
1 

A survey and case-study evaluation of 
Web Services security technology 

Miguel Pardal 

Instituto Superior Técnico, 

Department of Information Systems and Computer Engineering 
miguel.pardal@dei.ist.utl.pt 

http://mega.ist.utl.pt/~mflpar/ 
 



2 

Abstract 

Organizations want to make their information systems more agile so they can better answer the 

challenge of adapting to changes in business requirements. Web Services and Service-Oriented 

Architectures propose systems with greater flexibility, reuse and interoperability. However, the 

essential security standards and implementations have yet to be sufficiently evaluated in practical 

uses. 

This paper presents a survey of Web Services technology with additional detail for security 

standards and implementations. It also evaluates the technology using a complex and valuable 

business case-study: real estate transactions. A prototype evidenced insufficiencies in the available 

implementations. 

 

Keywords 

Service-Oriented Architectures 

Web Services 

Security 

Enterprise Information Systems 

Enterprise Applications Integration 

Distributed Systems 

 



3 

1 Introduction 

The Internet is the main infrastructure of the information society. As a large scale 

public network, it allows for an open and dynamic business environment, where 

information and communication technologies enable new and innovative ways to 

work and create value [Laudon02]. 

Enterprise applications are the software part of information systems for electronic 

business on the Internet [Fowler02]. They have many users, must deal with large 

volumes of complex data, and use complex and changeable business rules to 

process it. They also need to be integrated with other systems typically built for 

distinct purposes, by other organizations and using different technologies. All of 

this requires advanced tools and qualified people. Therefore, building enterprise 

applications is a significant technical challenge. 

One of the main challenges of enterprise applications is change: customers 

change, businesses change and their information systems must also change 

[Laudon02]. This means that applications need to be more agile, i.e., they need to 

more easily adapt to changes in the business requirements. Programming 

methodologies and techniques are important, but the underlying technology must 

also be an enabler and not an obstacle. 

Web Services (WS) [Curbera05] and Service-Oriented Architectures (SOA) 

[Krafzig04] are currently being proposed to address this need for agility, at the 

technology and architecture levels, respectively, with the goals of maximizing 

flexibility, reuse and interoperability. The services are the units of enterprise 

applications, granting access to data and functional resources. 

For most enterprise applications, security is an essential requirement: valuable 

resources require adequate protection [Anderson01]. With the increase in 

openness brought by services come new security challenges. One can no longer 

rely on network configuration and firewalls to draw the border between the 

organization and the outside world. The services must “know” the principals, so 

they can be used by those who are trusted, leaving the rest out. This is easier said 

than done. The services must have effective mechanisms for access control 

(authentication, authorization), message protection (confidentiality, integrity) and 

configuration flexibility (for choosing the settings most suited for each 

invocation). 



4 

The focus of Web Services Security is on the reuse and integration of existing 

cryptography-based security technologies like X.509 [Housley99], Kerberos 

[Kohl93] and HTTPS [Rescorla00]; rather than reinvention. 

1.1 Objectives and outline 

This paper answers the following two questions: 

• What are Web Services? 

• What are the protection capabilities of current Web Services Security 

technology? 

To do so, first a survey of Web Services technology is presented, focusing on 

security standards and implementations. Next, the evaluation results from a 

case-study prototype and other implementation tests are presented and discussed. 

The paper ends with a conclusion that recaps the main issues and points directions 

to future work. 

 



5 

2 Survey 

This section presents the survey on Web Services technology, covering the 

platform as a whole, including standards and implementations, and an example 

service in detail. 

The scope of the survey was limited to technological aspects, leaving out SOA 

aspects, like: methodologies, service modeling, service orchestration and 

choreography, and management of meta-information.  

2.1 Web Services platform 

A Web Services platform is an implementation of a set of Web Services standards 

that enable the creation and execution of Web Services applications. The core 

standards are XML [Bray04], XML Schema [Fallside04], SOAP [Gudgin03] and 

WSDL [Booth05]. These standards are broadly available in current 

implementations. 

There are several standardization processes in progress, like WS-Policy 

[Schlimmer06], for instance. Each proposal is usually sponsored by companies, 

like Microsoft, IBM, Sun Microsystems and Oracle, then is submitted to a 

organization, like W3C, OASIS, IETF or WS-I, where there it is further discussed 

and finalized. 

To keep the platform design coherent, there are several core technical guidelines 

that standards and implementations should abide to: 

• Message orientation - services communicate exclusively by messages, that 

have a life time that can span more than one transmission on a given 

transport; 

• Encapsulation - services are described in standard and public contracts, but 

their implementation is kept private; 

• Autonomy - each service can be managed individually and should have the 

least dependencies possible from other services; 

• Standards composition - the standards used by the services should be 

structured in block-like fashion so they can be custom composed according 

to the needs of a particular application; 



6 

• Standards-based interoperability - no precondition is assumed beyond those 

explicit in the standards. The standards should be publicly accessible and 

open. 

