
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 6 (2014) pp. 560–570
c© MIR Labs, www.mirlabs.net/ijcisim/index.html

Access Control Policies for
Traceability Information Systems

Miguel L. Pardal1, Mark Harrison2, Sanjay Sarma3, and José Alves Marques1

1Department of Computer Science and Engineering
Instituto Superior Técnico, Technical University of Lisbon, Portugal

miguel.pardal@ist.utl.pt, jose.marques@link.pt

2Auto-ID Labs, Institute for Manufacturing,
University of Cambridge, UK

mark.harrison@cantab.net

3Auto-ID Labs, Massachusetts Institute of Technology, USA
sesarma@mit.edu

Abstract: Traceability information systems need to collect and
process data from multiple companies across the supply chain
and many of the business partners are not known in advance.
This open-ended security is, in principle, a good match for a
Service-Oriented Architecture (SOA) design and for the use of
Web Services (WS) technologies because they implement flex-
ible and inter-operable systems based on services. However
there is a gap between the visibility restrictions and the way to
express them using standard WS technologies.
This paper describes Supply Chain Authorization (SCAz), an
interface developed to define and enforce visibility restrictions
– access control policies – for supply chain systems. Several im-
plementations are presented and the trade-offs are discussed.
The performance of SCAz is assessed in the setting of an ex-
ternalized security architecture by comparing raw authoriza-
tion implementations with their equivalents translated to the s-
tandard language eXtensible Access Control Markup Language
(XACML).
The SCAz Chain-of-Trust Assertions (CTA) implementation is
found to have similar performance to other approaches while al-
lowing extensions such as delegated trust, transitive trust, con-
ditional trust, and bulk trust.
Keywords: Web Services; Authorization; XACML; Performance;
Supply Chain Traceability

I. Introduction

Service-Oriented Architecture (SOA) [1] and Web Services
(WS) [2] were designed to allow easier inter-operation of het-
erogeneous systems and to satisfy the non-functional require-
ments needed by real business systems.
WS standards are defined by IETF, W3C and OASIS to ad-
dress non-functional concerns such as security, transactions,
and reliable messaging. In this paper, the WS acronym is
used to refer to most variants of distributed communication
using eXtensible Markup Language (XML) message formats
and protocols, including SOAP and REST.
The complexity of WS standards raises performance con-
cerns. A common criticism of WS technologies is that they

are slow and difficult to use [3]. The performance overheads
have been measured in practice by Juric at al. [4] and they
are significant. For example, SOAP messages are, on av-
erage, 4.3 times larger than equivalent binary messages and
response times are 9 times slower. The overheads are even
more significant when using security mechanisms: messages
are 27 times larger, and response times are 15 times slower.
Since WS imply performance overheads, they are better suit-
ed to handle use cases where there is an actual need for
flexibility and inter-operability, like in Supply Chain Mana-
gement (SCM) and Traceability systems. A specific example
of a useful traceability system is a Pharmaceuticals Pedigree
control system that is meant to prevent drug shortages and
detect counterfeit drugs. Dynamic authorizations are needed
in supply chain applications because there are multiple busi-
nesses involved, distributed across the world, and many of
them without prior knowledge of the others.
In this paper, we investigate the performance of authoriza-
tions for traceability information systems. We describe the
Supply Chain Authorization (SCAz) interface and its three
implementations:

• Enumerated Access Control (EAC);

• Chain-of-Communication Tokens (CCT);

• Chain-of-Trust Assertions (CTA).

EAC and CCT follow more traditional approaches to access
control – access-control lists and capabilities [5] – whereas
CTA uses open-ended representation and is intended to be
extensible.
The performance is assessed using measurements collect-
ed from prototype implementations assuming an external-
ized security architecture. To compare the overheads of
WS authorizations, the raw implementations are compared
with their equivalents translated to eXtensible Access Con-
trol Markup Language (XACML) [6]
After the assessment, the CTA implementation is further de-
veloped with more sophisticated sharing conditions.

MIR Labs, USA



561 Pardal et al.

A. Outline

In the next section, the traceability system architecture for the
supply chain domain is described and the externalized secu-
rity architecture is presented with focus on authorization. A
short introduction of Linked Data is also provided. Next, the
supply chain authorization implementations are presented a-
long with their conversion procedures to XACML format.
The performance assessment study results are presented and
CTA implementation extensions are defined in detail. The
paper ends with the conclusions and future work directions.

II. Traceability System

SCM solutions focus on planning and execution, integrated
with companies’ Enterprise Resources Planning (ERP) sys-
tems. Their goal is to improve the flows of physical objects
so that goods travel, from producer to consumer, in the least
amount of time, and at the lowest cost [7]. In this context, in-
formation is collected to allow traceability queries [8], such
as: Track (Where is a specific item?); and Trace (Where has
a specific item been?).
Goods are tagged with unique serial numbers encoded using
printed two-dimensional bar-codes and/or Radio Frequency
Identification (RFID tags). A widely used scheme to de-
fine the item-level identifiers is called the Electronic Product
Code (EPC). Each EPC contains a serial number that unique-
ly identifies a physical object instance.
The EPC Network architecture [9] defines standard data cap-
ture and query interface for repositories of traceability data,
called the EPC IS (Information Services) [10]. The architec-
ture also proposes a service to facilitate data retrieval, called
the EPC DS (Discovery Services) [11] [12].
Figure 1 depicts the EPC Network and how EPC data is cap-
tured. EPC IS store detailed events whereas EPC DS stores
references to the locations of event data.

