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Abstract. This report presents a cost model developed to compare traceability
information system architectures.

1 Introduction

Traceability information systems collect data statements such as: “Object O was seen
at time T, place L.” and “Object O was aggregated in pallet P”.

These statements are stored along the product supply chain in different databases
owned by different organizations.

The collected data is used to answer traceability queries [1], such as:

– Track/Recall query:
What is current location of object O?

– Trace/Pedigree query:
What is the history of object O?

– Aggregation/Bill-of-Materials (BoM) query:
What are the components of object O?

There are several proposals of traceability systems. The considered systems are
highlighted in figure 1. The classification criteria are data integration and centraliza-
tion, as proposed by Do et al. [2].

The data integration criterion considers where data is physically stored. Data can be
copied to specific locations (materialized integration) or referenced (virtual integration).

The centralization criterion considers the reliance on special nodes for data capture
and query processing. In a centralized system there are nodes with special functions. In
a decentralized system all nodes are functionally equivalent.

Combining the criteria, we have four distinct approaches to traceability: metadata
integration (virtual, centralized), data integration (materialized, centralized), unstruc-
tured peer-to-peer (virtual, decentralized), and structured peer-to-peer (materialized,
decentralized).

This report presents an analytical cost model developed to compare the four ap-
proaches, given a specific supply chain problem.

The model is based on the model developed to compare Theseos and TraceSphere
by Murthy and Robson [3].



Fig. 1. Traceability system proposal classification.

2 Cost model

2.1 Chain modeling

We use directed acyclic graphs (DAGs) [4] to represent the supply chain.
A graph is defined by a set of vertices (V) and a set of edges (E), each connecting

two vertices.
A DAG is a graph with directed edges, and without cycles. A DAG can be topologi-

cally sorted [4]. A DAG’s in-degree is the number of incoming edges, and its out-degree
is the number of outgoing edges. A vertex with in-degree 0 is a begin-vertex. A vertex
with out-degree 0 is a end-vertex.

We consider item-defined DAGs and chain-defined DAGs.

Item DAG An item flowing in a supply chain defines a DAG. The vertices represent
companies, and the edges represent the item flow between companies.

All vertices of an item DAG are connected by edges. Each vertex has, at most,
in-degree 1 and, at most, out-degree 1. There is a single begin-vertex and a single end-
vertex.

Figure 2 presents the item DAG for object A. Figure 3 presents the item DAG for
object B.
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Fig. 2. Item-defined Directed-Acyclic Graph.

������������	
����������	�
����	�

��������	

����	�

Fig. 3. Another item-defined Directed-Acyclic Graph.

Chain DAG Each item flowing during the traceability system’s lifetime defines an item
DAG of its own. At the end of the system’s lifetime, we can define a chain DAG from
the set of item DAGs.

The vertices of the chain DAG are defined by the union of item DAG vertices. The
edges of the chain DAG are defined by the union of item DAG edges.
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Fig. 4. Chain-defined Directed-Acyclic Graph.

An example chain DAG is represented in figure 4. It combines the item DAGs of
objects A and B, presented earlier.

Traceability query formulation The traceability queries can be defined using the
graph formulation.

For the Track/Recall query, given a chain DAG and an item, we want to find the
vertex in the item DAG with the highest topological ordering. We want to find the
vertex furthest ahead in the item DAG.

For the Trace/Pedigree query, given a chain DAG and an item, we want to recover
the item DAG.

The Bill-of-Materials (BoM) query formulation requires aggregation.



Aggregation An aggregation is a whole-part association between two physical objects:
the aggregate and the component.

The aggregation can be made for transportation purposes - the aggregate carries
the component - or for manufacturing purposes - the component is assembled to the
aggregate.

We can define the relationship agg(a, c) meaning that object c (component) is ag-
gregated to object a (aggregate).

We can also define the recursive relationship aggr(a, c) meaning that either agg(a, c)
holds or that there is another object a2 such that both agg(a, a2) and aggr(a2, c) hold.

Aggregated-item DAG We can now define an aggregated-item DAG for object iwhere
the vertices are companies and the edges are defined by the flow between companies of
the item i or of an aggregate a such that aggr(a, i).

An aggregated-item DAG has all vertices with out-degree of, at most, 1. For a
transported-item, the in-degree of all vertices is, at most, 1. For an assembled-item,
the in-degree of all vertices is greater or equal to 0, and is determined by the assembly.

Figure 5 presents the transported-item DAG for object A. Object A was aggregated
to object C during the flow from Distributor 1 to Distributor 2.
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Fig. 5. Transported-item Directed-Acyclic Graph.

Figure 6 presents the assembled-item DAG for object C. Objects A and B were
aggregated on object C on the Manufacturer 1 node.
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Fig. 6. Assembled-item Directed-Acyclic Graph.

