
SPYKE: Security ProxY with Knowledge-based
intrusion prEvention

Sheng Wang[0000−0002−5821−0188], Rui Claro[0000−0003−0176−2720], and
Miguel L. Pardal[0000−0003−2872−7300]

Instituto Superior Técnico, Universidade de Lisboa, Portugal
{sheng.wang,rui.claro,miguel.pardal}@tecnico.ulisboa.pt

Abstract. In the near future, the Internet of Things (IoT) will be a
reality and there will be many sensors in our smart homes. These data
sources will eventually upload data to the cloud. In this work we present
SPYKE, a network intermediary that stands between IoT devices and
the Internet, that provides visibility to which communications are tak-
ing place between devices and remote servers; and it also has the ability
block and limit connections. We evaluated SPYKE with respect to the
performance and security. It has low performance overhead and is effec-
tive against a set of important attacks. SPYKE is available as an open-
source project and is deployable in inexpensive, off-the-shelf hardware
like the Raspberry Pi.

Keywords: Intrusion Prevention System · Internet of Things · Spyware.

1 Introduction

In line with the Internet of Things (IoT) trend, many consumers are transforming
their homes into smart homes. As a consequence, data from sensors situated into
devices are increasing in numbers. These devices are connected to the Internet,
so these data are usually sent to remote cloud servers for data mining purposes.

Companies have been proposing different smart home systems, namely: Ama-
zon Echo, Google Home, among others. These systems use a hub as an interme-
diary device to control the smart home and provide a good user experience.
However, there are significant weaknesses that can be used to expose private
data. For example, a recent report1 has shown that the Amazon Echo can be
infected after the user activates a malicious skill2, effectively becoming a spy
device, that sends voice recordings to an attacker.

Data leakage is very difficult to avoid, but it is possible to monitor commu-
nications through an intermediary, who can inform the user of the communica-
tions that are happening. In this paper we propose SPYKE – Security ProxY
with Knowledge-based intrusion prEvention – an intermediate network device

1 https://www.wired.com/story/amazon-echo-alexa-skill-spying/ accessed on May 16,
2018

2 A skill is an application that can extend Amazon Alexa.

2 S. Wang et al.

between the user devices and the cloud service providers. We implemented and
evaluated the solution to show that it can handle a large number of device’s
rules, that it enforces limitations on outgoing packets, with no significant degra-
dation in performance. In addition, we assessed the network security by testing
the system with a set of well-known attacks described by authors of [4].

Attacker model

For a smart home device to upload data to the Internet through SPYKE, it has
to possess a valid password and the explicit user permission. An attacker may
exploit this feature by having a valid password and the device’s MAC address.
In this model, we consider the following capabilities to model different types of
attackers:

A1 Record any Ethernet frames on the air.
A2 Inject Ethernet frames with a given source and destination MAC addresses.

Capability A1 can be acquired by an attacker by snooping anywhere near SPYKE
using a network interface with the monitor mode ability. A1 can be acquired
by using a network interface with the packet injection ability. By having the
capability to record and inject Ethernet frames, the attacker may perform several
attacks:

B1 Disconnect the legitimate devices.
B2 Discover the network password.
B3 Spoof the legitimate device.

Capability B1 is acquirable by having the MAC addresses of legitimate devices
and of SPYKE. B2 is very hard to acquire due to the fact that it needs to perform
password guessing. Having the legitimate device’s MAC address and the valid
password, the attacker gains the B3.

Objectives

The goal was to build a prototype SPYKE, a trusted intermediary located in a
private network. The objectives stated were to be able: to monitor communica-
tions between every single device in the network and the Internet; to limit the
total transfer and the bandwidth; and to block devices that are sending data to
suspicious domains or IP addresses.

2 Background

In this section we present the smart home environment by referring devices,
hubs, security monitors, and attacks.

A smart environment is the result of the composition of a set of smart devices.
These smart devices are usually connected to each other to allow a better user

SPYKE: Security ProxY with Knowledge-based intrusion prEvention 3

experience. For the purpose of collecting data from smart devices and controlling
them, there are smart hubs like the Amazon Echo3. The authors of [6] present the
ecosystem of Amazon Alexa. It consists of a Virtual Personal Assistant (VPA)
which relies on the voice channel to communicate with users, and each device
communicates with the hub which remains in constant communication with the
server cloud. Kumar et al. [5] and Zhang et al. [7] highlight the security risks of
Amazon Echo for using voice-controlled third-party skills.

