
IoT Neighborhood Watch: device monitoring for
anomaly detection

Pedro E. Carmo[0000−0003−4100−2662] and Miguel L. Pardal[0000−0003−2872−7300]

Instituto Superior Técnico, Universidade de Lisboa, Portugal
{pedro.carmo,miguel.pardal}@tecnico.ulisboa.pt

Abstract. Recent developments in wireless device technology allow sim-
ple everyday objects, like plugs and locks, to become sensors/actuators
connected to the Internet. These smart things can make environments
aware of user needs and be used to improve accessibility and efficiency.
However, these devices can also fall prey to cyber-attacks and compro-
mise privacy in personal environments such as our home.
We propose IoT Neighborhood Watch, an attack detection system, hosted
on devices that are part of the environment which are able to keep watch
over their neighbor devices. Each device can sniff packets in the network
and perform feature extraction, from data gathered both at packet and
flow levels, along with device states and user presence detection. All
these value can be used to build behavior patterns, which are then used
to detect any deviations that may be cause for alarm. The proposed
system is currently under development in a test-bed containing a diverse
set of devices, with Wi-Fi and Zigbee connectivity.

Keywords: Wireless Security · Internet-of-things · Network Monitoring
· Anomaly Detection.

1 Introduction

Physical devices can be used to collect, process and act on data. This Internet
of Things (IoT) has been expanding across multiple domains, as it can improve
efficiency in a wide variety of applications [1][7][9]. The consumer electronics
market alone has many offerings, including smart light-bulbs, plugs and home
appliances. Most devices communicate using the already available Wi-Fi net-
work. Other devices are power-constrained and use low power communication
protocols, like Zigbee, which overcomes reduced communication range using a
mesh architecture (device-to-device). Zigbee devices connect to a Hub, which
can operate as a bridge between both networks. This combination of network-
ing technologies gives the user more flexibility and devices with reduced energy
consumption can be installed seamlessly.

Technology companies have been prioritizing time-to-market and production
costs over good security practices [2]. For example, vulnerabilities in IP cameras
allow attackers to penetrate the home network and expose credentials [6]. Some
Zigbee devices are vulnerable to both passive and active attacks, allowing attack-
ers to reset them to factory state, decipher their communications or even inject



2 P. Carmo and M. Pardal

commands [5]. Furthermore, recent events have shown that targeted attacks are
not the only concern. Attackers have also devised malware to capture devices
and use them as part of botnets (e.g. Mirai [3]) that can then be used to launch
massive distributed denial-of-service (DDoS) attacks and other exploits [6].

To mitigate such threats, users should be informed about the behavior of their
devices. The Princeton IoT Inspector1, is a free tool that can analyze device be-
havior through a graphical user interface. The monitoring can be automated, as
shown by Kitsune [4], an online network intrusion detection system (IDS) among
others. Kitsune is able to extract contextual features from network traffic as it
happens and report anomalies. Despite the detection, the tool report still lacks
important insight about the anomaly itself, e.g., what is causing the anomaly?

The problem we address in this paper is twofold: (1) to provide a near real-
time detection of anomalous device interactions and (2) to improve the system
detection reliability with contextual knowledge of each device state.

The first (1) can be obtained by using two one-class classifier neural net-
works, called autoencoders. Each of the classifiers is statistically modeled after
one device’s traffic behavior and then used to test whether there is any deviation
from its model. The latter (2) uses contextual data from each device to perceive
relevant facts, for example, if a user at home or not. With this information,
the detection system can adapt its sensitiveness to different expectations about
device behaviors.