Traceability query formulation with aggregation We can now extend the traceability
query formulation to include aggregation.



For the Track/Recall query with aggregation, given a chain DAG and an item, we
want to find the vertex in the transported-item DAG with the highest topological order-
ing.

For the Trace/Pedigree query with aggregation, given a chain DAG and an item,
we want to retrieve the transported-item DAG defined by the item and by all of its
containers.

For the Bill-of-Materials (BoM) query, given a chain DAG and an item, we want to
retrieve the assembled-item DAG defined by the item and by all of its parts.

2.2 Parameters

The cost model’s parameters are presented in table 1. The parameters aim to capture
characteristics of the system, application, chain, and product.

Type Name Symbol Unit Default value
System Bandwidth β beta bps 1 000 000 000
System Processing speed γ gamma bps 1 000 000 000
System Seek time θ theta s 0,001
Application Message size µ mu bit 100 000
Application Item record size δ delta bit 100 000
Chain Nodes n vertex 3
Chain Avg. item records per node r item record 1
Chain Avg. length z vertex 3
Product Avg. BoM depth b level 3
Product Avg. children per BoM level c node 2

Table 1. Common parameters.

The number of nodes in the chain (n) is the number of vertices in the chain DAG.
The average number of item records per node (r) is the average of the number of

events recorded on each node about a particular item. For Discovery Service purposes,
a value of 1 is sufficient.

The average length of the chain DAG (z) is the average of the length of all item
DAGs defined over the lifetime of the system.

The average depth (b) and children per node (c) parameters are used to characterize
an average product BoM tree. The number of components for a level is given by cb with
b starting at 0 for the root node. The accummulated number of components is given by∑b

j=0 c
j .

2.3 Assumptions

1. System-level assumptions
(a) A system node is defined as a data store with processing capabilities owned by

a specific company.
(b) System parameters are the same for every node.



(c) Messages and received item records can be processed in main memory.
(d) All data stores are append-only.
(e) The time cost of accessing the data store to retrieve a record is independent of

store size and independent of record size.
(f) Storing a record can be done asynchronously, so the time cost can be ignored.

2. Application-level assumptions
(a) Application parameters are the same for every node.
(b) All messages have the same size.
(c) All item records have the same size.
(d) The mapping from Object ID to Product Class is well-known.
(e) The mapping from Product Class to Manufacturer is well-known.
(f) The cost of locating the node where to issue a query (e.g. Manufacturer) is

negligible.
3. Chain-level assumptions

(a) Companies store data records about the items moving through the chain.
(b) A supply chain can be represented by a Direct-Acyclic Graph (DAG).
(c) A vertex (node) in the graph represents a company.
(d) A directed edge in the graph represents a flow of items.
(e) Nodes in the DAG can be topologically sorted [4] and each item moves in the

chain according to this ordering i.e. from a begin-node towards an end-node.
(f) An end-node is an end-destination of items (e.g. end-retailer in a distribution

chain, end-manufacturer in a supply chain).
4. Product-level assumptions

(a) A BoM for a product is represented as a tree. The root node is the product. The
children nodes are components of the parent node.

(b) A product is never disassembled.

2.4 Cost formulae

The time cost is measured in seconds. It is denoted by C.
The storage cost is measured in bits. It is denoted by S.

Time cost The cost of processing a message (CMP ) is the message size divided by the
processing speed.

CMP =
µ

γ

The cost of transferring a message over the network (CMT ) is the message size
divided by the bandwidth.

CMT =
µ

β

The cost of a lookup (CL) is a constant.

CL = θ



The cost of a one-way message (CM ) is the sum of the cost of sending, transferring,
and receiving the message.

CM = 2 · CMP + CMT

The cost of a message exchange (CMX ) is the sum of the cost of the request and of
the response. A data lookup cost can added when response data has to be fetched.

CMX = 2 · CM

The previous message cost definitions can be extended to include a payload of k
item records.

CMP (k) =
µ+ k · δ

γ

CMT (k) =
µ+ k · δ

β

CM (k) = 2 · CMP (k) + CMT (k)

CMX(k) = CM (0) + CM (k)

For a message exchange, k is the sum of item records in the request and response
payloads.

Storage cost The storage cost of k item records (S(k)) is the multiplication of the item
record size.

S(k) = k · δ

3 Metadata integration approach

In this approach the system is centralized to integrate metadata, namely, the location of
data sources.

This approach is exemplified by the BRIDGE Directory [5] system. It is also con-
sidered to be the most closely related to the EPCglobal Discovery Service standard [6]
under consideration.