Aside from smart hubs, security monitors control the network traffic. Davies
et al. [2] presented an example of security monitor, the Privacy Mediator situated
in a Cloudlet which is a small data center located between the Internet and
devices and it is within the trust domain of the end user. It can be installed on
a high-end WiFi access point or can be physically installed in homes, schools
or small business. The raw information, obtained by devices, is converted and
then aggregated and obfuscated by Privacy Mediator before sending it to the
Internet. Moreover, the authors mentioned that the information flow is very
important for the user and also the remote server, so having a good set of
data redaction and privacy policy enforcement is needed. Privacy Mediator also
has user policies to configure which devices have access to the Internet. More
examples of security monitors are: Pi-Hole4, IoT Inspector5, Fingbox 6, Google
WiFi7, and Bitdefender BOX 2 8: Table 1 compares the mentioned systems with
SPYKE that we are proposing.

Regarding the authentication, Google WiFi, Bitdefender Box and SPYKE
provide authentication by WiFi using the password protocol WPA2 (WiFi Pro-
tected Access). Other systems’ authentication is granted with an existing router,
i.e., any device that is connected to the router, can connect to them. In case of
Pi-Hole, devices need to know its IP address and set it as DNS server so it be
used as the intermediary. Except for Pi-Hole and IoT Inspector, all systems can
be defined by the user policy regarding the Internet access for each device. Re-
garding Network Intrusion Detection, Fingbox and Bitdefender Box notify the
user the malicious devices. Finally, Pi-Hole and Bitdefender Box perform filtering
due to the ability of blocking traffics that contain advertisement content.

Nowadays, the majority of network communications have encryption applied
to provide confidentiality and integrity to the traffic content. However, Apthorpe
et al. [1] showed how encrypted data is vulnerable due to the metadata of the
traffic. They referred several attacks, namely side-channel attack, analyse the
traffic peaks that may show an activity is being made, and fingerprinting at-
tack, analyse the medatada of the traffic sensitive information, which can be
performed by third-parties, e.g., ISP (Internet Service Providers). To mitigate,

3 https://developer.amazon.com/alexa accessed on April 13, 2018
4 https://pi-hole.net/ accessed on April 8, 2019
5 https://iot-inspector.princeton.edu/ accessed on May 4, 2019
6 https://www.fing.com/products/fingbox# info accessed on April 13, 2019
7 https://support.google.com/wifi/answer/7168315?hl=en accessed on April 8, 2019
8 https://download.bitdefender.com/resources/media/materials/box/v2/user guide/

BOX UserGuide v2 en .pdf accessed on April 8, 2019

4 S. Wang et al.

Table 1. Comparison of Smart Home Monitors

Pi-Hole
IoT

Inspector
Fingbox

Google
WiFi

Bitdefender
Box 2

SPYKE

Authentication N N N Y Y Y
User policy N N Y Y Y Y
Network Intrusion Detection N N Y N Y N*
Filtering Y N N N Y N*
Open-Source Y Y N N N Y

they presented traffic shaping where the traffic is modified to have a constant
traffic rate to camouflage the characteristic traffic spikes.

Besides attacks from the third-parties, it is also possible to perform attacks to
the private network. The authors of [3] presented a brute force attack to get the
network password with WPA2 protocol used. The idea is to keep watching traffic
from the air, meanwhile, send some deauthentication frame to an authenticated
device. Then, the device will try to reauthenticate to the access point which
makes possible to the attacker to obtain the WPA password handshake traffic.
Finally, having the password handshake traffic, it is possible to perform a brute
force attack to determine the network password. The easier way to mitigate this
attack is to use a difficult password and change the password often.

3 Prototype

The SPYKE prototype system requires password authentication to accept the
connection of new devices to the network. User intervention is required to grant
this access, usually by providing the WPA2 password. In addition, the prototype
system provides a level of control on the uploading of packets, i.e., it controls
the quantities of packets that can be uploaded. SPYKE also presents to the user
all the destinations where devices have uploaded data.