2.2 Standards 

Standards enable interoperability. If two implementations are to cooperate, they 

must follow a compatible set of standards. WS standards can be used as-needed 

by applications, but first they must be understood individually and how they fit 

together. 

WS-Map [Pardal06a] is a contribution to Web Services developers and 

researchers, to help them find their way around so many standards. It is a visual 

index of standards categories, shown in figure 1. It aims to give a broad and 

vendor-independent view of the technology. The following sections describe the 

Web Services standards by categories, as specified in WS-Map. 

 

Figure 1 – Web Services standards map, divided in categories [Pardal06a]. 

2.2.1 Data representation 

The data representation standards address the problem of heterogeneous data 

representation i.e. how to represent data in a format that is equally understood by 

everyone. 

XML [Bray04] is a text-based tag language that allows the representation of data 

in a structured and self-describing way. A document that conforms to XML 



7 

syntax is called well-formed. XML is used as canonical format for data exchanged 

in Web Services. 

XSD [Fallside04] is a grammar to define XML document schemas, including: 

elements, attributes, order, cardinality, data types and default values. A 

well-formed document that conforms to a XSD is called valid. 

2.2.2 Transport 

The transport standards define ways to establish a communication channel 

between a client and a service. The communication can be synchronous or 

asynchronous, meaning that the client blocks waiting for an answer from the 

service or not, respectively. 

The most used transport for Web Services is HTTP [Fielding99]. A common 

asynchronous transport is SMTP [Klensin01]. There are also non-standard 

transport implementations using message queue systems. 

The transport can provide additional features to the communication. However 

relying on them makes the Web Service transport-dependent. For example, 

HTTPS [Rescorla00] can be used to provide security for a Web Service using 

HTTP as transport. 

2.2.3 Message 

The message standards define the structure of the communication units and the 

ways they can be exchanged between services. 

SOAP  [Gudgin03] defines the Web Services messages as XML documents. The 

SOAP envelope separates the header (with platform data) from the body (with 

application data or fault). The header can contain data from different Web Service 

extension protocols. 

MTOM/XOP [Gudgin05a] is used to transport binary data in SOAP messages, 

replacing former approaches. 

WS-Addressing [Box04] allows for the addressing and forwarding of SOAP 

messages in a transport-independent way. 

WS-Enumeration [Geller04a] enables the creation of data enumeration sessions 

encompassing several requests and responses. 



8 

WS-Eventing  [Geller04c] and WS-Notification [Graham04] are competing 

standards for asynchronous event notification using Web Services, making polling 

unnecessary. Both have subscribers, subscription managers and event consumers. 

WS-Polling [Davis05] specifies mechanisms for successive requests when 

asynchronous notifications are made impossible by a firewall. In these cases, one 

of the endpoints must periodically connect for information updates. 

2.2.4 Contract 

The contract standards accurately describe the data, functions, policy and 

resources of a Web Service. They are used for client-server binding. 

The Web Service interface is described with WSDL [Booth05] and its data types 

are described with XML Schema [Fallside04]. The WSDL contract is necessary 

but not sufficient to describe a service. Beyond the interface, there are operational 

aspects (ex. which SOAP version to use), commercial aspects (ex. usage costs), 

and non-functional aspects (ex. security). 

The Web Service policy is defined with WS-Policy [Schlimmer06]. The policy 

states additional requirements that must be fulfilled by the client and by the 

service so that the interaction between them can occur. The normal form of a 

WS-Policy has the generic structure shown in example 1. 

Example 1 – WS-Policy normal form. 
<wsp:Policy ... > 
    <wsp:ExactlyOne> 
        ( <wsp:All>  
            ( <Assertion ...> ... </Assertion> )* 
          </wsp:All> )* 
    </wsp:ExactlyOne> 
</wsp:Policy> 

A policy states a set of configuration alternatives supported by the service. The 

client only has to support one of the alternatives. For each non-functional 

requirement domain, like security, there is a support library that should be used to 

implement the required standards. 

WS-Transfer [Geller04b] and WS-ResourceFramework [Czajkowski04] are two 

competing standard proposals to describe and to explicitly manage Web Service 

resources as informational entities with XML representation that can be created, 

read, updated and deleted. 



9 

2.2.5 Discovery 

The discovery standards define ways to publish and discover Web Services. 

UDDI [Clement04] defines a directory that allows dynamic registration and 

querying of Web Services. The UDDI data model allows three types of queries: 

by service business type and required capabilities (yellow pages), by company 

contacts (white pages), and by endpoint address (green pages). 

WS-MEX [Curbera04] enables Web Service self-description with a protocol to 

access XSD, WSDL, WS-Policy, and other meta-information. 

2.2.6 Security 

The main concerns for Web Services security are: 

• Message protection – how to make sure that the message contents are not 

read and or written while going through the network or intermediate nodes; 

• Access control – which principals can access the service and when; 

• Configuration flexibility – which security configuration should be applied 

for a given service invocation. 

XML-Signature [Eastlake02a] and XML-Encryption [Eastlake02b] are the two 

core cryptography standards for XML documents dealing respectively with digital 

signatures and content ciphering. 

