
Smart Places:
A framework to develop

proximity-based mobile applications

Samuel M. Coelho and Miguel L. Pardal
samuel.coelho,miguel.pardal@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa

Abstract. Proximity-based applications engage users while they are in
the proximity of points of interest and these apps are becoming popular
among the users of mobile devices. The apps are triggered when the
user is at specific geographic coordinates or when tagged objects are
detected to be nearby, using several technologies, like Bluetooth Low
Energy (BLE).

In this paper, we present a solution to develop proximity-based applica-
tions, that we call Smart Places. Two examples were built: the Smart
Restaurant and Smart Museum. The Smart Places apps allow anyone
with a mobile device capable of detecting tags to access proximity-based
servicescreated with the tool we developed. These apps were evaluated as
viable in terms of energy consumption with results that show acceptable
battery consumption.

Keywords: proximity-based; mobile apps; smart place; location based applica-
tions

1 Introduction

Nowadays, mobile devices are equipped with many sensors such as light sensor,
Global Positioning System (GPS) and accelerometer. Also, these devices access
multiple data sources such as the user’s calendar and the activity on social
networks. The applications (apps) that the user can install have access to this
data provided by these sensors and data sources. Using this data, the apps
can adjust settings and allow users to perform tasks according to it. The focus
of this present work is location based-applications. These apps offer different
possibilities, to the users, when they are in the proximity of a given point of
interest.

Besides development of proximity-based services another question arises: How
can an owner of a given place offer such services, without having to develop
everything him/herself? We created a tool to develop proximity-based services,
removing the need to build a back-end and to handle the location technology.



2 Related Work

We present some applications, where BLE beacons were used, to get good in-
sights about the potential use cases of this technology.

BlueSentinel[1] is a occupancy detection system, for smart buildings, that
uses BLE Beacons to detect the presence of people. It is focused on the power
efficiency of the building. The idea is to optimize energy consumption according
to people’s presence.

The authors of ContextCapture[2] try to use context-based information to
allow users to add more information to their status updates in the main social
networks, such as Facebook1 and Twitter2. Context information comes from
the smart-phone itself, from its sensors and from the nearby devices through
Bluetooth. Devices can be other smart-phones or BLE Beacons, which are used
for indoor location.

There are already some frameworks to develop location-based applications.
In the work presented in Krevl et al.[3], a framework was constructed to

allow developers to build location-based apps. Location information can come
from any source, such as GPS receivers, Bluetooth receivers and WiFireceivers.
The authors do not take into consideration constraints in terms of resources,
such as lack of Internet connection and battery.

Dynamix[4] is a framework to develop mobile native and web apps that allow
them to receive context information, for instance, position and device’s orien-
tation. This framework has plug-ins that get one or more sensor’s raw data
and turn that into event objects, that contain more high-level information. This
framework supports many kinds of context information and it is possible to de-
velop more plug-ins to allow the apps to generate additional events that are not
already supported. The security policies of Dynamix state which information the
app can have access to or which sensors it can use. However, the formulation of
the policies meant a big development overhead that was avoided in our solution.

3 Solution

The main goal of our solution is to assist the development of proximity-based
mobile applications. Before starting the description of our solution, we need to
take a look at three kinds of users that will be part of it:

– End users: Anyone with a mobile device that installs an app to scan for
nearby Smart Places;

– Owners: These users are the ones responsible for managing a given place
that they want to turn into a Smart Place;

– Developers: The users that develop the code of the Smart Places.

1 http://www.facebook.com
2 http://twitter.com



Figure 1 shows the main components of our solution, which are the following:

– Beacons are the small devices that will act as tags, according to our definition
of a Smart Place;

– Back-end is where all the data is stored, that is, the Smart Places that
are available, the Smart Places that each owner has configured, information
about each beacon, etc;

– End Users Mobile App is another Android mobile app that allows users,
with a mobile device, BLE enabled, to have access to nearby Smart Places
and to detect the beacons that belong to those Smart Places;

– Owners Mobile App is an Android mobile app that owners use to select
which Smart Places they want to configure. It also allows to configure each
individual beacon that belongs to a given Smart Place;

– Developers Application Programming Interface (API) provides the necessary
methods that developers can use to create their proximity-based services,
based on the concept of a Smart Place.