Architecture

Regarding the system architecture, represented in Fig. 1, it is subdivided into two
modules: authentication, where devices authenticate with the gateway in order
to make requests; and user policy enforcement that SPYKE uses for providing
privacy protection.
Authentication A device needs to authenticate itself to prove that it belongs
to the home network. The SPYKE gateway performs the wireless authentication
using WPA2 as the password authentication protocol. This means that a device
can authenticate itself by showing it knows the WiFi password. However, know-
ing the password of a home network can be an easy task for an attacker, either
because the gateway is using a default password, or because the user simply
shared the WiFi password. So the device permission to access the Internet is
not only controlled by knowledge of the password, but also the explicit user’s

SPYKE: Security ProxY with Knowledge-based intrusion prEvention 5

InternetSPYKE

Cloud
Devices

Authentication

Data processing

Home

User

Analysis
User policy

enforcement

Data flow

wlan0 eth0

Fig. 1. SPYKE proposed architecture

approval on the user interface, i.e., whitelist access policy. To distinguish all con-
nected devices, the gateway uses Dynamic Host Configuration Protocol (DHCP)
server to assign a different IP address as identity to each authenticated device.
The IP address assignment is based on the unique MAC address provided by
devices.
Data Processing: After the authentication is established, and the permission
granted by the user, data that is uploaded and downloaded by a device passes
through the gateway. This data processing is represented into two processes:
Analysis and User policy. Data is analyzed at the first step by understanding
the packet metadata, e.g., the sender and receiver IP addresses and content size.
Then, the user has access to see connected devices, and destination IP addresses
of connections made by each device. The proposed system allows the user to
check how much data has passed and how much had been dropped. Regarding
the user policy, the user may define which device has the access to the Internet,
how many data the device can upload, and the available bandwidth. After the
data analysis, the proposed system compares data with the user defined policies.
It drops packets that came from unknown devices and ones that are previously
blocked by the user. In addition, it also drops traffic that exceeded the maximum
transfer quota and bandwidth defined by the user.

Once a device is authenticated to the gateway, its information like unique
MAC address, assigned IP address, and hostname is recorded and presented in
the user interface. If the user approves the device, the gateway starts to give
the device access to the Internet. After that, it starts recording the packet’s
destination IP address and total packets have been sent within a period of time.

Fig. 2. shows the lifecycle of a device in SPYKE. When a new device is
detected by the system, its status becomes “NEW” and the information is stored
in the database. Then the user may allow or block the device. When the device’s

6 S. Wang et al.

status is changed to “ALLOWED”: first, the information is updated to the
database; a period is created; and iptables’ rules are created and added to
iptables. Furthermore, it occurs two following cases: the user may change the
device’s maximum bandwidth, maximum transfer quota, or period, hence the
device is updated, information is stored in the database and the iptables’ rules
are updated; and whenever the end of periods is achieved, iptables’ registers
are extracted and stored in the database along with the period.

BLOCKED ALLOWED

NEW

UI - Change status to Blocked
1 - update device on database

UI - Change status to Blocked
1 - remove period and rules from iptables
2 - update device on database

UI - Change status to Allowed
1 - create new period and rule to iptables
2 - update device on database

EoP:
1 - read registers from iptables
2 - store registers to database
3 - renew period and rule to iptables
UI - Change quota
1 - renew period and rule to iptables
2 - update device on database

UI - Change status to Allowed
1 - create new period and rule to iptables
2 - update device on database

Legend:
UI: User Interface
EoP: End of Period
(): State
->: State transition

Start

new device detected

Fig. 2. State machine for a device managed by SPYKE

Fig. 3. represents the data flow of the entire system. First, devices authen-
ticate themselves and obtain an IP address from DHCP server provided by
dnsmasq9. The engine stores the device information in the database and waits for
the user’s approval. After the user’s approval, the engine adds rules on iptables

allowing the access of the device to the Internet, and adds the defined period
to the In-Memory data storage that relies on main memory of computer data
storage.