WS-Security [Nadalin04] states how to protect SOAP messages with 

XML-Signature and XML-Encryption and how they can carry tokens in headers. 

Security tokens are security-related data items, like cryptographic keys, digital 

certificates, assertions, etc. Tokens enable WS-Security to bind to existing 

security technologies, like X.509 [Housley99] and Kerberos [Kohl93]. 

WS-SecurityPolicy [Kaler05] is a WS-Policy vocabulary for specifying security 

policies. 

SAML [Cantor04] is an assertion format for the exchange of authentication, 

authorization and attributes information between different security domains. It 

also defines a communications protocol. 

WS-Trust [Gudgin05b] defines a trust model for Web Services based on STS 

(Security Token Services) that perform trust brokering, i.e. emit, renew and 

validate security tokens enabling new trust relationships. 



10 

WS-SecureConversation [Gudgin05c] specifies how to establish a secure session 

encompassing several messages, using session keys for more efficient and robust 

cryptography. 

2.2.7 Reliable messaging 

Reliable messaging standards address the reliability of Web Service message 

exchanges in a transport independent way. 

WS-Reliability [Iwasa04] and WS-ReliableMessaging [Ferris05] are two 

competing proposals for assured delivery, duplicate elimination and correct 

ordering in Web Services messaging. 

2.2.8 Transactions 

The transactions standards address the problem of providing well-defined 

semantics for the combined result of a group of Web Services operations on 

distributed resources. 

The goal semantics can be ACID (where atomicity, consistency, isolation and 

durability properties hold) or a more relaxed version of it. To achieve this kind of 

solution, the models assume temporary and recoverable fault models for the 

machines and networks. 

There are two frameworks for transactions in Web Services: WS-Coordination 

[Feingold05] and WS-CompositeApplicationFramework [Little03]. 

2.2.9 Business processes 

The business process standards leverage all the other Web Services technologies 

and define development tools at an abstraction level closer to the views and needs 

of the business people. 

WS-BPEL [Thatte03] is an approach based on orchestration where the business 

process is represented by a graph, with the nodes being the business activities and 

the arcs being the information and control flows that enable composition of 

existing services. 

WS-CDL [Kavantzas04] is an approach based on choreography that describes 

business processes declaratively, stating pre-conditions and post-conditions for 

the execution of activities. The way the process is actually executed can change, 

as long as the stated conditions still hold true. 



11 

2.2.10 Management 

The management standards address the problem of keeping the Web Services 

up-and-running. This problem has two complementary aspects: the management 

of the Web Services themselves and the management of the machines and 

networks where they execute. Currently, the standardization efforts are focused on 

the latter kind of management. There are two competing standards for the 

management of machines and networks using Web Services: WS-Management 

[Geller04d] and WS-DistributedManagement [Sedukhin05]. 

2.2.11 Interoperability 

The interoperability standards are called profiles and are necessary because of the 

ambiguities in standards that result in differences in implementations. Each profile 

covers a set of Web Services standards and provides: implementation guidelines, 

example applications, and compatibility test toolkits. 

WS-I (Web Services Interoperability Organization) is an organization that gathers 

the main vendors of Web Services tools and defines general purpose profiles, like 

basic interaction [Ferris04] and security [Barbir05]. 

The WS-DeviceProfile [Schlimmer05] is not defined by WS-I and has a different 

scope. In this case, the goal is to select a subset of standards for devices with 

limited resources. 

2.3 Implementations 

Standards define the platform, but implementations are needed to make it a reality 

where applications are actually developed and deployed. 

The base implementations cover the core standards, including data representation, 

transport, message, contract and discovery. Extension implementations are 

necessary to implement non-functional requirements like security, reliable 

messaging, transactions and the remaining categories. 

2.3.1 Base implementations 

Before Web Services 

Distributed systems middleware didn’t start with Web Services. Similar efforts 

trace back to DCE [Lockhart94], CORBA [OMG91], DCOM [Eddon98], and 



12 

Java RMI [Sun97]. The main distinction of Web Services is the emphasis on 

flexibility, reuse and interoperability. 

The starting point for Web Services was XML in 1998 as a data representation 

standard. The first uses of XML were “data islands” in HTML pages. Next, ways 

were developed to exchange XML documents over the network, like XML-RPC 

[Dumbill01]. 

In 2002 Microsoft released Dot Net including a XML remote procedure calls, 

coining the term Web Services. This “grand entrance” caught the attention of 

Microsoft’s competition that began working on similar offerings. 

First generation: Dot Net, Axis and JAX-RPC 

As mentioned, the first implementation of Web Services was Microsoft Dot Net 

[MacDonald03]. A Java open-source implementation followed in Apache Axis 

[Graham01]. Then, Sun Microsystems led the reference implementation for Java, 

called JAX-RPC [McGovern03], later implemented on Sun, IBM, Oracle and 

BEA products. 

