepare the data so that it can be transposed
using Unicage’s map command. Finally, we use Unicage’s
delf and delr to remove spurious data created as a side
effect of the whole process. An example of the parsed data,
ready to be validated, can be seen in Listing 4.
find $readings_dir -name "*.xml" -exec cat {} + |
xmldir /MeterReadings/MeterReading - |
self NF-1 NF |
awk ’$1 == "name" ||

$1 == "timeStamp" ||
$1 == "value" ||
$1 == "ref"’ |

delr 2 "MeterID" |
awk ’{if($1=="name")

{meter=$0;print $0}
else
{if($1 == "timeStamp")
{print meter; print $0}
else{print $0}}}’ |

awk ’{if($1 == "name"){count++};
print count, $0}’ |

map num=1 |
delf 1 |
delr 3 "0" > $parsed_dir/PARSED_FILE

Listing 2. Script containing the parsing operations.

Notice that no transformation is performed on the data. The
exact values that were received in the XML files are simply
converted to a different format, which is easier to handle.
The first column contains the ID of the meter, the second

[user@machine]$ xmldir /MeterReadings/MeterReading READINGS-SM000000001VG_20210101051308.xml
MeterReadings MeterReading Meter Names name SM000000001VG
MeterReadings MeterReading Meter Names NameType description This is a meter identification number.
MeterReadings MeterReading Meter Names NameType name MeterID
MeterReadings MeterReading Readings timeStamp 2021-01-01T05:13:08Z
MeterReadings MeterReading Readings value 7.7190
MeterReadings MeterReading Readings ReadingType ref 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0
MeterReadings MeterReading Readings timeStamp 2021-01-01T05:13:08Z
MeterReadings MeterReading Readings value 0.6193
MeterReadings MeterReading Readings ReadingType ref 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0
MeterReadings MeterReading Readings timeStamp 2021-01-01T05:13:08Z
MeterReadings MeterReading Readings value 18.1170
MeterReadings MeterReading Readings ReadingType ref 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0

Listing 3. Example of the action of the xmldir command.

SM000000689VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 2021-01-01T12:40:06Z 14.8361
SM000000689VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 2021-01-01T12:40:06Z 7.4433
SM000000689VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 2021-01-01T12:40:06Z 6.5668
SM000000145VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 2021-01-01T08:54:15Z 19.7668
SM000000145VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 2021-01-01T08:54:15Z 10.1405
SM000000145VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 2021-01-01T08:54:15Z 6.9721
SM000000453VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 2021-01-01T06:50:54Z 9.9979
SM000000453VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 2021-01-01T06:50:54Z 19.0457
SM000000453VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 2021-01-01T06:50:54Z 14.0774

Listing 4. First lines of the file produced by the parsing script.

column the code identifying the reading type, the third column
contains the timestamp and the fourth column contains the
value of the reading.

By combining all the data in a single file, we guarantee
that the overhead associated with opening and closing a large
number of files affects only the first stage of the process.
All the subsequent scripts, namely the validation and the
aggregation, will deal with a single file. Notice that these
intermediate files produced by the scripts can be deleted from
the machine once the parsed data is sent to the cloud.

B. Validation

The validation process is performed on the file generated by
the parsing script. This file is filtered according to the data in
the file READING_TYPE_CONVERTER, whose contents can
be seen in Listing 5. This file contains a mapping between the
valid reading codes and the names of the readings. This index
is given as input to cjoin1 along with the data.

Generically, Unicage’s cjoin1 command aggregates data
by index. In this case, it looks through all the data in the parsed
file and organizes it in two other files: the VALID_READINGS
file (see Listing 7), which contains all the parsed data with
a valid reading code (i.e. a code that was equal to one of
the codes in the file READING_TYPE_CONVERTER), and
the INVALID_READINGS file, which contains the readings
with an invalid reading code. The INVALID_READINGS
file is written through file descriptor 3, which is selected
using the +ng option of the cjoin1 command. The
VALID_READINGS file contains an extra column with the
name of the corresponding reading. This will be important for
the aggregation script.
0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 TYPE01
0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 TYPE02
0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 TYPE03

Listing 5. File containing a map between the reading types and their names.

C. Aggregation

The aggregation consists in a simple sum of the value of
the readings according to their type. To do it, we start by
isolating the relevant data from the ALL_VALID_READINGS
file (see Listing 7) using Unicage’s self command. This
way, we can select only the type of reading and the value,
which correspond to columns 3 and 5, respectively. Then,
using Unicage’s msort, which implements the merge sort
algorithm, we sort the data by the reading type7. This is
required since the next command in the pipeline requires the
data to be sorted.

Finally, we use Unicage’s sm2 command to sum all the
values by the reading type – the first two arguments indicate
the pivot of the sum (in this case the reading type is in
column 1) and the last two arguments indicate the values to
be summed. Listing 9 contains the result of this script.
self 3 5 $valid_dir/ALL_VALID_READINGS |
msort key=1 |
sm2 1 1 2 2 > $corrected_dir/MEASURED_VALUES_by_TYPE

Listing 8. Script containing the aggregation operations.