Implementation

The proposed system was implemented on a Raspberry Pi 3b+10 with Raspbian
Stretch Lite as the Operating System. It provides a network interface card with

9 http://www.thekelleys.org.uk/dnsmasq/doc.html accessed on April 8, 2019
10 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ accessed on

April 8, 2019

SPYKE: Security ProxY with Knowledge-based intrusion prEvention 7

Home

User

Spyke

Dnsmasq
(DHCP)

Iptables
(Firewall) Internet

Smart
Devices

wlan eth

SQLite

User
Interface

device
bytes allowed
bytes dropped

device
period

Engine

devices
periods

device

iptables rules

In-
Memory period

period

devices
periods

Fig. 3. Data Flow during SPYKE operation

protocols IEEE 802.11.b/g/n/ac WLAN (wlan0) and a network interface via
cable with Gigabit Ethernet (eth0) up to 300 Mbps. Despite being implemented
into a Raspberry Pi, it can be implemented in any off-the-shelf hardware that
has two network interfaces, one for proving network to the devices and one other
to provide the Internet access.

4 Evaluation

The SPYKE prototype was evaluated in regard to performance and security.
First, we measured the baseline performance without running SPYKE. The ex-
periment measured using iPerf11 with an interval of 200 seconds.

To quantify the random errors in measurements, the program runs were re-
peated several times. At least 30 runs, so that calculation can assume a normal
distribution of the samples, according to the Central Limit Theorem12.

4.1 Performance experiments

The same environment and structure were used to measure and evaluate the
SPYKE overhead in comparison with the baseline. The gateway maintains good
performance whether SPYKE is running or not. In tables 2 and 3, respectively,
we see that with 1 device, SPYKE transferred more data and has larger band-
width than the baseline without firewall. We believe that this difference exists be-

11 https://iperf.fr/ accessed on April 13, 2019
12 Only changes in values greater than the error margin can be considered statistically

relevant and not the effect of random errors

8 S. Wang et al.

cause SPYKE blocks connections by default, so it increases performance slightly
by forwarding only the allowed connections.

By increasing the number of iptables rules, i.e. 10 000 devices, it started
dropping the performance. Nevertheless, for a smart home environment, SPYKE
is capable to handle a very large number of devices.

Table 2. Average total transfer results for the performance experiments. Thirty runs
were performed for each experiment.

Total
Transfer (MB)

Minimum Total
Transfer (MB)

Maximum Total
Transfer (MB)

Normal 1010 1001 (-09) 1016 (+06)
1 device 1045 1020 (-25) 1064 (+19)

100 devices 1020 1002 (-18) 1024 (+04)
1 000 devices 1023 1022 (-01) 1024 (+01)

10 000 devices 980 968 (-12) 993 (+13)

Table 3. Average bandwidth results for the performance experiments. Thirty runs
were performed for each experiment.

Bandwidth
(MBps)

Minimum
Bandwidth (MBps)

Maximum
Bandwidth (MBps)

Normal 5.050 5.000 (-0.050) 5.080 (+0.030)
1 device 5.230 5.100 (-0.130) 5.320 (+0.090)

100 devices 5.100 5.010 (-0.090) 5.120 (+0.020)
1 000 devices 5.115 5.110 (-0.005) 5.120 (+0.005)

10 000 devices 4.900 4.840 (-0.060) 4.960 (+0.060)

One of the important features of SPYKE is blocking upload traffic from
unknown devices by default, and allowing the user to set limits on the usage for
known devices. After the performance evaluations, rules were enforced to limit
the bandwidth as well as quota for a defined period of time for all upload data.
Then, several experiments were performed on the Amazon Echo Dot 3 with 200
KB as the quota during 5 minutes and no limitation on bandwidth. During this
period of time, we asked about the current weather and time to upload data.
Fig. 4. shows the experience for 969 seconds, which is more than 16 minutes,
this covers four periods. The 200 KB limit over 4 periods was enforced and a
total 797 KB of data was transferred as expected.

About the bandwidth, a similar experiment was performed. However, the
bandwidth was set to 10 KBps, a period of 5 minutes and no quota limitation.
Fig. 5. represents the result for 600 seconds (10 minutes). Even when the band-
width is set to 10 KBps, it almost achieved 20 KBps due to the packet burst.