The “genetic traits” of this generation are: use of SOAP 1.0/1.1, WSDL 1.0/1.1, 

UDDI 1.0/2.0 and HTTP as exclusive transport. Its main drawbacks are: excessive 

emphasis in remote procedure call model with no support for asynchronous 

invocations, use of custom SOAP encoding with no schema reuse and 

transport-dependent addressing. 

Second generation: WSE, Axis2 and JAX-WS 

The second generation, currently available in release products, was once again 

started by Microsoft, with the launch of WSE (Web Services Enhancements) that 

pioneered security and addressing and a user-friendly configuration process. 

The Java platform responded with the improvement of JAX-RPC, renamed to 

JAX-WS 2 and integrated with JAX-B 2 for data binding. Asynchronous 

invocations and transports other than HTTP were also added. 

Apache Axis2 is an alternative open-source implementation that allows several 

transports and external modules for extensions. 

The “genetic traits” of this generation are: use of SOAP 1.1/1.2, WSDL 1.1/2.0 

and XML schema data encoding. UDDI is mostly being replaced by service 

self-description. Despite support for other transports, HTTP is still dominant. 



13 

Third generation: WCF, WSIT 

The third generation, still in development and in beta products approaching 

release, promises greater interoperability between Dot Net and Java. Microsoft 

will release Windows Communications Foundation (WCF) and Sun Microsystems 

will release WSIT (Web Services Interoperability Technology / Project Tango). 

WCF will consolidate Microsoft’s adoption of service-oriented computing, 

replacing previous distribution middleware, like Dot Net Remoting. The new 

slogan is ABC: addresses, bindings and contracts. 

WSIT uses the JAX-WS 2 architecture and extends it to fit together with WCF. 

IBM and Oracle follow at a distance, still not decided to follow Sun’s path. Oracle 

has the leading implementation of BPEL. Apache Axis2 is improving 

significantly. 

The “genetic traits” of this generation are: use of SOAP 1.1/1.2, WSDL 2.0 with 

support for several message exchange patterns (synchronous, asynchronous, 

request-answer, notification, etc.), service self-description, transport independence 

with support for message queues, implementation of non-functional requirements 

like security using policy-driven configuration. 

2.3.2 Security implementations 

The main security implementations currently available for Web Services are: 

• WSE 3 (Web Services Enhancements 3) for Microsoft Dot Net 2 

[Microsoft05]; 

• WSS4J (Web Services Security for Java), for Apache Axis2, for Java 

[Apache06]; 

• XWSS (XML and Web Services Security), for JAX-WS 2, for Java 

[Sun06]. 

Table 1 details the standards supported by each implementation. 



14 

Table 1 – Standards supported by current Web Services security implementations. 

Provider Implementation Supported standards 

Microsoft WSE 3: Dot Net Framework 

2.0, Visual Studio 2005, Web 

Services Enhancements 3.0 

WS-Security: Username, X.509, Kerberos 

WS-Secure Conversation, WS-Trust 

SAML 

Apache WSS4J: Apache Axis2, 

Rampart module of Web 

Services Security for Java 

(WSS4J) 

WS-Security: Username, X.509 

WS-Policy 

SAML 

Sun 

Microsystems 

XWSS: Java Web Services 

Developer Pack 2.0, XML and 

Web Services Security 2.0 

WS-Security: Username, X.509 

SAML 

2.4 Web Service example 

As mentioned before, a Web Service gives access to data and functional resources 

that can be used in enterprise applications. The following example is a Notary 

service that allows the submission of documents to be validated. Figure 2 

illustrates the interaction process between a client and the service. 

processors
message
SOAP

processors
message
SOAP

Client

#3 Generate#3 Generate

#4 Configure#4 Configure

#5 Invoke#5 Invoke

#6 Execute#6 Execute

#1 Publish#1 Publish

#2 Discover#2 Discover

stubs 
SOAP

stubs 
SOAP

Data
XML Schema

Policy
WS-Policy

Functions
WSDL

Service

 

Figure 2 – Web Service client-server interaction. 

The service is created and its endpoint is published. Its network location and 

meta-data contracts are stored in a descriptor or service registry. The data contract 

describes the data types used by the service interface, using XML Schema, like 

shown in example 2. 



15 

Example 2 – XML Schema for Notary service specifying the data structures and using an external 

schema for the sales contract document. 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
           xmlns:ns1="urn:org.notary" 
           xmlns:c="urn:org.seller:sale-contract" 
           targetNamespace="urn:org.notary" version="1.0"> 
    <xs:import namespace="urn:org.seller:sale-contract" 
               schemaLocation="http://seller.org:8080/sale-contract.xsd"/> 
    <xs:element name="submitContract" type="ns1:submitContractType"/> 
    <xs:complexType name="submitContractType"> 
        <xs:sequence> 
            <xs:element name="contractId" type="xs:string" minOccurs="0"/> 
            <xs:element name="contract" type="c:contractType" minOccurs="0"/> 
        </xs:sequence> 
    </xs:complexType> 
    <xs:element name="submitContractResponse" 
type="ns1:submitContractResponseType"/> 
    <xs:complexType name="submitContractResponseType"/> 
    <xs:element name="InternalError" type="ns1:InternalErrorType"/> 
    <xs:complexType name="InternalErrorType"> 
        <xs:sequence> 
            <xs:element name="message" type="xs:string" minOccurs="0"/> 
        </xs:sequence> 
    </xs:complexType> 
    <xs:element name="ContractNotAccepted" type="ns1:ContractNotAcceptedType"/> 
    <xs:complexType name="ContractNotAcceptedType"> 
        <xs:sequence> 
            <xs:element name="message" type="xs:string" minOccurs="0"/> 
        </xs:sequence> 
    </xs:complexType> 
</xs:schema> 

 

The interface contract describes the service functions through the input, output 

and fault messages, using WSDL, like shown in example 3. 