EPC x

EPC DS

Factory RetailerDistributorEPC IS EPC IS EPC IS

Figure. 1: EPC Network architecture with DS and IS.

The EPC Network is centralized and uses meta-data to index
the detailed information. Currently, it is the most common
traceability system approach [13].
Each supply chain participant can benefit from exchanging
data with other companies, but information such as the levels
of demand, inventory, and supplier identities should be kep-
t to trusted business partners. Each company can define its
own trust circle, like the one in Figure 2. In fact, there are
studies that show that without clearly defined and enforced
data access control, companies are not willing to share trace-
ability data [14].

Manufacturer

Distributor

Wholesaler

Retailer

trusts

trusts

trusts

Direct trust circle
of Manufacturer

Figure. 2: Direct trust circle of a Manufacturer.

III. Externalized Security

The goal of the externalized security architecture is to uni-
fy the security management of different applications so that
business rules can be changed dynamically. This contrasts
with rigid security measures embedded in each application.
Externalized security encompasses user management, au-
thentication, authorization, logging and auditing [15]. The
security measures are summarized in Figure 3: authentica-
tion protects the subject; authorization and non-repudiation
protect the action; finally, availability, integrity and confi-
dentiality measures protect the resource.

ResourceAction

Subject

Environment

Authentication
Authorization

Non repudiation

Integrity

Confidentiality

Availability

Auditing
User 

management

Figure. 3: Security measures.

The authentication of subjects can be achieved with iden-
tity providers [16] and the exchange of Security Assertion
Markup Language (SAML) assertions [17].
The authorization of actions can be expressed with the eX-
tensible Access Control Markup Language (XACML) [6]
that allows the combination of multiple, possibly conflicting,
policies to define fine-grained access control.

A. eXtensible Access Control Markup Language

XACML [6] is an XML vocabulary to represent authoriza-
tion policies and requests. In formal terms, an authorization
is the verification of a subject’s right to execute an action on
a resource.
The standard defines a policy format and a processing model.

1) Policy

Figure 4 presents a simplified XACML Policy structure with
target and rules. The target defines a set of ‘match’ condi-
tions regarding the subject, action, resource and environmen-



Access Control Policies for Traceability Information Systems 562

t, that determine if the policy is relevant for the request. The
rules are conditions that evaluate to ‘Permit’, ‘Deny’, ‘No-
tApplicable’ (when no target matches), or ‘Indeterminate’
(when an internal errors occur).

rule 
combining 
algorithm

Policy

Rule

Effect

Target ...

1

1

*

Target
1

*
Subject

Action

Resource

Environment

*

*

*

*

Condition
0..1

Figure. 4: XACML simplified Policy model.

XACML has a set of predefined functions that are used to
transform and compare data attributes. The policy language
is declarative and new function definitions are not allowed to
keep the the policy processing simple i.e. with low algorith-
mic complexity [18]. Additional functions can be provided
by XACML library implementations but, since they are not
standard, they may not be available in other implementations.

2) Processing

The authorization architecture that XACML assumes is de-
fined by RFC 2753 [19] and 2904 [20] and is represented in
Figure 5.
The Policy Administration Point (PAP) is used to author and
manage policies. The Policy Enforcement Point (PEP) is the
component that intercepts requests to a resource, and can al-
so perform ‘before’ or ‘after’ actions, called obligations. The
PEP checks with the Policy Decision Point (PDP), that eval-
uates the request with respect to the applicable policies. If
necessary, the Policy Information Point (PIP) retrieves addi-
tional attribute values for the PDP that are not contained in
the request.

PIP PEP

PAP PDP

Obligation 
service

1: access attempt

2: request

3: attribute values

4: response

6: permit / deny

5: obligations

0: policies

Figure. 5: XACML request processing.

3) Implementations

XACML is currently in version 3.0, with many deployments
and industry support. The XACML open-source implemen-
tations were surveyed, as presented in Table 1.
The Sun Microsystems XACML library can be considered
the reference implementation, but it has not been updat-
ed since 2004. Since the project was made publicly avail-
able, several “branches” were created by different developer-
s. There is a 2.0 version under development but its sponsor-
ship is not clear and it breaks source code compatibility.
PicketBox is supported by JBoss but the library is insuffi-
ciently documented at the present time.
HERAS-AF [21] is a well documented library that was de-
veloped in academia but is currently also used by indus-
try. HERAS-AF stands for Holistic Enterprise-Ready Appli-
cation Security Architecture Framework. The open-source
version is restricted to in-memory policy repository and the
project has been inactive since 2010.
‘enterprise-java-xacml’ has the best reported perfor-
mance [22] but has little documentation.
XEngine [23] also claims to have the best performance but
there are few code examples available and it is insufficiently
documented and currently inactive.

Impl. Version Last update Sponsors
sunxacml 1.2 Jul 2004 Sun Microsystems

(currently Oracle)
Heras-AF 1.0.0-M2 Sep 2010 U. Applied Sciences

Rapperswil, Switzerland
enterprise r258 Jan 2009 Zian Wang
-java-xacml
PicketBox XACML 2.0.9.Final June 2013 JBoss, Red Hat
xEngine beta 0.2 Aug 2010 Michigan State U.,

North Carolina State U.

