
Core mechanisms for Web Services extensions

Miguel Pardal
Instituto Superior Técnico

Department of Information Systems and Computer Engineering
miguel.pardal@dei.ist.utl.pt

Abstract

Organizations expect Web Services to make their infor-
mation systems more agile, so they can better adapt to
changes in business requirements. Hence, this technology
focuses on interoperability and flexibility giving develop-
ers the ability to customize, reuse and enhance Web Service
functionalities as well as non-functional extensions such as
security, transactions and reliable messaging.

This paper describes the core mechanisms necessary to
build Web Services extensions, regardless of the underlying
platform. This contribution is based on the results of a com-
prehensive evaluation of existing implementations.

1. Introduction

The Internet allows an open and dynamic business envi-
ronment, where information and communication technolo-
gies enable new and innovative ways to work and create
value. In this value web, Organizations use sophisticated
software to connect to their partners [14].

Enterprise applications for the Internet have heavy-duty
requirements: users in high numbers and diverse profiles,
large volumes of complex data, unsettled business rules, and
several integration interfaces with other applications [7].

The main challenge of Enterprise applications is change:
the needs of the customers change, businesses must change
accordingly and so do their systems. Because of this, En-
terprise applications benefit from being agile, i.e., adapting
more easily to requirement changes.

Web Services (WS) [4] and Service-Oriented Architec-
tures (SOA) [13] address the need for agility at the technol-
ogy and architecture levels, respectively.

1.1. Web Services

A Web Service is an access endpoint to data and func-
tional resources of Enterprise applications.

Web Services technology is defined by standards. Fig-
ure 1 shows WS-Map [17], a broad and vendor-independent
standards index.

Figure 1. Web Services standards map

Figure 2 illustrates how a client interacts with a Web Ser-
vice. The service endpoint is published in a directory. The
client discovers the service location. The available data and
operations are described in XSD (XML Schema Definition)
[5] and WSDL (Web Services Description Language) [2].
The client generates invocation stubs that perform run-time
data conversion to SOAP [10] message format. Additional
requirements are described in WS-Policy [19]. Extension li-
braries are engaged to satisfy these requirements both on
the client and on the server, and control data is added to the
SOAP message headers. The client invokes the service (us-
ing a transport protocol, like HTTP [6] for example) and the
service is executed!

XSD, WSDL, WS-Policy and SOAP all use XML [3] as
their foundation for data representation.



Figure 2. Web Services binding

1.2. Functional and non-functional requirements

Web Service requirements can be classified as functional
or non-functional.

Informally, functional requirements say what a Web Ser-
vice can do. Non-functional requirements say what proper-
ties hold when the Web Service is executed. Non-functional
requirements include: security, transactions, reliable mes-
saging, management, usability, and performance. The non-
functional requirements of a Web Service can be contradic-
tory, so they must be balanced during implementation.

Let’s consider an example Web Service that gives access
to an on-line inventory. A functional requirement is “The
service allows reading data from the product inventory”. A
non-functional requirement is “The service interface must
be simple to use” and another one is “The service must as-
sure data is kept confidential from non-authorized users”.
There is a non-functional requirement conflict here, as the
service would be easier to use if it didn’t need a password,
but it would be less secure.

Another issue is Web Service flexibility in non-
functional requirements. For instance, service protec-
tion can be adjusted to data value: low value messages
can use a weaker cipher algorithm than high value mes-
sages. Also, service protection can be adjusted to invocation
circumstances: a request made from a client inside the cor-
porate network can use a local security credential whereas
an external client must use a cross-domain security creden-
tial.

1.3. Separating components and aspects

The functional requirements should be implemented as
components, that can be structured and composed as generic
procedures.

The non-functional requirements should be implemented
as aspects, that allow additional procedures to be executed
around or inside components’ procedures.

This can be achieved with design patterns [9] that im-
prove relations between components and overall program
structure, or with new programming language paradigms,
like AOP (Aspect Oriented Programming) [12].

1.4. Web Services extensions

Non-functional requirements can be specified with WS-
Policy, but extension libraries are necessary for actual im-
plementation.

The problem at hand is to identify the features a plat-
form must have to enable Web Services extensions, keeping
components and aspects orthogonal.

In question form: What are the core mechanisms re-
quired to support Web Services extensions such as security,
transactions and reliable messaging?

2. Core mechanisms for Web Services exten-
sions

We propose the following set of core mechanisms for
Web Services extensions:

• Requirements declaration (Reqs);

• Configuration (Config);

• Execution contexts management (Ctx Mgmt);

• Message flow interception (Msg Flow Intercept);

• Operation execution interception (Op Exec Intercept).