2 Smart Home Testbed

We defined a smart home testbed to develop and evaluate our system, IoT Neigh-
borhood Watch. The selected commercial devices have Wi-Fi or Zigbee connectiv-
ity. The Wi-Fi devices are: a Linksys WRT543G home router; a Raspberry
Pi running Home Assistant2 as a Hub, since it is open-source and provides
interconnection between both networks and the user; an Android-based IP
Camera due to their role on botnet attacks and their critical security issues;
a TP-Link Smart Plug that can be used to turn on or shut down connected
appliances; a Smartphone to provide interface between the smart home Hub
and the user. The Zigbee devices are: Phillips Hue Light and Dimmer for
the lighting system; a Trust Motion Sensor to automate lighting control and
for surveillance; a Temperature/Humidity Sensor. In both networks, brands
were decided according to their wide availability in the consumer market. The
system is depicted in Figure 1.

2.1 Attacker Model

IoT Neighborhood Watch is intended to protect smart home owners against
potential harmful actions from outsiders. Therefore, an attacker needs to access

1 https://iot-inspector.princeton.edu/
2 https://www.home-assistant.io/



IoT Neighborhood Watch: device monitoring for anomaly detection 3

Fig. 1: Devices integrated in a smart home with a Zigbee and a Wi-Fi network.

the LAN (Local Area Network) or the device-specific cloud services, which re-
quire the user credentials for access. In this model, we only consider the situation
where an attacker is able to penetrate the LAN and compromises a previously
trusted device. We do not intend to detect specific penetration strategies, rather
we focus on detecting malicious interactions between devices.

In the attacker model, We consider the following remote capabilities: (A1)
access the state information of the compromised device; (A2) record every packet
between a given source and destination and replay them; (A3) send packets to
any address; (A4) access the smart home hub.

Capability A1 can be acquired as soon as the device is compromised. If
the device is compromised at a system level, capability A2 can be obtained by
performing ARP spoofing[8], making the device act as a gateway. Capability A3
is acquired by accessing the network interface, to forge packets and send them to
devices that do not require local network authentication. Capability A4 assumes
the attacker is able to connect using Secure Shell (SSH) service, having access
to the Hub configuration file that contains credentials in plain text. These will,
in turn, enable the attacker to connect to the IP Camera without the need to
sign in the Hub web service.

3 IoT Neighborhood Watch

The proposed system is an online Network Intrusion Detection System (NIDS),
designed to passively monitor the behavior of different IoT devices and detect
anomalous device behavior. It uses machine learning to model behavior in a
learning phase, which takes extracted features, considers them normal behavior
and adapts the behavior model to them. On the detection phase it collects the
current features and computes the deviation between them and the built behav-
ior model. The system is presented in Figure 2, where PC stands for Packet



4 P. Carmo and M. Pardal

Capturer, FE for Feature Extractor, PP for Preprocessor, AD for Anomaly
Detector and PD for Presence Detector.

Statistical
Analysis

R
M
SE R

M
SE

Statistical
Analysis

R
M
SE R

M
SE

Device d1

Device dM

...

PD

vnetwork

vflows

r

PPPC

FE

Ticking
Job

Wi-Fi
Interface

v

AD

Fig. 2: Architecture of the system.

The AS component )not shown in the figure) is performed by using the
arpspoof 3 tool, and the PC uses scapy4 as an external library. Both AS and PC
run on background, with PC calling FE at each packet. The FE only extracts
the features when a ticking thread, with a given time period, signals PC. This
makes the feature extraction periodical. After extraction, the features are sent
to the PP module, which then provides the scaled features to the AD module.
The PD module, provides the indication of whether a user at home or not.

3.1 Monitoring and Learning

Our work monitors devices through their traffic in the network. The analysis is
made for each packet, where base features are extracted in order to compute
two different sets of features: network and flow. Network features are extracted
from the transmission unit frame of each collected packet. Flow features are
extracted from TCP and UDP packets, since these are typically used to handle
data communication between devices in the Internet.

As features are aggregated in each time window, we construct an instance
collection v = {vnetwork, vflows} for each time window, where vnetwork is a vector
of size M (number of devices), with each value of the vector being the network
features for a device m and the vflows a matrix of size MxJ , where J stands for
the number of detected flows in a collection v.