Table 1: Open-source XACML implementations.

IV. Related work

A. Traceability

WS technologies are already widely used in traceability sys-
tem implementations. The most prominent example is Fos-
strak [24] that provides a SOAP endpoint to the EPC IS event
repository and an alternative REST-based interface [25].

B. Linked Data

Linked Data can be used to represent data access policies.
It is the underlying distributed data model of the Semantic
Web.
The Semantic Web [26] is intended to be an organized world-
wide system where information flows in a smooth but order-
ly way. The AAA slogan – Anyone can say Anything about
Any topic – is intrinsic to the design of the Semantic Web.
This means that, in practice, there can be many contradic-
tions and inconsistencies in the data that make it hard to use
effectively. As a result, different sources, organizations, and
styles of information need to co-exist, and semantic model-
ing tools are required to build models that make data usable
and useful in this context.
At the core of the distributed data model is the Resource
Description Framework (RDF) [27] that is a universal data



563 Pardal et al.

model that represents data structures as triples. Each triple –
subject, predicate, and object – can be represented in graph
format. For instance, the triple ‘:company0 cta:publishes
:record0’ is represented in Figure 6.

:company0

:record0

cta:publishes

Figure. 6: RDF triple represented as a graph.

The SPARQL Protocol and RDF Query Language (SPAR-
QL) [28] is a query language that partly resembles the
Structured Query Language (SQL) widely used in relation-
al databases. SPARQL is dedicated to find matches for RDF
statements that may contain variables, rather than extracting
values from specific columns of specific tables for records
that match particular criteria.
The typical Linked Data application architecture, depicted in
Figure 7, extends a database application architecture. The
database – RDF store – merges the information and applies
models to infer new data and validate conditions. Data input
converters transform data from other formats – web pages,
spreadsheets, tables, databases – to RDF. The query engine is
implemented using SPARQL. The application interface uses
the content of an RDF store in interactions with end-users.

RDF
store

Application

RDF
files

SPARQL
query engine

Data
Data

convert parse

serialize

Figure. 7: Linked Data application architecture, adapted
from [26].

Linked Data technologies – RDF, OWL and SPARQL – pro-
vide open-ended data representation and querying, and there
is significant work where they are used for security.
Cadenhead et al. [29] describes a general-purpose, scalable
RDF policy engine that includes support for a diverse set of
security policies. The policy engine was evaluated as being
highly available and scalable.
Finin et al. [30] show different ways to support the NIST s-
tandard Role-Based Access Control (RBAC) model in Web
Ontology Language (OWL) and then discuss how the OWL
constructions can be extended to model attribute-based R-
BAC or more generally attribute-based access control.
Ferrini et al. [31] start from XACML that does not native-

ly support RBAC and introduce XACML+OWL, a frame-
work that integrates OWL ontologies and XACML policies
for supporting RBAC. It decouples the design by modeling
the role hierarchy and the constraints with an OWL ontology
and the authorization policies with XACML.
Papakonstantinou et al. [32] use ‘quadruples’ to encode ac-
cess labels for RDF triples, representing information such as
time, trust, and provenance. The authors make use of the S-
PARQL language to determine the triples that define these
labels.
The OWL versus SPARQL inference approaches bring back
the discussion of declarative versus procedural knowledge
representation [33]. Declarative knowledge is “knowing
that” and is expressed by OWL statements whereas proce-
dural knowledge is “knowing how” and is expressed by S-
PARQL procedures.

V. Supply Chain Authorization

Access control for supply chains is different from traditional
authorization because, in most cases, the path that each phys-
ical object path will follow is not known in advance. This
fact prevents the prior knowledge about who should be au-
thorized to access the data [34]. Also, since there are a large
number of items, it is inconvenient to define policies for each
one.
The Supply Chain Authorization (SCAz) Application Pro-
gramming Interface (API) has been proposed recently [35]
[36] to allow companies participating in a supply chain to ex-
press their authorization rules using business concepts such
as item and company.
A traceability data set contains events owned by a company
about a specific item. Each policy protects a data set.
There are three alternative implementations for SCAz. Fig-
ure 8 shows how the classes relate to the interfaces: each
class implements a mechanism-specific API and both imple-
ment the SCAz interface, allowing the same authorization
needs to be mapped transparently to distinct implementation-
s.

EACImpl

«interface»
SCAz

«interface»
EAC

«interface»
CCT

CCTImpl CTAImpl

«interface»
CTA

Figure. 8: SCAz, EAC, CCT, and CTA interfaces and class-
es.



Access Control Policies for Traceability Information Systems 564

A. Enumerated Access Control

Enumerated Access Control (EAC) is based on Access-
Control Lists (ACLs) [5]. Each ACL (see Figure 9) has an
owner and several permissions that define authorized user-
action pairs that keep the access rights indexed by the object
identifier.

<<datatype>> ACL

+object
+owner

<<datatype>> Entry

+user
+action1 0..*

Figure. 9: ACL data structure.

Each traceability data set is protected by an ACL. The master
ACL is maintained at the DS. A local copy is also maintained
at each IS. The data owner contacts DS to add new partners
to the ACL and the changes are propagated to the IS.
EAC uses the ACL implementation available in the Java
virtual machine (package sun.security.acl) and Fig-
ure 10 shows the available ACL operations.