MDI stands for MetaData Integration; DS for Discovery Service; EPCIS for EPC
Information Services [7].

3.1 Additional assumptions

1. There is a single, well-known DS Search engine.
2. There are multiple DS instances.
3. There is one EPCIS instance for each company.
4. The DS Search is consulted once per company per product class to locate the DS

instance.
5. The cost of DS Search is considered negligible because the result can be cached for

the duration of the system’s lifetime.
6. A DS publication is done only once for each item for each node.



3.2 Capture cost

When a company receives a product, r EPCIS records are created locally. A single
publication is sent to the DS.

Fig. 7. Metadata integration capture.

The time cost of an item’s data capture (Cmdi capture) is a message exchange with
an item record for each company where the product passes.

Cmdi capture = z · CMX(1)

The storage cost of an item’s data capture (Smdi capture) is the sum of the cost of
EPCIS records with the cost of the DS publication.

Smdi capture = z ·
(
S(r) + S(1)

)
3.3 Track query cost

To answer a track query the DS Root is contacted to locate the suitable DS instance.
A query is issued to the DS and the EPCIS location is returned in the response. The

asker contacts the EPCIS with the most recent sighting of the object.

Fig. 8. Track query cost in the metadata integration approach.



The time cost of a track query (Cmdi track) is the sum of the cost of querying the
DS with the cost of querying the EPCIS.

Cmdi track = 2 ·
(
CMX(1) + CL

)
3.4 Trace query cost

A trace query is issued to the DS and a list of EPCIS locations are returned. The asker
contacts each EPCIS for all records.

The time cost of a trace query (Cmdi trace) is the sum of the cost of querying the DS
with the cost of querying each EPCIS.

Cmdi trace =
(
CMX(z) + CL

)
+ z ·

(
CMX(r) + CL

)
3.5 BoM query cost

A BoM query starts with a DS query to track the first observation of the product. Then,
the asker contacts the EPCIS for all aggregation records. The BoM query continues re-
cursively for each component: ask DS for first observation, ask EPCIS for aggregations.

The time cost of a BoM query (CmdiBoM ) is the sum of the cost of the DS track
queries for each component in the BoM tree with the cost of the EPCIS aggregation
queries.

CmdiBoM =

b∑
i=0

(
ci ·
(
CMX(1) + CL

))
+

b∑
i=0

(
ci ·
(
CMX(c) + CL

))

3.6 Parameter dependency analysis

The Metadata integration model’s dependency to chain and product parameters is pre-
sented in table 2.

Formula/Parameter n r z b c
CmdiCapture x
Cmdi Track

Cmdi Trace x x
CmdiBoM x x
SmdiCapture x x

Table 2. Metadata integration formulae dependency to chain and product parameters.

4 Data integration approach

In this approach the system is centralized to integrate all data.
This approach is exemplified by the ID@URI [8] system.
DI stands for Data Integration.



4.1 Capture cost

The capture records are sent to the Manufacturer for storage. No data is kept at the other
nodes.

Fig. 9. Data integration capture.

The time cost of an item’s data capture (Cdi capture) is a message exchange with an
item record for each company where the product passes.

Cdi capture = (z − 1) · r · CMX(1)

The storage cost of an item’s data capture (Sdi capture) is the sum of the cost of all
item records stored at the manufacturer.

Sdi capture = z · S(r)

4.2 Track query cost

The track query is sent directly to the Manufacturer.

Fig. 10. Data integration track query.

The time cost of a track query (Cdi track) is the cost of exchanging a message with
the Manufacturer with a single result item record.

Cdi track = CMX(1) + CL

4.3 Trace query cost

The trace query is also sent directly to the Manufacturer.
The time cost of a trace query (Cdi trace) is the cost of exchanging a message with

the Manufacturer with a list of result item records.

Cdi trace = CMX(z · r) + CL



4.4 BoM query cost

The BoM query is sent to the Manufacturer of each component.
The time cost of a BoM query (CdiBoM ) is the cost of exchanging a message with

the Manufacturer of each component to get the child component list.

CdiBoM =

b∑
i=1

ci ·
(
CMX(c) + CL

)
4.5 Parameter dependency analysis

The Data integration model’s dependency to chain and product parameters is presented
in table 3.

Formula/Parameter n r z b c
CdiCapture x x
Cdi Track

Cdi Trace x x
CdiBoM x x
SdiCapture x x

Table 3. Data integration formulae dependency to chain and product parameters.

5 Unstructured P2P approach

In this approach the system is decentralized and data is distributed across the capture
nodes.

This approach is exemplified by the Theseos [1] system.
UP2P stands for Unstructured Peer-to-Peer.