The extracted network features are: the MAC address of the device that
generated the frame, the Ethernet Type5 which identifies the network layer

3 https://su2.info/doc/arpspoof.php
4 https://scapy.readthedocs.io/en/latest/
5 Only ARP, IPv4 and IPv6 ethernet types are considered.



IoT Neighborhood Watch: device monitoring for anomaly detection 5

protocol; the corresponding Packet Count for that type; and the Flow Count
at each time window. Each device is identified by its MAC address.

We identify each flow with a 5-tuple hashed key: {IPv4 source address, IPv4
source port, IPv4 destination address, IPv4 destination port, IPv4 protocol
code}. All these fields are directly extracted from TCP and UDP packets with
no required processing. The features for each flow require processing, as they
result from a contextual analysis. Therefore, we extract: the flow duration in
milliseconds; the packet count; the total octets count in both directions; the
TCP synchronize flags count; the TCP reset flags count; and the aver-
age time between two packets in the flow. All these features are extracted
from both incoming and outgoing packets.

The instance collection is then sent to the PP module, where each feature
x is scaled to a value s ∈ [0, 1] ⊂ R using the maximum value (xmax) found to
define the range in which x operates. If a larger value is found, xmax is updated.
The minimum value xmin is considered to be 0. The scaling function f is:

f(x) =
x− xmin

xmax − xmin
(1)

After scaling, the scaled network features snewtork and the scaled flow fea-
tures sflows are introduced in the AD component, which has one one-class clas-
sifier, named Autoencoder, for each set of features. An Autoencoder works as
an Artificial Neural Network (ANN), composed by multiple layers of neurons,
where each neuron in a layer is connected to all neurons in the forward layer
through connections called synapses. Each synapse has an associated weight and
defines the concepts learned by the model. For a more extensive background on
Autoencoders, please refer to [4]. The purpose of an Autoencoder is to model
the relations between each inserted feature in the input layer, by adapting the
network weights to the function that minimizes the difference between the input
features and the output result. This is referred to as the learning phase, where
each Autoencoder tries to reproduce the introduced scaled feature vector in the
output of each one. To calculate the error we use the root mean squared error
(RMSE) defined in 2, where x is the input feature vector and x′ its output.

RMSE(x, x′) =

√∑n
i=1(xi − x′i)

2

n
(2)

The learning phase computes multiple feature instances and the mean RMSE
for each feature after reducing the error. It also gathers the RMSE deviation
in this period. Both are obtained for each Autoencoder. Finally, a Gaussian
distribution is built for each Autoencoder.

3.2 Detection

After running the training phase, we have a statistical model of the expected
values for the RMSE of each Autoencoder. At this point, when in the detection
phase, the system performs the same monitoring operation. The difference is in



6 P. Carmo and M. Pardal

the Autoencoders, where the RMSE is calculated for each feature instance, but
the error is not minimized for that instance. Instead, the computed RMSE is
inserted in the statistical model and gets the probability of each network and
flow instance being normal, for each device. The smaller the probability, the
larger the deviation is expected to be. As different contexts require different
thresholds, we use the PD module to indicate whether there is someone inside
the home or not, and choose corresponding thresholds. We typically want more
sensitiveness when the user is away from home.

4 Experimental Results

We measured the delay between the feature extraction and the outcome compu-
tation. For this experiment, only two devices were in the network, one being the
monitor device itself (5c:e0:c5:31:84:72 ). By analyzing Figure 3, we can see that
both devices can reach to significant delays (close to 20 seconds) when using a
time window of 1 second. As the number of devices increases, the response time
is expected to achieve larger delays, since there will be more packets to analyze
and more devices to train and detect.

0 100 200 300 400 500
Time (seconds)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
la

y 
(s

ec
on

ds
)

9c:97:26:24:79:aa
5c:e0:c5:31:84:72

(a)

0 100 200 300 400 500
Time (seconds)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
la

y 
(s

ec
on

ds
)

9c:97:26:24:79:aa
5c:e0:c5:31:84:72

(b)

Fig. 3: Measuring the delay between the appearance of an instance and the re-
spective response during the learning phase (a) and the detection phase (b).