TYPE01 10143.4150
TYPE02 9915.1172
TYPE03 10087.8375

Listing 9. File resulting from the aggregation operation of Listing 8.

V. EVALUATION

The performance evaluation of the solution developed in
Section IV focuses on the execution time of the scripts. We
measured the execution time of each script applied to a varying
number of XML files, corresponding to smart meter readings.
The results are presented in Figure 4. All the data points in

7Using msort explicitly assures the use of merge sort, independently of
the underlying sort implementation available in the Linux distribution.

cjoin1 +ng3 key=2 ./READING_TYPE_CONVERTER $parsed_dir/PARSED_FILE > $valid_dir/ALL_VALID_READINGS
3> $tmp-ALL_INVALID_READINGS

Listing 6. Script containing the validation operations.

SM000000689VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 TYPE03 2021-01-01T12:40:06Z 14.8361
SM000000689VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 TYPE02 2021-01-01T12:40:06Z 7.4433
SM000000689VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 TYPE01 2021-01-01T12:40:06Z 6.5668
SM000000145VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 TYPE03 2021-01-01T08:54:15Z 19.7668
SM000000145VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 TYPE02 2021-01-01T08:54:15Z 10.1405
SM000000145VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 TYPE01 2021-01-01T08:54:15Z 6.9721
SM000000453VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 TYPE03 2021-01-01T06:50:54Z 9.9979
SM000000453VG 0.0.0.12.1.1.37.0.0.0.0.0.0.0.0.3.38.0 TYPE02 2021-01-01T06:50:54Z 19.0457
SM000000453VG 0.0.0.0.0.0.46.0.0.0.0.0.0.0.0.0.23.0 TYPE01 2021-01-01T06:50:54Z 14.0774
SM000000223VG 0.0.0.4.1.1.12.0.0.0.0.0.0.0.0.3.72.0 TYPE03 2021-01-01T03:08:28Z 14.4736

Listing 7. First lines of the produced by the validation script - ALL_VALID_READINGS.

the figure were calculated from a set of measurements; we
performed 40 steady-state time measurements and averaged
those values. We consider steady-state performance over start-
up performance, because the first is dominant in large enough
files, once the processes are fully instantiated and loaded.
The maximum number of files used in the measurements is
1 million. We did not perform tests with a larger number of
files because, being anchored in the use case, we were able
to build a system that was able to parse the 27 million XML
files in batches of 1 million files.

A. The hardware

On the experiments, the tests were conducted on a computer
with Intel Core i5-10210U CPU at 1.60GHz, 16 GB of RAM,
500GB SSD, running Ubuntu 18.04, Kernel version 5.4.0-77-
generic and using build 2021/01/19 of Unicage.

B. Baseline performance

Since our approach is built on the process of transforming
data saved in files, we use as baseline the performance of the
copy command (cp) 8. To characterize the performance of the
copy command, we made tests with a varying number of files.
Because of the large number of files in the tests9, we had
to use the recursive option of the copy command (cp -r)
so that, instead of copying file by file, we copied the whole
directory containing the files.

C. Processing stages performance

The results of all the tests we performed can be seen in
Figure 4. Two characteristics are clear from the plot:

• The performance of the parsing stage is the worst of all
the processing stages, which is comprehensible since it
deals with a large number of files directly;

• The performance of the copy command is worse than the
worst processing stage. This is related to the fact that,
besides reading each file one by one, the copy command
also has to allocate new places for them, one by one. The
parsing stage reads each file individually too, but then it

8https://man7.org/linux/man-pages/man1/cp.1.html
9bash imposes a limit to the number of arguments that can be passed to

a command.

100 101 102 103 104 105 106

0

5

10

15

number of files

ex
ec

ut
io

n
tim

e
(s

)

baseline (cp)
parsing

validation
aggregation

100 101 102 103 104

0

0.05

0.1

0.15

Fig. 4. Comparison between the execution time of the different parts from
our solution with the copy command (baseline)

writes the results to a single file, allowing it to avoid
the overhead of system calls associated with allocating a
large number of individual files.

VI. DISCUSSION

In the proposed solution the processing stages are executed
in sequence, so the overall performance can be judged by
combining the performance of each stage. The three processing
stages take around 12 seconds on average to complete for
a batch of 1 million files: 11 seconds for the parsing, 0.3
seconds for the validation and 0.5 seconds for the aggregation.
In this case, we process all the 27 million files in batches of
1 million. One could request the client to deliver the files in
27 directories containing 1 million files each. According to
these results, processing one directory at a time sequentially
would take approximately 6 minutes (27 times 12 seconds is
324 seconds, i.e. under 6 minutes). This way, supposing that
the data analysis process of the readings of a given day starts
at 00h00 of the following day, this means that at 00h06 the
database could start being loaded with validated values of the
27 million files and this data would be available to be included
in the report that is presented at 07h00.

https://man7.org/linux/man-pages/man1/cp.1.html

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

years

C
um

ul
at

iv
e

co
st

s
of

cl
ou

d
st

or
ag

e
($

K
)

XML files
parsed files

Fig. 5. Estimate of cumulative costs of cloud storage per year. Using the
notation of Eq. 1, α = $0.01, D = 810 for the XML files and D = 49 for
the parsed data.