<<interface>> EAC

+createACL(owner, aclName) : ACL
+requestAccess(acl, user, action) : Decision
+addToACL(acl, owner, user, action)
+checkACL(acl, user, action): Decision

Figure. 10: EAC interface operations.

B. Chain-of-Communication Tokens

Chain-of-Communication Tokens (CCT) is an adapted Ca-
pability [5] mechanism. CCT represents access rights within
object references called tokens. Figure 11 presents the con-
tents of a token: there is a public identifier and a secret that is
used as a ‘password’. The remaining data – owner, resource,
and action – identify the purpose of the token: “the owner
grants the right to perform the action on the resource to the
token holder”.

<<datatype>> Token

+id
+secret
+owner
+resource
+action

Figure. 11: Authorization Token data structure.

A token protects a traceability data set. Figure 12 shows the
token operations. New visibility scopes can be created by
issuing a new token for the object. The data owner sends the
token directly or via DS to its partners to authorize them.

C. Chain-of-Trust Assertions

Chain-of-Trust Assertions (CTA) access rights are expressed
using logical statements, called assertions, issued by the
multiple parties. Figure 13 shows the assertion operations.

<<interface>> CCT

+createToken(owner, resource, action) : Token
+requestToken(id, user) : Token
+sendToken(token, owner, user)
+validateToken(token, user, action, resource) : Decision

Figure. 12: CCT interface operations.

<<interface>> CTA

+requestAssertion(user, action, resource) : Assertion
+addAssertion(assertion)
+checkAssertions(user, action, resource): Decision

Figure. 13: CTA interface operations.

CTA is different from EAC and CCT because its semantic-
s can be extended. CTA is implemented using Linked Data
technologies. RDF and SPARQL are applied to construct
fine-grained access control policies and evaluate them, re-
spectively.
CTA policies are represented as RDF statements and stored
in the RDF store. Figures 14 and 15 show a simple CTA poli-
cy stated in RDF classes and properties, expressed as subject-
predicate-object tuples.

:company0 a cta:Organization .
:company1 a cta:Organization .

:item0 a cta:Identifier .
:record0 a cta:Record .
:policy0 a cta:Policy .

:company0 cta:publishes :record0 .
:record0 cta:about :item0 .

:company0 cta:creates :policy0 .
:policy0 cta:protects :item0 .
:policy0 cta:grantsRead :company0 .
:policy0 cta:grantsRead :company1 .

Figure. 14: CTA Policy in RDF Turtle format.

In the example, ‘policy0’ created by ‘company0’ – the da-
ta owner – grants read access to ‘record0’ about ‘item0’ to
‘company0’ and ‘company1’ – the partner. The extensibil-
ity can be achieved by adding new properties e.g. cta:
grantsWrite to grant write access.
The assertions are sent to the policy evaluation authority.
Given a request, access is granted if there is an unbroken
chain of trust assertions leading back to the owner of the da-
ta. Assertions can later be revoked, if necessary.
CTA was implemented using the the Apache Jena RDF li-
brary (available at http://jena.apache.org/) and
HERAS-AF. Both were selected because of the available
documentation and open access to the source code.

D. Conversion to XACML

SCAz represents data visibility permissions using supply
chain business concepts. The policies are then translated to
XACML so they can be deployed and enforced in a stan-



565 Pardal et al.

���������

�	��
������	��

�

��������

�	����������

�������

�	������	��

���������

�

�	���

�	������	���

�

�	������	

�	��������

�

�	������	�����

�	������	����� �	�����	��	�

�	�������

�

Figure. 15: CTA Policy graph.

dard security infrastructure, leveraging existing libraries and
tools. This conversion approach is based on the policy con-
versions by Karjoth et al. [37].
Figure 16 depicts the EPC Network including the access con-
trol policies. There is one PEP and PDP for each EPC IS and
DS. The policies should be authored by the data owner and
then distributed to both DS and IS, to be used for enforce-
ment.

EPC DS

Factory RetailerDistributorEPC IS EPC IS EPC IS

Access 
policy

Ref.

Access 
policy

Data
Access 
policy

Data Access 
policy

Data

Figure. 16: EPC Network architecture with DS and IS and
security policies.

For the authorizations in the traceability system, XACML
is used as the canonical format for representing data access
policies, both at the EPC IS and DS levels, as depicted in
Figure 16.

1) Conversion from EAC

Each item data set has a single ACL, and that ACL corre-
sponds to a single XACML policy. The item identifier is used
as policy name and as target. The rule combining algorith-
m is ‘first-applicable’ meaning that the outcome of the first
matched rule will be the access decision. For each entry in
the source ACL, a ‘Permit’ rule is generated for per subject-
action pair. Also a ‘Deny’ rule is generated. Lastly, there is
a “Deny all” rule for all other attempts.

2) From CCT

Each token corresponds to one XACML policy that expresses
its permissions. The token identifier is used as policy name
and as target. For each capability encoded in the token there

is a ‘Permit’ rule that checks if the action-resource pair and
the secret are correct. In the end there is a “catch” rule to
deny access for all other attempts using the token.