Example 3 – WSDL for Notary service specifying the submitContract operation. 
<?xml version="1.0" encoding="UTF-8"?> 
<definitions xmlns:tns="urn:org.notary" 
             xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns="http://schemas.xmlsoap.org/wsdl/" 
             targetNamespace="urn:org.notary" 
             name="notaryService"> 
    <types> 
        <xsd:schema> 
            <xsd:import namespace="urn:org.notary" schemaLocation="notary.xsd" /> 
        </xsd:schema> 
    </types> 
    <message name="submitContract"> 
        <part name="parameters" element="tns:submitContract"/> 
    </message> 
    <message name="submitContractResponse"> 
        <part name="parameters" element="tns:submitContractResponse"/> 
    </message> 
    <message name="InternalError"> 
        <part name="fault" element="tns:InternalError"/> 
    </message> 
    <message name="ContractNotAccepted"> 
        <part name="fault" element="tns:ContractNotAccepted"/> 
    </message> 
    <portType name="notaryPortType"> 
        <operation name="submitContract"> 
            <input message="tns:submitContract"/> 
            <output message="tns:submitContractResponse"/> 
            <fault name="ContractNotAccepted" message="tns:ContractNotAccepted"/> 
            <fault name="InternalError" message="tns:InternalError"/> 
        </operation> 
    </portType> 
    <binding name="notaryPortBinding" type="tns:notaryPortType"> 
        <soap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http"/> 



16 

        <operation name="submitContract"> 
            <soap:operation/> 
            <input> 
                <soap:body use="literal"/> 
            </input> 
            <output> 
                <soap:body use="literal"/> 
            </output> 
            <fault name="ContractNotAccepted"> 
                <soap:fault name="ContractNotAccepted" use="literal"/> 
            </fault> 
            <fault name="InternalError"> 
                <soap:fault name="InternalError" use="literal"/> 
            </fault> 
        </operation> 
    </binding> 
    <service name="notaryService"> 
        <port name="notaryPort" binding="tns:notaryPortBinding"> 
            <soap:address location="http://server.org/notaryApp"/> 
        </port> 
    </service> 
</definitions> 

 

The policy contract describes additional requirements for service interaction, 

using WS-Policy, like shown in example 4. 

Example 4 – WS-Policy for Notary service, using WS-SecurityPolicy assertions stating the use of 

Kerberos v5 protection. 
<wsp:Policy> 
    <sp:SymmetricBinding> 
        <wsp:Policy> 
            <sp:ProtectionToken> 
                <wsp:Policy> 
                    <sp:KerberosV5APREQToken sp:IncludeToken=".../Once" /> 
                </wsp:Policy> 
            </sp:ProtectionToken> 
            <sp:SignBeforeEncrypting /> 
            <sp:EncryptSignature /> 
        </wsp:Policy> 
    </sp:SymmetricBinding> 
    <sp:SignedParts> 
        <sp:Body/> 
        <sp:Header Namespace="http://xmlsoap.org/ws/2004/08/addressing" /> 
    </sp:SignedParts> 
    <sp:EncryptedParts> 
        <sp:Body/> 
    </sp:EncryptedParts> 
</wsp:Policy> 

The client is an application that wants to use the service resources. The client 

queries the service registry to find the service's network location and its contracts. 

The data and functions contracts are used to automatically generate invocation 

stubs that generate SOAP messages, like the one shown in example 5. 



17 

Example 5 – SOAP message of a request for the Notary service. 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
                  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                  xmlns:ns1="urn:org.seller:sale-contract" 
                  xmlns:ns2="urn:org.notary"> 
    <soapenv:Body> 
        <ns2:submitContract> 
            <contractId>758032672389</contractId> 
            <contract> 
                <ns1:seller> 
                    <ns1:name>John Williams</ns1:name> 
                    <ns1:citizenId nr="32434333" 
                                   issueDate="2003-03-07T12:56:11.000Z" /> 
                    <ns1:fiscalId nr="1231233277" /> 
                    <ns1:address>1319 South Avenue, City 99999, NY</ns1:address> 
                </ns1:seller> 
                <ns1:buyer> 
                    <ns1:name>Peter Patterson</ns1:name> 
                    <ns1:citizenId nr="123456789" 
                                   issueDate="2004-12-02T12:22:11.000Z" /> 
                    <ns1:fiscalId nr="23123122" /> 
                    <ns1:address>2020 Hill Street, Town 88888, NY</ns1:address> 
                </ns1:buyer> 
                <ns1:terms> 
                    <ns1:clause nr="1">...</ns1:clause> 
                    <ns1:clause nr="2">...</ns1:clause> 
                    <ns1:clause nr="3">...</ns1:clause> 
                </ns1:terms> 
                <ns1:date>2006-07-22T11:00:00.000Z</ns1:date> 
            </contract> 
        </ns2:submitContract> 
    </soapenv:Body> 
</soapenv:Envelope> 