Fig. 1: Overview with the main components of our solution

Owners have a mobile app that allow them to turn the places they manage
into Smart Places. There is another mobile app to allow anyone, with a mobile
device, such as a smart-phone, to use the services provided by Smart Places
nearby. To develop these services our solution offers an API that developers can
integrate in their web applications to make them react to the presence of the
user.



To create the back-end, we have used Parse3 Backend as a Service (BaaS).
A BaaS is a particular type of Software as a Service, that allows developers to
specify which entities and their fields, that they need to store. An BaaS allows
developers to not have to be concerned about aspects related to distributed sys-
tems, such as, scalability and security. Since our back-end only needs to be able
to store and retrieve data, we chose this solution instead of doing an implemen-
tation of a Representational State Transfer (REST) API from the scratch.

In our solution, there is an Android app, that notifies the user when he is
nearby any Smart Place. When the mobile device approaches any Smart Place,
the app notifies the user. When the user touches these notifications, the app
shows an embedded web browser that contains a web page that can react to
nearby objects, that is, beacons with meaning to the application.

The Smart Places’ owners manage one or more places where they want to
provide some service to visitors in their mobile devices. In order to make owners
be able to offer this kind of services an Android app designed for them is offered
by this solution. This app offers features such as, get a list of all available Smart
Places and configure an instance of a Smart Place. In order to configure a Smart
Place first, owners need to tag physical objects. They need to deploy beacons in
the right places. Then, they use the mobile app to create an instance of a Smart
Place following a small set of steps. First, the app shows a list of all available
Smart Places. Then, the owner selects one and he can see a text explaining what
that Smart Place is about. Finally, the owner just needs to type a title and a
message, that will appear in the users’ mobile devices notifications when they
are nearby

The library was turned into an open-source project, hosted on a GitHub
repository4 and it is available to install using bower5, which is a tool to manage
dependencies in web applications. Then, developers just need to include the
library and use the available functions. The library is event-based, that is, the
mobile apps, for owners and end users emit events to the library such as, a
nearby beacon is detected to the web application running inside a embedded
web browser. In this library there is a global object, which is “SmartPlaces”
with several methods. All those methods need to receive a callback because, as
already mentioned, the library follows an event-based approach.

We have created two examples of Smart Places, the Smart Restaurant and
Smart Museum. The Smart Restaurant allows customers of a restaurant to place
their orders without the need to wait. The Smart Museum allows museum’s
visitors to have access to more information, in their mobile devices, about a given
object in an exhibition, when they are in the proximity of that object. We first
built the Smart Restaurant. While building this example, we wrote JavaScript
code to handle the events emitted by the mobile apps for owners and end users.
From this code, it was possible to create a library that resulted in a complete
independent project, from which, the examples depend on. After building the

3 http://parse.com
4 http://github.com/samfcmc/smartplaces-js
5 http://bower.io



first example, we developed another one, which is the Smart Museum. We defined
the JavaScript library as a dependency and observed that the same API that
fits the Smart Restaurant example, also could be used in the other example.

4 Evaluation

The evaluation focused on two aspects. First, the reliability of the method to
get the distance from a given beacon. Second, the battery consumption, since
service is running in background, periodically scanning for beacons. In the eval-
uation process, a smart-phone and a set of three beacons from Estimote™ were
used. The smartphone was a Motorola™ Moto G6, with the following technical
specifications:

– Central Processing Unit (CPU): Quad-core 1.2 GHz Cortex-A77

– Graphics Processing Unit (GPU): Adreno 305
– Random-access Memory (RAM): 1 Gigabyte (GB)
– Internal storage: 16 GB
– Screen: 4.5 inches
– Battery: Non-removable Li-Ion 2070 Milliampere-hour (mAh) battery
– Operating System (OS): Android 5.0.2 (Lollipop8)

4.1 Nearest Beacon Detection

Our solution relies on a library, which its API allows us to get the distance from
a given beacon. However, this value is related to the signal’s strength, that comes
from the beacon. We performed a set of experiments to verify how reliable was
this value and if we can use that value to compute which beacon is the nearest
one.