3) From CTA

To convert a CTA policy to a XACML policy the RDF s-
tatements are navigated as follows: first the objects of “pol
protects id” statements are found. For each item identifier,
a XACML policy is created. The policy target matches the
item identifier. A permit rule is created to grant each ac-
cess right – e.g. read – to the objects from “pol grantsRead
org” statements. A final catch rule is created so that all other
requests regarding the item are also denied. The rule com-
bining algorithm is ‘first-applicable’ so the outcome of the
matched first rule is the access decision.

VI. Performance assessment

The aim of the performance assessment was to evaluate if
the performance of the solution is suitable for large supply
chains.
The SCAz assessment tool [35] was developed to test both
the raw EAC, CCT and CTA mechanisms and from their
XACML-equivalent forms.
The test machine was a Quad-core CPU1 at 2.50 GHz, with
3.25 GB of usable RAM, and 1 TiB hard disk; running 32-bit
Windows 7 (version 6.1.7601), and Java 1.7.0 04.
The policies were defined using the common SCAz API to
allow the same business needs to be represented internally
by each implementation. The policies were then converted
to XACML format and tested using the HERAS-AF XACM-
L implementation to assess the correctness and the perfor-
mance.

A. Evaluation

The data sharing policies were correctly translated and en-
forced. The presented performance figures are the result of
the average of repeated runs of the same experiments.
The number of items considered in the experiments were
based on information collected by Ilic et al. [38], ranging
from 102 to 104.

1) Raw

Figure 17 presents a plot of the request evaluation time for in-
creasing number of policies protecting traceability data sets.
EAC and CTA handle the loads much better with results be-
low 0.1 ms. Performance of CCT implemented with cus-
tom code is clearly the worse because CCT needs to perform
searches in token collections for each request while the other
two receive all the values as arguments.

2) XACML

Figure 18 presents a plot of the ‘request evaluation’ time, a-
gain for increasing number of policies converted to XACML
format.
The performance of CCT and CTA are the best, EAC is
worse, but on the same order of magnitude.

1Intel Core 2 Quad Central Processing Unit Q8300



Access Control Policies for Traceability Information Systems 566

0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

0.8

1

Policies

T
im

e
(m

s)

EAC

CCT

CTA

Figure. 17: Raw evaluation time with increasing number of
policies.

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

Policies

T
im

e
(m

s)

EACx

CCTx

CTAx

Figure. 18: XACML evaluation time with increasing number
of policies.

3) Raw vs. XACML

Comparing the y-axis of Figures 17 and 18 it is visible that
the XACML performance overheads are very significant. Ta-
ble 2 presents each XACML time divided by the correspond-
ing raw time for chains handling increasing numbers of items
protected by policies. An average 400-fold overhead can be
observed. Also, the performance overhead increases with the
number of deployed policies.

Nr. Policies EAC CCT CTA
0.01 · 104 49.9 58.9 22.7
0.05 · 104 240.0 63.9 103.5
0.1 · 104 406.7 57.5 191.4
0.5 · 104 1670.1 17.3 752.9
1 · 104 3684.4 10.1 1429.2

Table 2: XACML overhead with increasing number of item
policies.

VII. Policy Building Blocks

The SCAz Chain-of-Trust Assertions (CTA) implementation
was found to be the most expressive and with similar perfor-
mance to the “classic” approaches based on access-control
lists and capabilities [5].
The representation using Linked Data technologies allows
new statements to be added. Instead of issuing plain trust
assertions, parties can issue conditional assertions, like re-
ciprocal trust (“I trust you if you trust me”). Additionally,
special predicates can be designed to express dynamic chain
upstream/downstream conditions, allowing data sharing or,
at least, initial data discovery between parties that did not
have previous interactions. It can also support the delega-
tion of administrative rights from one organization to anoth-
er. These constructs can also be combined to express rich
data sharing conditions.

A. Delegated Trust

For parties whom the creator of the data record does know di-
rectly, a possible solution is for the creator of the data record
to grant explicit read access rights to parties that are known
and trusted and to give delegation rights to some of these par-
ties, to allow them to grant further access rights to additional
parties that they know and trust.
The extension to add support for the delegation of adminis-
trative rights from one organization to another is shown in
Figures 19 and 20: ‘company0’ delegates the ability to grant
access to ‘company1’, and ‘company1’ grants read access to
‘company2’. ‘company0’ does not have to know ‘compa-
ny2’. Access is granted if there is an explicit unbroken chain
of trust assertions leading back to the owner of the data.
To verify the delegated trust, two SPARQL construct state-
ments are used. The first statement is used to compute the
delegation path. It checks if the ‘cta:delegates’ predicates
chain forward. The second statement verifies if the read ac-
cess is granted by anyone in the trust chain.

1) Sharing downstream

Consider the supply chain in Figure 2. The Manufacturer cre-
ates a data record about a specific product instance but only



567 Pardal et al.

:company0 cta:publishes :record0 .
:record0 cta:about :item0 .

:company0 cta:creates :policy0 .
:policy0 cta:protects :item0 .
:policy0 cta:delegates :company1 .
:policy0 cta:grantsRead :company2 .

Figure. 19: CTA delegation extension (type definition pred-
icates omitted).