The policy is used to configure message processors and support libraries, to add 

non-functional requirements like security. After the client-service binding is 

complete, the client invokes the service, using the stubs and configured processors 

to produce and send a message. The service receives the message, verifies it and 

executes. In some cases, it returns a response message. 

Every exchanged message and contract is XML-based. This means that client and 

server can be developed in different implementations (ex. Java and Microsoft Dot 

Net) and interoperability is assured as long as standards are followed closely. 

 



18 

3 Evaluation 

The survey described the main Web Service standards and implementations. They 

were evaluated using a prototype for a business case-study and custom tests. The 

evaluation results are presented in this section after the case-study overview. 

3.1 Case-study overview 

The case-study chosen for the evaluation was “real-estate contracts” because of its 

realism and complexity (several actors are involved) and also because of the value 

of the items, given the desired security emphasis. 

The full business process and informational entities were modeled using a 

service-oriented extension of a methodology proposed by Guerra and Pardal 

[Guerra04] for enterprise architecture. 

The prototype focused on the “agreement of sale between seller and buyer”. The 

prototype use-cases and interaction diagrams were modeled using UML 

[Fowler99]. The prototype specification and development explicitly accounted for 

binding, invocation and key distribution, shown in figures 3, 4, 5, respectively. 

All the modeling can be consulted in detail in the publication by Pardal 

[Pardal06b]. 

Seller Notary

3: ?wsdl

Buyer

1: ?xsd
2: ?wsdl

4: ?wsdl

3.1: ?xsd

XSD Agreement of sale

WSDL WSDL

 

Figure 3 – Binding interaction diagram between seller, buyer and notary in the case-study. The 

agreement contract schema is proposed by the seller. 

 



19 

4: closeContract()Seller Notary

2: submitContract()
5: getContract()

Buyer

1*: negotiateContract()

3: submitContract()
6: getContract()

Fiscal Authority

Civil Records

2.1: authentication

3.1: authentication

 

Figure 4 – Invocation interaction diagram between seller, buyer and notary in the case-study. The 

contract is submitted by both seller and buyer to the notary that verifies it. 

 

Seller Notary

Buyer

Fiscal Authority

Civil Records

KpubN

KpubN

KprivN

Kb

Ks

Ks

KprivCR

KprivFA

Kb

KpubCR

KpubFA

 

Figure 5 – Key distribution diagram. Legend: Kb (buyer’s secret key), Ks (seller’s secret key), 

Kpriv Kpub (asymmetric cryptographic key-pair) for CR (civil records that authenticates the 

seller), FA (fiscal authority that authenticates buyer) and N (notary). 



20 

3.2 Results 

3.2.1 Web Services development 

Tools used in prototype 

The XML Schema, WSDL and WS-Policy documents were edited with a plain 

text editor instead of being automatically generated. The idea was to avoid 

platform biasing. However this was not an easy process, as the document’s 

structure has several indirection levels, making them hard and tiresome for direct 

human usage. 

The prototype development tools were JAX-B 2 and JAX-WS 2 for XML-Java 

data-binding and clients and services development, respectively. The 

configuration is based on code annotations and configuration files that require 

some effort to keep them coherent during development. 

Dynamic binding 

The binding was explicitly described in the prototype to allow the evaluation of 

data binding, function binding and policy binding features. The service binding is 

static if it’s done in development-time or deployment-time and it’s dynamic if it is 

done in invocation time. 

JAX-B 2 and JAX-WS 2 and the other implementations enable static and dynamic 

binding of data and functions. However, policy binding is static and uses custom 

configuration formats. 

The data and function binding is not very interesting in the general case of 

business Web Services because of the added complexity or human intervention 

necessary to achieve a valid interpretation context of operations. However, 

dynamic policy binding is much more interesting because it enables a service 

invocation to adapt to the circumstances in which it is happening, keeping the 

functionality semantics the same. The difference from functional binding is that 

whereas a functional domain is open to different business areas and semantics, the 

non-functional domain is actually much closed, with a restricted set of 

configuration alternatives that can be chosen automatically. For instance, there are 

only a handful of different security technologies for choosing. 



21 

Separation of data and function binding 

JAX-WS 2 enables the separation of data binding (XSD) and function binding 

(WSDL), with each contract in an autonomous document. This custom binding 

mechanism is very useful, because data schema sharing is very common in 

business applications. “WSE 3 / Dot Net 2” and “WSS4J / Axis2 / Java” did not 

support this flexible mapping. 