2.1. Requirements declaration

The (non-functional) requirements declaration is done
with a service policy.

This capability is needed, for instance, to declare that a
Web Service can be invoked with transport security or with
message security. It can also be used to declare an operation
with transactional properties.

2.2. Configuration

The configuration selects the extension mechanisms to
engage and the parameters to use or to request from the ap-
plication in run-time (e.g. which digital certificate will be
used to sign messages).

Ideally this configuration should be generated automati-
cally from the client and server policies, after a negotiation.

This capability is needed to control the behavior of the
extension libraries.



2.3. Execution contexts management

Execution contexts are an abstraction to organize state
variables related to the Web Service. Contexts enable data
sharing between the extension library and the rest of the ser-
vice implementation. Some relevant context scopes are: Ap-
plication, Session, Operation and Thread.

For instance, the session context allows the storing of a
cryptographic key used to store the set of messages in the
same security scope. It can also be used to store distributed
transaction state, like: id, coordinator location, etc.

2.4. Message flow interception

The message flow interception provides access to the
message’s routing and contents (headers and body).

This capability allows, for instance, the forwarding of
a rejected incoming message, sending it to a security node
for reporting. It can also be used to retry sending a lost mes-
sage, to achieve reliable messaging.

The message flows are usually sequential, but there
are proposals, like SPEF (SOAP Profile Enabling Frame-
work) [15], for more elaborate flows.

2.5. Operation execution interception

The operation execution interception allows decision
points before the service code is actually executed. The
business objects, data objects, stubs and other objects are
created in factories that can be customized to return differ-
ent implementations according to the desired behavior.

Using this feature it’s possible, for instance, to imple-
ment generic security authorization mechanisms. It’s also
possible to transparently return transactional or reliable
transport implementations of remote Web Service stubs to a
client application.

2.6. Overview and dependencies

Figure 3 gives an overview of all the mechanisms for
Web Services extensions and shows the dependencies be-
tween them.

3. Related work

The presented mechanisms for Web Services extensions
were drafted from the results and evaluation of a study [18]
about the following implementations:

• WSE 3 (Web Services Enhancements 3) for Microsoft
Dot Net 2 [16];

• WSS4J (Web Services Security for Java), for Apache
Axis2, for Java [1];

Figure 3. Core extension mechanisms pack-
age diagram

• XWSS (XML and Web Services Security), for JAX-
WS 2, for Java [21].

The study included extensive tests for each implemen-
tation and the development of a prototype for a business
case-study.

The selected implementations were biased towards secu-
rity, but additional tests were performed for transactions and
reliable messaging usage scenarios.

After the conclusion of the prototype, a proof-of-concept
implementation of the mechanisms was developed for test-
ing and further evaluation in a laboratory project for a Dis-
tributed Systems course.

3.1. Case-study prototype

The chosen case-study was “real-estate contracts”
and the main functionality supported by the proto-
type was “signing of sale agreement between seller and
buyer”.

The full business process and informational entities were
modeled using a service-oriented extension of a method-
ology proposed by Guerra and Pardal [11] for enterprise
architecture. The prototype use-cases and interaction dia-
grams were modeled using UML [8]. The prototype speci-
fication and development explicitly accounted for binding,
invocation and key distribution, as briefly illustrated in fig-
ure 4, and detailed in [18].

3.2. Proof-of-concept implementation

The Web Services extension mechanisms were imple-
mented leveraging existing open-source libraries, primarily
JAX-WS (Java API for Web Services) 2 [21].

Requirements declaration was implemented with WS-
Policy provided by Apache Commons Policy 1.0 [1].



Figure 4. Prototype collaboration diagram

Message flow interception was based on JAX-WS han-
dlers.

Configuration, execution contexts and operation execu-
tion interception were implemented using singleton and fac-
tory design patterns [9] with additional custom coding.

3.3. Field tests

The Web Services extension mechanisms implementa-
tion was used by 300+ students in a Distributed Systems
course’s laboratory project, requiring the implementation of
a web services application and extension libraries for Web
Services security and transactions.

The security extension library supported encryption,
MAC (Message Authentication Code) and digital signa-
ture [20].

The distributed transactions extension library imple-
mented a “two-phase commit” consensus protocol for
transactions with relaxed isolation [22].

The final results were compared with results from a pre-
vious course, with similar goals and contents, but without
the mechanisms statement and the proof-of-concept imple-
mentation.