��������

����	�

��
�
����

�������

��
��������

���	
���

��
���
�����
�

���	
���

��
������
���

���	
���

��
��������� ��
����
���

Figure. 20: CTA delegation extension graph.

wants to share it with the companies who were on the specific
chain of custody (unique supply chain path) that the specific
product instance took. The problem is that the Manufactur-
er only knows which Distributor the product is shipped to,
and has no visibility beyond that point. By creating a poli-
cy that delegates rights to the Distributor to create additional
policies, the Manufacturer can choose to trust the Distrib-
utor to pass on the appropriate access control privileges to
the appropriate downstream parties, eventually reaching the
Retailer who actually sold that specific product instance cor-
responding to the data in record.

2) Sharing upstream

The Retailer wants to share some information with upstream
parties. It publishes a record and creates a policy that del-
egates rights to an upstream party instead of a downstream
party. The process continues upstream, until the policy cre-
ated by Distributor grants read access to the Manufacturer.
Parties in the middle of the supply chain, such as distribu-
tors and wholesalers might also publish records and create
policies that delegate rights to parties further upstream (their
suppliers) or further downstream (their customers).

B. Transitive trust

Trust for data regarding a specific item sometimes needs to
express dynamic chain upstream/downstream conditions, al-
lowing data sharing between parties that did not have previ-
ous interactions.
The transitive predicates are represented in Figure 21. By
issuing the ‘cta:trustChain’ predicate, ‘company0’ allows
‘company1’ to access ‘record0’ about ‘item0’ because it pub-
lished ‘record1’ about the same item.

:company0 cta:publishes :record0 .
:record0 cta:about :item0 .

:company0 cta:creates :policy0 .
:policy0 cta:protects :item0 .
:policy0 cta:trustChain :item0.

:company1 cta:publishes :record1 .
:record1 cta:about :item0 .

Figure. 21: CTA chain trust transitivity extension (type def-
initions omitted).

��������

����	�

��
�
����

���	
���

��������

��
���������

��
�
����

�������

��
��������
����
��������

���	
���

��
��������� ��
����
���

Figure. 22: CTA chain trust transitivity extension graph.

C. Conditional Trust

Trading partners can issue conditional assertions, like recip-
rocal trust: “I trust you if you trust me”. The reciprocal
trust predicates are represented in Figures 23 and 24. The ‘c-
ta:grantsReadRecipr’ issued by ‘company0’ is only effective
if a similar predicate is issued granting conditional access to
records about the same item.

:company0 cta:publishes :record0 .
:record0 cta:about :item0 .

:company0 cta:creates :policy0 .
:policy0 cta:protects :item0 .
:policy0 cta:grantsReadRecipr :company1.

:company1 cta:creates :policy1 .
:policy1 cta:protects :item0 .
:policy1 cta:grantsReadRecipr :company0.

Figure. 23: CTA reciprocal trust extension (type definitions
omitted).

D. Bulk trust

So far the data sharing policies have addressed individual
items and individual companies. However, considerable ef-
ficiencies can be obtained by representing object groupings
(lots) and company sets (groups).
There are three ways of modelling relationships with cardi-
nality greater than one in RDF. The first, and simplest, is
to define multiple values for a predicate. The second uses
‘head’ and ‘rest’ predicates to create a linked list and is in-
tended for closed, ordered collections. The third uses types



Access Control Policies for Traceability Information Systems 568

��������

����	�

��
�
����

���	
���

�������

��
����
��� ��
��������

���	
���

��
���
�����
������

�������

��
����������
���
�����
������

��
�����������
����
���

Figure. 24: CTA reciprocal trust extension graph.

and special ordinal predicates to define the items that belong
to the collection. There are ordered and unordered collec-
tions, called Sequence and Bag, respectively.
Figures 25 and 26 represent ‘lot0’ that contains three items
and ‘group0’ that contains two companies. For the product
lot, multiple predicate values were used because it is a sim-
pler, less verbose approach that is suitable for relationships
without attributes. The lot object can be further character-
ized, with predicates for it. For the trading partner group, a
‘Bag’ was used because it provides an identity to the collec-
tion and allows further characterization of the relationship.
Also the cardinality of the relationship is expected to be
much smaller than the lots that can reach thousands of items.

:lot0 cta:inLot :item0.
:lot0 cta:inLot :item1.
:lot0 cta:inLot :item2.

:group0 cta:group [
a rdf:Bag;
rdf:_1 :company0;
rdf:_2 :company1

].

Figure. 25: CTA bulk trust. Product lot and company group.

�

�������

�

��	
����

������

��	
����

������

��	��

����
�

�������	�

����
�

�������	�

����
�

�������	�

���	���

������	��

Figure. 26: CTA bulk trust graph.

VIII. Conclusion

Our results for access control agree with previous result-
s [4] [39] that show that WS technologies overheads are very
significant. The performance of the raw implementations
compared with the XACML-converted policies shows that
XACML overheads are very significant: 400 times on aver-
age, and over 1000 times in the worst case.
There is a clear need to simplify and streamline the standards
and there is room for performance improvements in the im-
plementations. However, despite these drawbacks, WS tech-
nologies are widely used, meaning that their advantages like
inter-operability, flexibility, and tool support; add value for
developers and make up for the additional cost. That is al-
so the case for using XACML to protect supply chain data.
XACML allows the policies to be exchanged in a standard
format that can be properly interpreted in all the policy en-
forcement points and allows the use of other tools that com-
ply with the standard (e.g. auditing tools).
The contribution of this work is the detailed description of
the SCAz API and its implementations: EAC based on A-
CLs, CCT based on capabilities, and CTA based on Linked
Data technologies; and the performance assessment of the
enforcement of supply chain data visibility policies, with an
externalized security architecture. CTA has extensible se-
mantics while EAC and CCT have predefined semantics and,
because of this, CTA was expected to be slower. However,
in the assessment, all three mechanisms express exactly the
same visibility restrictions and there are no significant per-
formance differences for evaluation of requests, and CTA is
even better than EAC. Considering that the performance is
similar and that it is extensible, in future work CTA should
be the preferred choice for expressing supply chain autho-
rizations.