Data schemas reuse is very important to enterprise applications. A shared 

information catalog of schemas could even be the basis of enterprise information 

architecture for integration, as proposed by Guerra and Pardal [Guerra04], 

following work by Spewak [Spewak93]. 

Extensible data schemas 

Data schemas can have extensibility elements (xsd:any) that allow document 

instances to have additional data. This enables service upgrades with backward 

compatibility and the transport of opaque information items. 

JAX-B 2 handles extensibility elements as XML tree documents or converting 

them to Java classes when a data-binding context is available. 

Data-binding limitations 

JAX-WS 2 and JAX-B 2 handle data-binding for simple, complex, arrays and 

exceptions data types. However there are limitations inherent to the data-binding 

approach. 

Sometimes it would be useful to switch from XML view to Java classes and 

vice-versa, without the cost of conversions. This could be achieved by wrapping 

the XML document in generated Java interfaces instead of classes, keeping the 

data in XML. This approach is currently not available in implementations. The 

most similar approach is navigating the XML document using XPath expressions. 

Another problem is the memory usage of full XML documents. AXIOM from 

Axis2 enables a gradual processing of the XML document, making it more 

efficient to parse large messages, with only a small increase in coding complexity 

that now has to deal with the reading state of the document. 



22 

3.2.2 Web Services protection 

Transport security versus message security 

In several cases, transport security can be enough protection for a Web Service. 

This approach is also called point-to-point because the scope of protection is the 

connection between two network nodes. The most common transport protection is 

HTTPS. 

However, if the message goes through intermediate nodes before arriving at its 

destination or if it requires persistent confidentiality then message security is 

required. This approach is also called end-to-end because the scope of protection 

goes from the sender to the final receiver. The message protection technology is 

WS-Security. 

The main advantage of transport security is simplicity, leveraging capabilities of 

application servers. A disadvantage is the authentication granularity because there 

is a single digital certificate for a server and a single set of trusted clients, so each 

service cannot have individual settings. Another disadvantage is that equal 

protection is provided for all data. Also, it’s not possible to partially expose the 

parts of the message to intermediate nodes, if necessary. 

The main advantage of message security is individual protection of parts of the 

message. Besides, security tokens can carry keys, certificates and assertions. It 

also allows transport independence. The main drawback is performance, with 

typically slower processing times and higher memory requirements. The messages 

themselves became larger and their structure more complex. 

Transport security is simpler to use, but message security is more expressive and 

flexible. Both approaches can be combined. Indeed, a common practice is to sign 

the message to assure integrity and authenticity, and use HTTPS to assure data 

confidentiality. This solution is much more flexible than simple transport security 

and also has a much better performance than message cipher [Adams04]. 



23 

Security mechanisms summary 

Table 2 summarizes the message security mechanisms supported in current 

implementations. The following symbols are used, meaning: 

•   “Fully supports”; 

•   “Partially supports”; 

•   “Doesn’t support”. 

Table 2 – Security mechanism support in current implementations. 

Security mechanism XWSS Axis2 WSE 3 
User-password 

   
X.509 certificates 

   
SAML assertion 

   

Authentication 

Kerberos 
   

authentication 

based 
   

using operating 

system 
   

Authorization 

SAML assertion 
   

Digital signature 
   

Encryption 
   

Repeated 

messages 

detection 

   

Message 

protection 

Security sessions 
   

For configuration, XWSS uses a callback model for requesting security 

parameters in run-time. WSE 3 has generic turn-key scenarios for the most 

common configurations and custom assertions enabling a consistent configuration 

extension mechanism. However, there currently is no service implementation 

capable of dynamic policy binding. 

Policy support 

Contract-oriented security configuration using WS-SecurityPolicy is one of the 

most innovative features promised for Web Services security. 



24 

WS-SecurityPolicy specifies a XML format for describing available configuration 

alternatives. This enables policy negotiation with client (intersection of 

alternatives supported by client and service) and policy merge with server during 

deployment (union of alternatives supported by the service and by the server 

where it is being deployed). Example 4 shows a WS-SecurityPolicy example. 

WS-SecurityPolicy will enable automatic security binding between client and 

service. However in current implementations it still isn’t supported and the 

service’s security configuration can only be applied on deployment-time, not on 

execution-time. 

Cross-domain security information exchange 

Other of the innovative features in Web Services security is cross-domain security 

information exchange using SAML. 

SAML specifies an XML format for authentication, authorization and user 

attributes assertions. Any principal can create an assertion and whoever receives 

the assertion makes the trust decision. Example 6 shows a SAML authentication 

assertion example. 