A. Cloud Cost

The cost of running a complete operation on the cloud is
affected by many factors. Next, we will focus only on the data
storage.

Going back to the estimate that we mentioned in Sec-
tion II-B, if we apply it to the use case (i.e. 27 million smart
meters) we see that the amount of data generated everyday is
around 27 GB. This means that every month around 810 GB
are produced. We verified that the parsing operation to convert
to a tabular format, just by itself, allows one to reduce 94% of
the storage space necessary to hold the data. This necessary
step also has the beneficial side-effect of saving storage data,
without loss of information. This means that the data saved on
a set of XML files that needs 100 GB of space, can be stored
in 6 GB in the parsed format. Applying this logic to the use
case, this means that instead of sending 810 GB of XML files
per month to the cloud, we could send 49 GB per month in
parsed files.

Assuming there is a transfer of D GB per month to the
cloud, the total cost of the cloud storage service after m
months is given by

C(m) =
D · α ·m · (m+ 1)

2
, m ≥ 1 (1)

where α is the cost per GB per month. For instance, at a rate
of D GB per month of new stored data, the storage service
would cost, after a year, 78 ·D ·α, where the currency is given
by the value of α; using the estimate of D = 810 for XML
files, and the conservative approximation10 of α = $0.01, the
total cost after a year of service would be $631.8. For the
parsed data, D = 49, and the total cost after a year would be
$38.22. Figure 5 presents similar projection for longer periods
of time using the conservative value of α = $0.01.

10Cheaper, tape-based storage solutions exist, but data is only available with
a very large latency. In our context such solutions are not relevant.

Number of XML Files 27 million
Average Processing time 6 minutes
Storage space reduction 94%
Storage cost savings 94%

TABLE I
MAIN CHARACTERISTICS OF THE SOLUTION TO THE USE CASE.

VII. CONCLUSION

The use of Unicage solutions for specific and customized
tasks involving a large volume of data can be integrated
seamlessly with any type of infrastructure. Being modular and
versatile, such solutions can guarantee that data flows are more
fluid between the nodes of a wider architecture, be it hybrid
on-premises/cloud, cloud-only or fully on-premises.

We were able to construct a pipeline of shell scripts using
a combination of the Unicage tools and built-in OS utilities
to process large amounts of smart meter data from a real use
case, as summarized in Table I. Our approach proved to be
effective when dealing with big amounts of data, achieving a
performance higher than the baseline defined for our tests.
In addition, we show that by parsing the XML files and
converting them to tabular text files, we were also able to
considerably reduce their size, which led to a significant
savings in cloud storage.

ACKNOWLEDGMENTS

REFERENCES

[1] João MP Moreira, Helena Galhardas, and Miguel L. Pardal. Leanbench:
comparing software stacks for batch and query processing of IoT data.
Procedia computer science, 130:448–455, 2018.

[2] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid
— the new and improved power grid: A survey. IEEE Communications
Surveys Tutorials, 14(4):944–980, 2012.

[3] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system.
In Proceedings of the Fourth ACM Symposium on Operating System
Principles, SOSP ’73, page 27, New York, NY, USA, 1973. Association
for Computing Machinery.

[4] Mike Gancarz. Linux and the Unix philosophy. Digital Press, 2003.
[5] Arnold Robbins. Linux programming by example: the fundamentals.

Prentice-Hall, 2004.
[6] Edison Institute/EEI and AEIC MeterComittees. Smart meters and smart

meter systems : A metering industry perspective. A Joint Project of the
EEI and AEIC Meter Committees, page 29, 01 2011.

[7] Giordano Vincenzo, Gangale Flavia, Fulli Gianluca, S. Manuel, Pa-
paioannou Ioulia, C. Alexandru, Onyeji Ijeoma, Mengolini Anna Maria,
Ojala Tauno, Maschio Isabella, and A. Elena. Smart grid projects in
europe - lessons learned and current developments. In RC Reference
Reports, Publications Office of the European Union, 2011.

[8] Ilie Vlasa, Adrian Gligor, Cristian-Dragos Dumitru, and Laszlo Barna
Iantovics. Smart metering systems optimization for non-technical
losses reduction and consumption recording operation improvement in
electricity sector. Sensors, 20(10), 2020.

[9] Jixuan Zheng, David Wenzhong Gao, and Li Lin. Smart meters in
smart grid: An overview. In 2013 IEEE Green Technologies Conference
(GreenTech), pages 57–64, 2013.

[10] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler,
François Yergeau, and John Cowan. Extensible markup language (xml)
1.0, 2000.

[11] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. The AWK
programming language. Addison-Wesley Longman Publishing Co., Inc.,
1987.

	Introduction
	Background
	Unicage
	Smart Meters

	Use case
	XML Files

	Approach
	Parsing
	Validation
	Aggregation

	Evaluation
	The hardware
	Baseline performance
	Processing stages performance

	Discussion
	Cloud Cost

	Conclusion
	References