SPYKE: Security ProxY with Knowledge-based intrusion prEvention 9

Fig. 4. Results for Amazon Echo with limited upload quota

Discussion The performance experiments showed that the prototype overhead
is very small, a large number of device rules are supported, and we verified the
operation with two commercial devices. Furthermore, the user may be aware of
a possible malfunctioning device, which behaves strangely and uploads data to
undesired destination and able to block it. Additionally, the rule enforcement
works as expected.

4.2 Security assessment

We evaluated the effectiveness of the SPYKE prototype against well-known
attacks. The assessment started with a list of availability attacks compilated
by [4]. For this purpose, a Raspberry Pi was used with the aircrack-ng13

tool installed.In addition, we used an external network interface, Alfa network
AWUS036NHA14 which provides Monitor Mode and Packet Injection. Then, the
following attacks were performed:

Deauthentication and Disassociation attacks have the goal of ending
a connection established between a device and an access point. We activated
the external interface with the monitor mode and used airodump-ng to capture
all the reachable traffic in the air. Then, we performed the attack by injecting
deauthentication frame using aireplay-ng with the SPYKE and device’s MAC
addresses, then the device lost the connection. Furthermore, we performed the
Deauthentication Broadcast attack, that sends an unlimited number of deau-
thentication frames to make SPYKE busy and ignoring other devices. However,

13 https://www.aircrack-ng.org/ accessed on April 12, 2019
14 https://www.alfa.net.my/webshaper/store/viewProd.asp?pkProductItem=15

accessed on April 12, 2019

10 S. Wang et al.

Fig. 5. Results for Amazon Echo with limited upload bandwidth

other devices with status “ALLOWED” did not lose the connection. For this
reason, the attack is not completely effective against SPYKE.

Authentication Request Flooding attack is performed to slowdown, or
even freeze an access point. We used the mdk315 tool to perform fake authen-
tication request. We specified the MAC address of SPYKE and performed the
attack. This attack was not effective due to the rules that limit 10 packets per
second on the UDP connection on the ports 67 and 68. For this reason, we
considered SPYKE is able to protect against this attack.

Dictionary attack is performed to find out the password of an access point.
First, we run airodump-ng to capture the packets. Then we deauthenticated
a connected device. Once the device is disconnected, it will try to reconnect.
Meanwhile, airodump-ng is running and capturing packets that contains hand-
shake packets. Finally, we used aircrack-ng with lists of password as input to
the handshake packets. If the list contains the correct password the attack is
successed. There are several ways of preventing this attack, e.g., use a strong
password, which is difficult to be guessed. SPYKE is effective against this attack
if the WiFi password is well defined.

Spoofing attack is performed to fool an access point by disguising as a legit-
imate device. We used macchanger to change the MAC address to the legitimate
device. After that, we connected to SPYKE with the valid password. Then, we
grant the same permission as the legitimate device. Nevertheless, the connection
is not stable due to two devices trying to connect SPYKE with the same identity.
However, we were not able to send as many data as we wanted due to the rule
enforcement. Furthermore, the user is notified of the destination where devices
are connected to through the user interface. Then, the user can block the device.

15 https://tools.kali.org/wireless-attacks/mdk3 accessed on April 13, 2019

SPYKE: Security ProxY with Knowledge-based intrusion prEvention 11

Discussion Regarding the effectiveness against the attacks, SPYKE is able to
defend against some DoS attacks.SPYKE cannot protect against the brute force
attack on the password. However, even if an attacker accesses the home network,
he has no access to the Internet. An attacker may falsify his identity by using
the MAC address of a legitimate device, and uploads data to the Internet. In
this case, SPYKE cannot block it immediately, but it will eventually block it
when it overcomes the maximum quota allowed defined by the user. In addition,
the user can be informed by the user interface that the device is uploading
data to unknown IP address, and block it. Table 4 shows availability attacks
[4] that is within the SPYKE coverage. The majority of attacks are performed
in the data link layer, with the goal to compromise the device connectivity.
This means that attacks which are not covered by the proposed system are
focused on disconnecting devices. The SPYKE prototype covered attacks that
have the intention to freeze or slowdown, such as Deauthentication Broadcast,
Disassociation Broadcast and Authentication Request Flooding.