5.1 Additional assumptions

1. The cost of determining the address of the next node is a single lookup.

5.2 Capture cost

Data is captured along the supply chain and no communication is required.
There is no communication cost for an item’s data capture (Cup2p capture).

Cup2p capture = 0

The storage cost of an item’s data capture (Sup2p capture) is the sum of the cost of
all item records stored along the chain.

Sup2p capture = z · S(r)



Fig. 11. Unstructured P2P capture.

Fig. 12. Unstructured P2P track query.

5.3 Track query cost

The time cost of a track query is (Cup2p track) the sum of the cost of propagating the
query to the node where the item is with the cost of propagating back the response.
There is a lookup at each node required for the forwarding.

Cup2p track = z ·
(
CM + CL

)
+ z · CM (1)

5.4 Trace query cost

The time cost of a trace query is (Cup2p trace) the sum of the cost of propagating the
query to the node where the item is with the cost of propagating back the response with
the accumulated trace records.

Cup2p trace = z ·
(
CM + CL

)
+

z∑
i=1

(
CM (i · r)

)

5.5 BoM query cost

The time cost of a BoM query (Cup2pBoM ) is the sum of the cost of propagating the
forward queries (one message for each component) with the cost of propagating back
the response with the accumulated BoM tree.

Cup2pBoM =

b∑
i=1

(
ci · (CM + CL)

)
+

b∑
i=1

(
ci · CM

( b∑
j=i

c(b−j)
))



Formula/Parameter n r z b c
Cup2pCapture

Cup2p Track x
Cup2p Trace x x
Cup2pBoM x x
Sup2pCapture x x

Table 4. Unstructured P2P formulae dependency to chain and product parameters.

5.6 Parameter dependency analysis

The unstructured P2P model’s dependency to chain and product parameters is presented
in table 4.

6 Structured P2P approach

In this approach the system is decentralized and data is distributed according to a hash-
ing algorithm.

This approach is exemplified by the OIDA [9] system.
SP2P stands for Structured Peer-to-Peer; DHT for Distributed Hash Table.

6.1 Additional assumptions

1. There is one DHT node for each chain node.
2. The hashing algorithm distributes the data evenly across the DHT nodes, using a

unique item identifier.
3. The number of message hops to put or get a value is the logarithm of the number

of DHT nodes [10].
4. The cost of determining the address of the next hop is a single lookup.
5. The nodes join the DHT once during the system’s lifetime and never leave.
6. The cost of joining the DHT is negligible.
7. The item records are all kept on the same DHT node, indexed by the unique item

identifier.

6.2 Capture cost

When a company receives a product, it contacts a known DHT node to store the data
record. The hash algorithm determines the destination node and the destination is reached
through a series of forwarding messages (hops).

The time cost of data capture (Csp2p capture) is the sum of the cost of the message
exchange with a DHT node with the cost of the message hops required to reach the node
where data will be stored, and with the cost of the acknowledgement message.

Csp2p capture = z · r ·
(
CMX(1) + log(n) ·

(
CM (1) + CL

)
+ CM

)



Fig. 13. Structured P2P capture.

The storage cost of an item’s data capture (Ssp2p capture) is the sum of the cost of
all item records stored in a single DHT node plus the hop pointers.

Ssp2p capture = z ·
(
S(r) + S

(
log(n)

))

6.3 Track query cost

When a track query is issued, a known DHT node is contacted to retrieve the data
record. The hash algorithm determines the location node and it is reached through a
series of forwarding messages (hops).

Fig. 14. Structured P2P track query.

The time cost of a track query (Csp2p track) is the sum of the cost of the message
exchange with a DHT node with the cost of the message hops required to reach the
node where data is stored with the cost of the response message containing the single
item record.

Csp2p track = CMX(1) + log(n) ·
(
CM + CL

)
+ CM (1)



6.4 Trace query cost

The time cost of a trace query (Csp2p trace) is the sum of the cost of the message ex-
change with a DHT node with the cost of the message hops required to reach the node
where data is stored, with the cost of the response message containing the item records.

Csp2p trace = CMX(z · r) + log(n) ·
(
CM + CL

)
+ CM (z · r)

6.5 BoM query cost

The time cost of a BoM query (Csp2pBoM ) is the cost of exchanging a message with
the DHT for each component to get the child component list.

Csp2pBoM =

b∑
i=1

(
ci ·
(
CMX(c) + log(n) · (CM + CL) + CM (c)

))

6.6 Parameter dependency analysis

The structured P2P model’s dependency to chain and product parameters is presented
in table 4.

Formula/Parameter n r z b c
Csp2pCapture x x x
Csp2p Track x
Csp2p Trace x x x
Csp2pBoM x x x
Ssp2pCapture x x x

Table 5. Structured P2P formulae dependency to chain and product parameters.
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