The set of experiments, is summarized in Table 1. Figure 2 shows the layout
that was used where value d is the distance between beacons. In these exper-
iments, the Smart Musem example was used. In each experiment, it ran for 5
minutes using 10 seconds as the interval between each scan. 10 seconds was
chosen because it is a reasonable value to walk in the museum to have enough
time to perform any computation, that was needed, after each scan. Running
the experiment for 5 minutes, with the mentioned interval between each scan,
allowed us to have more than 20 scans. Then, in Android Studio log output, it
was possible to check how many times each beacon was detected as the nearest
one.

The mobile app for end users scans for beacons but only requests data for
the nearest one. To get the nearest one, it has to rely on the signal strength to
calculate the distance. We performed 4 experiments in order to try to get the

6 http://www.gsmarena.com/motorola moto g-5831.php
7 http://www.arm.com/products/processors/cortex-a/cortex-a7.php
8 https://www.android.com/versions/lollipop-5-0



Variables
Experiments

1 2 3 4

Number of beacons 3
Interval between each scan 10s
Experiment duration 5m
Distance between beacons (meters) 0.5 1 1.5 2

Table 1: Experiments to get the accuracy of the method to get the nearest beacon

Fig. 2: Layout used for the experiments to get the accuracy of the distance value

accuracy of the mechanism that calculates the distance that the mobile device
is from a given beacon.

For each experiment, we counted how many times each beacon was detected
as the nearest one. Looking at the layout used in these experiments we can see
that the app should detect the beacon named ice as the nearest one. Figure 3
shows the percentage of times that the beacon ice was detected as the nearest
one, showing that, as we increase the distance between beacons, the accuracy to
detect the nearest beacon also increases. From the results, we can conclude that
it is recommended that the beacons are, at least, 1.5m or 2m distant from each
other.

In an environment, where the beacons are close to each other, our solution
might not work as expected. For instance, in the previously described Smart
Restaurant example, the tables should not be close to each other. This is not
always possible because, some restaurants try to optimize space and have tables
as much close to each other as possible. In the Smart Museum example, two
objects, in a given exhibition, should not be close to each other. Otherwise, the
visitor would be notified about an object and he might be looking at another
one.



Fig. 3: Relation between beacon distance and detection accuracy

4.2 Energy Consumptions

Another important aspect of this solution is the battery consumption. Since our
mobile app for end users runs on background to scan for nearby beacons, that
can have a negative impact on the device’s battery. If the user notices that the
battery drains too fast, he will not use this solution.

Table 2 summarizes the experiments performed to evaluate the battery con-
sumption. Figure 4 shows the layout used for this group of experiments. We
have used the same beacons as in the experiments described in section 4.1. The
beacons are equally distant 25 cm from each other. The smart-phone is at the
same distance from the beacon in the middle, the green one named mint. We
performed 4 experiments. In each one the app was turned on and ran for 1 hour
in background mode scanning for beacons in order to discover nearby Smart
Places. The first two used Wireless Fidelity, Wireless Internet (WiFi) data con-
nection. The remaining used Third Generation (3G) mobile network. Different
data connection means can lead to different energy consumptions. We need to
understand which connection, WiFi or 3G, drains more power. If it is 3G, the
user might only use our solution if he/she is connected to a WiFi Access Point
(AP). We want our mobile app to be always turned on scanning for nearby Smart
Places. Using it only when WiFi is available would make its usage very limited
and the user would not take the full advantage of it because he/she needs be
aware that a WiFi AP is available and turn the mobile app on again. We tested
two values for the interval between each scan, 5 minutes because it is the default
value that the beacons library use in background mode, and 2 and half min-
utes. The second value is half the first in order to see how much more power is



drained when we set a smaller value for the interval between each scan. Trying
to find a smaller interval is important because it will reduce the probability that
the user was not able to discover a nearby Smart Place. The following scenarios
were tested: When the user stays in the same Smart Place the entire experiment;
When the user moves from one Smart Place to another. This is done removing
existing data about Smart Places already detected to force the app to request
this data again from the Back-end in each scan process.