A. Future work

CTA will be used to represent advanced conditions that are
required for specific business cases – Pharmaceuticals pedi-
grees, for instance – and the new policies will be converted
to XACML and enforced in the context of the EPC Network.
There are indications that the performance overheads report-
ed using the HERAS-AF library could be significantly low-
ered with more optimized alternatives [40] [23]. This propo-
sition needs to be measured in practice before more general
conclusions can be drawn.
The evaluation job execution will be improved to measure
the performance of XACML with more than 104 items [38].
The authorization challenges of externalized security in the
supply chain traceability system illustrated how WS can as-
sist in complex and dynamic business environments involv-
ing multiple organizations. Much more research can be done
in SCM and Traceability systems, to explore the advanced
capabilities of Web Services.

Acknowledgment

Miguel L. Pardal is supported by a PhD fellowship from
the Portuguese Foundation for Science and Technology FCT
(SFRH/BD/45289/2008).



569 Pardal et al.

References

[1] T. Erl, SOA Principles of Service Design. Prentice
Hall, July 2007.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, We-
b Services: Concepts, Architectures and Applications.
Springer Verlag, 2004.

[3] J. Newmarch, “A critique of web services,” IADIS E-
Commerce, 2004.

[4] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and
M. Hericko, “Comparison of performance of Web Ser-
vices, WS-Security, RMI, and RMI-SSL,” Journal of
Systems and Software, vol. 79, no. 5, pp. 689–700,
2006.

[5] R. Sandhu and P. Samarati, “Access control: principle
and practice,” IEEE Comm. Magazine, vol. 32, no. 9,
pp. 40–48, September 1994.

[6] B. Parducci, H. Lockhart, and E. Rissanen, eXtensible
Access Control Markup Language (XACML) Version
3.0, OASIS Std., January 2013.

[7] K. Laudon and J. Laudon, Management Information
Systems - 12th edition. Prentice Hall, January 2011.

[8] R. Agrawal, A. Cheung, K. Kailing, and S. Schonauer,
“Towards Traceability across Sovereign, Distributed R-
FID Databases,” in Int’l Database Engineering and Ap-
plications Symp. (IDEAS), 2006.

[9] F. Thiesse, C. Floerkemeier, M. Harrison, F. Micha-
helles, and C. Roduner, “Technology, Standards, and
Real-World Deployments of the EPC Network,” IEEE
Internet Computing, vol. 13, no. 2, pp. 36–43, 2009.

[10] EPCglobal, EPC Information Services (EPCIS) 1.0.1
Specification, GS1 Std., September 2007.

[11] J. J. Cantero, M. A. Guijarro, A. Plaza, G. Arrebola, and
J. Baos, “A Design for Secure Discovery Services in
the EPCglobal Architecture,” in Unique Radio Innova-
tion for the 21st Century, D. C. C. Ranasinghe, Q. Z. Z.
Sheng, and S. Zeadally, Eds. Springer Berlin Heidel-
berg, 2010, pp. 183–201.

[12] C. Kürschner, C. Condea, O. Kasten, and F. Thiesse,
“Discovery Service Design in the EPCglobal Network,
Towards Full Supply Chain Visibility,” Internet of
Things, pp. 19–34, 2008.

[13] M. L. Pardal and J. A. Marques, “Cost Model for RFID-
based Traceability Information Systems,” in IEEE Int’l
Conf. on RFID Technology and Applications, Septem-
ber 2011.

[14] M. Eurich, N. Oertel, and R. Boutellier, “The impact
of perceived privacy risks on organizations’ willingness
to share item-level event data across the supply chain,”
Journal of Electronic Commerce Research, vol. 10, no.
3-4, pp. 423–440, December 2010.

[15] R. N. Hebig, C. Meinel, M. Menzel, I. Thomas, and
R. Warschofsky, “A Web Service Architecture for De-
centralised Identity- and Attribute-Based Access Con-
trol,” in Proc. IEEE Int’l Conf. Web Services (ICWS),
2009, pp. 551–558.

[16] D. Baier, V. Bertocci, K. Brown, E. Pace, and
M. Woloski, A Guide to Claims-Based Identity and Ac-
cess Control. Microsoft, 2010.

[17] S. Cantor, J. Kemp, R. Philpott, and E. Maler, Asser-
tions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0, OASIS Std., March
2005.

[18] C. Alm and R. Illig, “Translating High-Level Autho-
rization Constraints to XACML,” in Proc. 6th World
Congress Services (SERVICES-1), 2010, pp. 629–636.