Table 4. SPYKE availability attacks coverage

Attack Covered by SPYKE

Deauthentication ×
Disassociation ×
Deauthentication Broadcast –
Disassociation Broadcast –

Block ACK Flood ×
Authentication Request Flooding
Fake Power Saving ×
Clear To Send Flooding ×
Request To Send Flooding ×
Beacon Flooding ×
Probe Request Flooding ×
Probe Response Flooding ×

5 Conclusions

SPYKE was designed to be located in a private network between devices and
the Internet and provide visibility of communications. Additionally, SPYKE has
the ability to enforce rules to block and limit connections. Furthermore, it is
available as an open-source project and deployable in an inexpensive off-the-
shelf hardware such as Raspberry Pi.

We evaluated the SPYKE prototype. The results showed good performance
and effective rule enforcement. The prototype was able to handle connections
even when adding 10 000 devices rules to the system. Beyond that, it was tested
with commercial devices like Amazon Echo and TP Link Smart Electrical Plug.
The rule enforcement is applicable to all connected devices. We also did a security

12 S. Wang et al.

assessment covering a set of availability attacks [4] and SPYKE was able to
prevent a set of relevant DoS and Spoofing attacks.

In regard to future work, we propose the following:
Traffic Shaping The side-channel attack compromises the user’s privacy,

because an attacker may figure out which routine the user has by analyzing the
traffic spikes. Traffic Shaping [1] can be used to produce a constant traffic rate
and camouflage traffic spikes.

Intrusion Detection System SPYKE should perform packet content anal-
ysis and detect if the device’s end-point is a threat. For example, detect a smart
plug that is uploading audio or video, that is is not suppose to be able to do. This
module can be implemented by using an existing open source IDS like Snort,
Suricata or Zeek. In addition, the detection should go beyond knowledge-based
rules that detect known attacks, and add Machine-Learning-based techniques,
to detect anomalies that may be unknown attacks.

Acknowledgements

This work was supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference UID/CEC/50021/2019 (INESC-ID) and
through project with reference PTDC/CCI-COM/31440/2017 (SureThing).

References

1. Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., Feamster, N.: Spying
on the smart home: Privacy attacks and defenses on encrypted iot traffic. CoRR
abs/1708.05044 (2017), http://arxiv.org/abs/1708.05044

2. Davies, N., Taft, N., Satyanarayanan, M., Clinch, S., Amos, B.: Privacy medi-
ators: Helping iot cross the chasm. In: Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications. pp. 39–44. HotMobile
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2873587.2873600,
http://doi.acm.org/10.1145/2873587.2873600

3. Hafiz, M.M., Mohd Ali, F.H.: Profiling and mitigating brute force attack in home
wireless lan. In: 2014 International Conference on Computational Science and Tech-
nology (ICCST). pp. 1–6 (Aug 2014). https://doi.org/10.1109/ICCST.2014.7045190

4. Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S.: Intrusion detection in 802.11
networks: Empirical evaluation of threats and a public dataset. IEEE Communica-
tions Surveys Tutorials 18(1), 184–208 (Firstquarter 2016)

5. Kumar, D., Paccagnella, R., Murley, P., Hennenfent, E., Mason, J., Bates, A., Bailey,
M.: Skill squatting attacks on amazon alexa. In: 27th USENIX Security Symposium
(USENIX Security 18). pp. 33–47. USENIX Association, Baltimore, MD (2018),
https://www.usenix.org/conference/usenixsecurity18/presentation/kumar

6. Sturgess, J., Nurse, J.R.C., Zhao, J.: A capability-oriented approach to assessing
privacy risk in smart home ecosystems. In: Living in the Internet of Things: Cyber-
security of the IoT Conference. IET (2018)

7. Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., Qian, F.: Understanding and
Mitigating the Security Risks of Voice-Controlled Third-Party Skills on Amazon
Alexa and Google Home. ArXiv e-prints (May 2018)