Variables
Experiments

1 2 3 4

Data connection type WiFi 3G

Interval between each scan 2m30s 5m 2m30s 5m
Experiment duration 1h

Table 2: Summary of experiments to get the battery consumption when the mobile app
is scanning for beacons in the background

Fig. 4: Layout used for the experiments to get the battery consumption

Data communications, WiFi or 3G, are the major source of battery drain,
as suggested in studies, such as [5]. We used Battery Historian9 to measure the
power drain and how much data was transferred (sent and received). Figure 5
shows the results for the first scenario, where the user does not move. WiFi is

9 https://developer.android.com/tools/performance/batterystats-battery-
historian/index.html



not represented in the Figure because no power use was reported for it. However,
3G drained 0.29% and 0,40% of the total battery available. From these results
it is possible to conclude that our solution introduces the most overhead when
using 3G as the mean to perform data communications.

Fig. 5: Relation between power drain and interval between scans when the user stays
in the same Smart Place

After the first set of experiments we tested Facebook10 since it is one of the
popular apps and also has services running in background. It is also known to
be one of most power draining apps11. We let it ran for 1 hour as we did in our
first experiments. While running Facebook, we used it to check our news feed
in 5 minutes. The rest of the time the app was running in background. Table 3
summarizes the conditions and results of the test performed using Facebook
app. We used these values as a reference to compare with the power drain in the
second scenario, that is, at each scan the user moves from one place to another
which implies more requests to the backend.

Then, we performed the second set of experiments, that is, the second sce-
nario where the user moves from one Smart Place to another. Here, the app
requests more data from the back-end. Figure 6 shows the results of these ex-
periments. Here, we got more power drain than in the previous scenario. These
results shows that, the more communication with the back-end is required, more
power our solution drains. Once more, using WiFi we have got almost zero

10 http://play.google.com/store/apps/details?id=com.facebook.katana
11 http://www.forbes.com/sites/jaymcgregor/2014/11/06/facebook-and-instagram-

are-killing-your-phones-battery-heres-a-simple-fix



Variables Values

Data connection type 3G
Experiment duration 1h
Computed power drain (%) 3.77
Data transferred
(KB sent and received)

4627.83

Table 3: Battery consumption of Facebook app

power drain. However, similar to the results in the previous scenario, there is
more power drain using 3G. Using two minutes and half of interval between each
scan, we got more 0.71% than using five minutes. As happened before, there is
more power drain when we increase the interval between each scan.

In the worst case we obtained a power drain of 2.71% which is approximately
71% less than using Facebook in the same period of time. Using this app as a
reference in terms of apps that run services in background, we can say that the
battery consumption is acceptable for a daily basis usage.

Fig. 6: Relation between power drain and interval between scans when the user moves
along multiple places



5 Conclusion

We have developed the Smart Places solution which offers a tool to create
proximity-based services and end-user and owner management interfaces. We
introduced the concept of Smart Place which is a physical space with tags that
mobile devices can detect and offer different possibilities to the users, according
to each tag. We chose BLE beacons using iBeacon protocol because it is com-
patible with any smart-phone with Bluetooth version 4.0 or above. The owners
of Smart Places are responsible to place those beacons in the right place. To
use the Smart Place, users need only to download a single app and turn on the
Bluetooth receivers of their mobile devices.

We have created a solution that allows developers, of Smart Places, that
provide proximity-based services, using web technologies, such as, HyperText
Markup Language (HTML), Cascading Style Sheets (CSS) and Javascript. With
this tool, any web application can react to the presence of tags placed in a given
Smart Place. This solution makes the development of Smart Places easier due to
the fact that, developers do not need to handle the technology details to handle
tags and the back-end where the information about Smart Places and their tags
is stored. Each Smart Place is a web application that runs inside an embedded
web browser in the mobile app, allowing users to have access to any Smart Place
without the need to install a new native app for each one.