[19] R. Yavatkar, D. Pendarakis, and R. Guerin, RFC
2753 – A Framework for Policy-based Admission
Control, IEFT, Internet Engineering Task Force Std.,
January 2000. [Online]. Available: http://www.ietf.org/
rfc/rfc2753.txt

[20] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans,
G. Gross, B. de Bruijn, C. de Laat, M. Holdrege,
and D. Spence, RFC 2904 – AAA Authorization
Framework, IEFT, Internet Engineering Task Force
Std., August 2000. [Online]. Available: http://www.
ietf.org/rfc/rfc2904.txt

[21] F. Huonder, “Conflict Detection and Resolution of X-
ACML Policies,” Master’s thesis, University of Applied
Sciences Rapperswil, July 2010.

[22] F. Turkmen and B. Crispo, “Performance evaluation of
XACML PDP implementations,” in Proc. of the 2008
ACM Workshop on Secure Web Services, ser. SWS.
New York, NY, USA: ACM, 2008, pp. 37–44.

[23] A. Liu, F. Chen, J. Hwang, and T. Xie, “Designing
Fast and Scalable XACML Policy Evaluation Engines,”
IEEE Transactions on Computers, no. 99, 2010.

[24] C. Floerkemeier, C. Roduner, and M. Lampe, “RFID
Application Development with the Accada Middleware
Platform,” IEEE Systems Journal, Special Issue on R-
FID Technology, December 2007.

[25] D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud
computing, REST and Mashups to simplify RFID ap-
plication development and deployment,” in Proc. of the
2nd Int’l Workshop on Web of Things (WoT). ACM,
2011, pp. 9:1–9:6.

[26] D. Allemang and J. Hendler, Semantic Web for the
Working Ontologist, Second Edition: Effective Model-
ing in RDFS and OWL, 2nd ed. Morgan Kaufmann,
June 2011.

[27] F. Manola and E. Miller, RDF Primer, W3C
Std. [Online]. Available: http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/



Access Control Policies for Traceability Information Systems 570

[28] S. Harris and A. Seaborne, SPARQL 1.1 Query
Language, W3C Std. [Online]. Available: http://www.
w3.org/TR/2012/PR-sparql11-query-20121108/

[29] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and
B. Thuraisingham, “A cloud-based rdf policy engine
for assured information sharing,” in Proceedings of
the 17th ACM symposium on Access Control Models
and Technologies, ser. SACMAT ’12. New York, NY,
USA: ACM, 2012, pp. 113–116. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295157

[30] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu,
W. Winsborough, and B. Thuraisingham, “Rowlbac:
representing role based access control in owl,” in
Proceedings of the 13th ACM symposium on Access
control models and technologies, ser. SACMAT
’08. New York, NY, USA: ACM, 2008, pp. 73–
82. [Online]. Available: http://doi.acm.org/10.1145/
1377836.1377849

[31] R. Ferrini and E. Bertino, “Supporting rbac with
xacml+owl,” in Proceedings of the 14th ACM
symposium on Access control models and tech-
nologies, ser. SACMAT ’09. New York, NY,
USA: ACM, 2009, pp. 145–154. [Online]. Available:
http://doi.acm.org/10.1145/1542207.1542231

[32] V. Papakonstantinou, M. Michou, I. Fundulaki,
G. Flouris, and G. Antoniou, “Access control for rdf
graphs using abstract models,” in Proceedings of the
17th ACM symposium on Access Control Models and
Technologies, ser. SACMAT ’12. New York, NY,
USA: ACM, 2012, pp. 103–112. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295155

[33] R. Brachman and H. Levesque, Knowledge Represen-
tation and Reasoning. Morgan Kaufman, 2004.

[34] M. L. Pardal, M. Harrison, and J. A. Marques, “As-
sessment of Visibility Restriction Mechanisms for R-
FID Data Discovery Services,” in IEEE Int’l Conf. on
RFID, April 2012, p. 7.

[35] M. L. Pardal, M. Harrison, S. Sarma, and J. A. Mar-
ques, “Enforcing RFID Data Visibility Restrictions Us-
ing XACML Security Policies,” in IEEE Int’l Conf. on
RFID Technology and Applications, November 2012.

[36] ——, “Performance Assessment of XACML Autho-
rizations for Supply Chain Traceability Web Services,”
in 8th Int’l Conf. on Next Generation Web Services
Practices (NWeSP), November 2012.

[37] G. Karjoth, A. Schade, and E. V. Herreweghen, “Im-
plementing ACL-Based Policies in XACML,” in An-
nual Computer Security Applications Conf. (ACSAC),
December 2008, pp. 183–192.

[38] A. Ilic, A. Grssbauer, F. Michahelles, and E. Fleisch,
“Understanding data volume problems of RFID-
enabled supply chains,” Business Process Management
Journal, vol. 16, no. 6, 2011.

[39] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllyma-
ki, “An evaluation of binary XML encoding optimiza-
tions for fast stream based XML processing,” in Proc.
of the 13th Int’l Conf. on World Wide Web, ser. WWW.
New York, NY, USA: ACM, 2004, pp. 345–354.

[40] B. Butler, B. Jennings, and D. Botvich, “XACML poli-
cy performance evaluation using a flexible load testing
framework,” in Proc. of the 17th ACM Conf. on Com-
puter and Communications Security, ser. CCS. New
York, NY, USA: ACM, 2010, pp. 648–650.