The new projects were better at separating the appli-
cation specific code from the extension code than the old
ones. Also, the success rate improved from 78.2% to 86.7%,
meaning that with the same available time, the students
were able to improve the capabilities of the extension.

The results also showed that a change of XML program-
ming approach from data-binding to data-wrapping could
yield better extension performance and more control, with
less data conversions between XML and objects (and vice-
versa).

The field tests showed that the identified mechanisms are
necessary and sufficient for the development of Web Ser-
vices extensions.

4. Conclusions and future work

The main goal of Web Services tools should be to sim-
plify XML programming. Development tools should focus
on Web Service contracts, with direct specification of data
schemas, functions and policy, rather than Java or Dot Net
centric approaches that map their own concepts to XML,
making the contracts less explicit and therefore more diffi-
cult to manage and maintain.

This paper presented the core mechanisms to build Web
Services extensions, regardless of the underlying platform.
The clear identification of these mechanisms and its map-
ping to different Web Services implementations makes it
simpler for developers to focus on the extension’s added
value and to abstract the platform (e.g. Java, Dot Net)
specifics.

“Security report” is an example extension for Web Ser-
vices security. This extension library would produce a re-
port stating all performed message security processing and
the used parameters (e.g. keys, certificates). Then, the ap-
plication could just read the report (oblivious to all the
specifics of the standards) and make a final trust decision:
accept the request or reject it.

Whenever possible, non-functional requirements should
be implemented by extension libraries that share context
with applications through meaningful abstractions, to del-
egate decisions in a simple and effective way. The “security
report” proposal is an example of such an extension.

A clear view of the mechanisms regardless of platform,
decreases the “cost-of-entry” into extension development,
broadens the number of developers that can try new exten-
sion ideas and encourages competition and best-of-breed se-
lections, that can further advance the state of the art of Web
Services technology.

References

[1] Apache. Securing soap messages with wss4j, 2006.
[2] D. Booth and C. K. Liu. Web services description language

(wsdl) version 2.0. W3C, Hewlett-Packard, SAP Labs, 2005.



[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible markup language (xml) 1.0 (third edi-
tion). W3C, Textuality and Netscape, Microsoft, Sun Mi-
crosystems, 2004.

[4] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weer-
awarana. Web Services Platform Architecture: Soap, WSDL,
WS-Policy, WS-Addressing, WS-Bpel, WS-Reliable Messag-
ing and More. Prentice Hall, 2005.

[5] D. C. Fallside and P. Walmsley. Xml schema part 0: Primer
second edition. W3C, October 2004.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
– http/1.1. IETF, June 1999.

[7] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford. Patterns of Enterprise Application Architecture.
Addison Wesley, 2002.

[8] M. Fowler and K. Scott. UML Distilled. Addison-Wesley,
1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. Soap version 1.2 part 1: Messaging frame-
work. W3C, Microsoft, Sun Microsystems, IBM, Canon,
June 2003.

[11] M. Guerra, M. Pardal, and M. M. da Silva. An integration
methodology based on the enterprise architecture. In Proc.
of the 2004 Conference of the UK Academy for Information
Systems (UKAIS 2004), May 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Finland, volume
LNCS 1241. Springer-Verlag, June 1997.

[13] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA:
Service-Oriented Architecture Best Practices. Prentice Hall
PTR, November 2004.

[14] K. Laudon and J. Laudon. Management Information Sys-
tems. Pearson Prentice-Hall, 2002.

[15] H. B. Malek and J. Durand. A soap container model for
e-business messaging requirements. In M. Kitsuregawa, ed-
itor, Proceedings of WISE 2005, volume LNCS 3806, page
643652. Springer-Verlag, 2005.

[16] Microsoft. Microsoft web services enhancements (wse) 3.0
documentation, 2005.

[17] M. Pardal. Ws-map: Web services standards map. WWW,
November 2006.

[18] M. F. L. Pardal. Security of enterprise applications in service
architectures. Master’s thesis, Instituto Superior Técnico,
September 2006.

[19] J. Schlimmer. Web services policy framework (wspolicy)
version 1.2. Microsoft, IBM, VeriSign, Sonic Software, SAP,
BEA Systems, March 2006. Editor.

[20] R. E. Smith. Internet Cryptography. Addison Wesley, 1997.
[21] Sun. Java web services developer pack. Sun Microsystems

Web Site, 2006.
[22] A. S. Tanenbaum and M. van Steen. Distributed Systems -

principles and paradigms. Prentice Hall, 2003.