Two examples of Smart Places were created, using our solution, a Smart
Restaurant and a Smart Museum. The Smart Restaurant had the goal to allow
customers, of a restaurant, to place their orders, after they take a sit using
their mobile devices. Using this solution, customers do not need to specify which
table the orders belong to. Using the tag system through BLE beacons, the
app automatically get the table’s number and add that information when the
customer places the final order. In the Smart Museum we created the experience
of a museum where visitors can have access to more information about an object
that they are close to.

We evaluated our solution in terms of battery consumption. Users will not
use our solution if they run out of battery faster than if they are not using our
solution. For each experiment, we have tried two different types of data connec-
tion, using WiFi and 3G. Using WiFi the power drain is almost zero. However,
using 3G, the power drain was above 2%, in just one hour. Comparing with the
power drain of Facebook app running in the same period we can conclude that
the power drain is acceptable but there is room for improvement. For instance,
we could store geographical coordinates for each tag. When detecting a tag, the
app could use these coordinates to fetch data about the other tags in the same
area in just one request. This way, we need less requests to the back-end which
can result in less power drain than the actual solution.

5.1 Future Work

There are aspects of our work that can be improved in the future. Owners of
Smart Places need to deploy tags and use the mobile app to configure those tags.



However, there is not any interface, that they can use, to register themselves,
as the owners of such tags. In the development of this work we introduced the
needed data manually, that is, all the associations between tags and their owners.
There is one more interface missing to allow developers to register the Smart
Places they develop. When owners are configuring their Smart Places, they can
choose from a list. The Smart Restaurant and Smart Museum examples were
introduced in the back-end manually. There is no way for developers to add a
Smart Place to this list. A future improvement could be these missing interfaces.
One that would allow owners to register the ownership of tags and another for
owners that would use it to register the Smart Places they developed. Another
limitation is the fact that, using our solution, only web applications can offer
proximity-based services. In one side, this is a good fit because this is what
allows to have one app to access multiple Smart Places. On the other side, there
could be developers that could use our solution to add proximity-based features
in their existing native mobile apps. This could be solved having an Software
Development Kit (SDK) available for the three most used mobile OSs, iOS,
Android and Windows Phone, to allow to integrate our functionality in existing
apps.

Proximity-based applications are an important type of context-aware appli-
cations since they provide services, to the user, that are relevant in the right
place. However, developers need the right tools to create these applications and
users need an easy way to have access to such applications. Our work targets
not only developers but also users and owners. A complete solution is needed
because developers would not create proximity-based applications if there are no
users. Also, users would not be engaged if developers do not have the tools to
create these applications. Our Smart Places solution and its evaluation can be
considered a step forward to be able to use, develop and manage all these and
many more possibilities.

References

1. G. Conte, M. De Marchi, A. A. Nacci, V. Rana, and D. Sciuto, “BlueSentinel: a
first approach using iBeacon for an energy efficient occupancy detection system,” in
Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings. ACM, Nov. 2014, pp. 11–19.

2. V. Antila and J. Polet, “ContextCapture,” in Proceedings of the 13th international
conference on Ubiquitous computing - UbiComp ’11. New York, New York, USA:
ACM Press, Sep. 2011, p. 585.

3. A. Krevl and M. Ciglaric, “A framework for developing distributed location based
applications,” in Proceedings 20th IEEE International Parallel & Distributed Pro-
cessing Symposium. IEEE, 2006, p. 6 pp.

4. D. Carlson and A. Schrader, “Dynamix: An open plug-and-play context framework
for Android,” in 2012 3rd IEEE International Conference on the Internet of Things.
IEEE, Oct. 2012, pp. 151–158.

5. A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?” in
Proceedings of the 7th ACM european conference on Computer Systems - EuroSys
’12. New York, New York, USA: ACM Press, Apr. 2012, p. 29.