We also profiled each Wi-Fi device mentioned in the testbed section with
all devices integrated. No commands were issued commands between them, and
no user interaction was made to any application in the Internet. Figure 4 (a)
presents the RMSE (root mean squared error) over time for each feature type
(network and flow), for both learning and detection phase running on the same
dataset with no issued commands between them as mentioned before. We can see
that after training, there are some RMSE peaks, even though the dataset is the
same, which can lead to False Positive detections even after defining a statistical



IoT Neighborhood Watch: device monitoring for anomaly detection 7

0 200 400 600 800
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

Training network features
Training flow features
Detecting network features
Detecting flow features

(a)

0 200 400 600 800
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

Training network features
Training flow features
Detecting network features
Detecting flow features

(b)

Fig. 4: RMSE measures (coloured lines) and Anomaly probability (black crosses)
over time for training and detecting phases each pair of red dots united by a line
correspond to attacks with capabilities {A1, A3, A4}, {A1, A2, A3}, {A1, A3},
respectively.

pattern. Figure 4 (b) presents the same information, but using different datasets
in each phase. For the learning we use the previously mentioned dataset, but
for the detection we use a dataset with different attacks (each with different
capabilities). Here, we can see high RMSE values outside each two pair of points
united by a line (time range between which the attacks were performed), meaning
possible False Positive detections. We can also see True Negative detections as
well (system is not able to properly detect anomalies when they happen). By
inserting contextual information about the user, like the location, some devices
could have their thresholds adapted for the respective contextual occasion. The
defined threshold would be adapted to allow the statistical analysis being more
or less flexible with the resulting anomaly probability.



8 P. Carmo and M. Pardal

5 Conclusion and Future Work

In this paper, we have presented a NIDS capable of detection with some delay and
still without the capability to use contextual information in the traffic analysis.
To reduce the detection delay, we will increase code efficiency and implement
multiple threads, on both learning and detecting phase. Increasing the time
window would also reduce the number of operations required but increase the
response time. To reduce the False Positive Rate (FPR), we will adjust the
thresholds, taking into account contextual information available, starting with
user presence at home. Future work in the experimental analysis is also required.
Besides the detection of differences in the behavior on a previously trusted device
that turned malicious, we will also want to detect the appearance of new devices
that may be malicious.

6 Acknowledgements

This work was supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference UID/CEC/50021/2019 (INESC-ID) and
through project with reference PTDC/CCI-COM/31440/2017 (SureThing).

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: In-
ternet of Things: A Survey on Enabling Technologies, Protocols, and Applica-
tions. IEEE Communications Surveys and Tutorials 17(4), 2347–2376 (2015).
https://doi.org/10.1109/COMST.2015.2444095

2. Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: SoK : Security Evaluation of
Home-Based IoT Deployments. IEEE Oakland (2019)

3. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

4. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of au-
toencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089
(2018)

5. Morgner, P., Mattejat, S., Benenson, Z., Müller, C., Armknecht, F.: Insecure to
the touch: attacking zigbee 3.0 via touchlink commissioning. In: Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
pp. 230–240. ACM (2017)

6. Seralathan, Y., Oh, T.T., Jadhav, S., Myers, J., Jeong, J.P., Kim, Y.H., Kim, J.N.:
Iot security vulnerability: A case study of a web camera. In: 2018 20th International
Conference on Advanced Communication Technology (ICACT). pp. 172–177. IEEE
(2018)

7. Vyas, D.A., Bhatt, D., Jha, D.: IoT : Trends , Challenges and Future Scope. Inter-
national Journal of Computer Science & Communication 7(1), 186–197 (2016)

8. Whalen, S.: An introduction to arp spoofing. Node99 [Online Document], April
(2001)

9. Whitmore, A., Agarwal, A., Da Xu, L.: The Internet of Things-A survey
of topics and trends. Information Systems Frontiers 17(2), 261–274 (2015).
https://doi.org/10.1007/s10796-014-9489-2