Example 6 – SAML authentication assertion example. It says that the user with e-mail address 

user@example.com has been authenticated by the asserter. The digital signature assures the 

information’s integrity and authenticity. 
<Assertion> 
    <Conditions NotBefore="2006-07-22T12:02:00Z" NotOnOrAfter="2006-07-
22T13:02:00Z"> 
        <AudienceRestrictionCondition> 
            <Audience>http:/www.example.com/Members</Audience> 
        </AudienceRestrictionCondition> 
    </Conditions> 
    <Advice> 
        <AssertionIDReference>id</AssertionIDReference> 
        <Assertion>...</Assertion> 
    </Advice> 
    <AuthenticationStatement AuthenticationMethod="urn:ietf:rfc:2246"   
                             AuthenticationInstant="2006-07-22T12:02:00Z"> 
        <Subject> 
            <NameIdentifier 
Format="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress"> 
            user@example.com 
            </NameIdentifier> 
        </Subject> 
    </AuthenticationStatement> 
    <ds:Signature>...</ds:Signature> 
</Assertion> 

SAML will ease the exchange of security information across organizational 

borders, but in current implementation it still isn’t secure enough to be trusted, 

because adequate digital signature support is missing. 

 



25 

4 Conclusion 

This final section states the main contributions of this paper and identifies 

interesting future work. It concludes with the final remarks. 

4.1 Contributions 

Web Services technology was thoroughly surveyed, with an up-to-date account of 

standards and implementations and a simple example. 

The protection capabilities of Web Services Security technology were evaluated 

using a prototype for a business case-study and custom tests in all 

implementations. 

The implementation of non-functional requirements should be performed as an 

independent aspect of functional requirements. Web Services security is all about 

access control, message protection and configuration flexibility. The Web 

Services platform’s features required for supporting security are the following: 

• Requirement declaration; 

• Configuration specification; 

• Management of execution contexts; 

• Message handling interception; 

• Operation processing interception. 

The requirement declaration is performed with a service policy that declares the 

security requirements. This capability is needed, for instance, to declare that a 

service can be invoked with transport security or with message security. This 

mechanism is still not supported in current implementations, but is expected in the 

next generation of implementations. 

The configuration specification selects the security mechanisms to engage and the 

parameters to request from the application in run-time (ex. which digital 

certificate is used to sign messages). All current implementations support 

configuration files, although each uses its own custom format. 

The management of execution contexts deals with state variables related with 

security. Contexts enable data sharing between the service platform and the 

application. Some relevant context scopes are: application, session, operation and 

thread. For instance, the session context allows the storing of a cryptographic key 

used to store a set of messages. Contexts are mostly supported in the 



26 

implementations, but their implementation is not consistent and flexible enough 

and should be improved. 

The message handling interception provides access to the messages contents 

(headers and body) and routing. These capabilities allow, for instance, the 

forwarding of a rejected incoming message, sending it to a security node for 

reporting. In current implementations only linear interception flows is supported. 

There are prototypes for more elaborate flows, like SPEF (SOAP Profile Enabling 

Framework) [Malek05] from Fujitsu.  

The operation processing interception allows decision points before the service 

code is actually executed. This implies that objects (ex. business logic, data 

access, remote stubs) in the application must be created in factories that can be 

customized to modify behavior. Using this feature it’s possible, for instance, to 

implement generic authentication mechanisms. This feature is not supported in 

current implementations. 

Of all the evaluated implementations, WSE 3 is the most advanced and robust, but 

it still doesn’t support WS-Policy or SAML. WSS4J for Axis2 is also promising, 

but it’s still unstable and its scarce documentation needs to be improved. XWSS 

for JAX-WS 2 is reasonably robust, supports the most important mechanisms, is 

extensible and has acceptable documentation. WSS4J and XWSS also have the 

advantage, from an evaluator’s perspective, of being open-sourced. 

4.2 Future work 

Several interesting future work topics were identified. 

Firstly, the survey needs to keep pace with new developments of standards and 

implementations. WS-Map [Pardal06a] is one effort in this direction. 

Reliable messaging and transactions extensions also need to be evaluated, 

perhaps following a similar approach as the one followed for security i.e. using 

business case-studies. 

There clearly is work to be done in service-oriented development methodologies 

that bridge SOA to Web Services, ranging all the way from requirements, to 

specification, to implementation. 

Development tools should focus more on service contracts. An approach centered 

on them, with direct specification of data schemas, functions and policy, is more 

suitable for service development than Java or Dot Net centric approaches, because 



27 

the latter map their own concepts making the contracts less explicit and therefore 

more difficult to manage and maintain. 

The main goal of tools should be simplifying XML programming. Data-wrapping 

instead of data-binding could enable more programming control with less data 

conversions. Also new abstractions could be used to broker context between 

services platform and applications. For instance, a WS-Security could perform 

automatic processing and produce a “security report” stating all security checks 

performed and the used parameters (ex. keys, certificates), leaving the final trust 

decisions to the application. 

4.3 Final remarks 

Currently, Web Services are a good way to integrate applications, especially if 

they are developed in different environments, like Java or Dot Net. Web Services 

can be protected with user-password and X.509 WS-Security at the message level 

or using HTTPS at the transport level. However, more advanced service-oriented 

features like policy binding and cross-domain information exchange are still not 

available. In the near future, both are expected to improve significantly. 

Whenever possible, the security mechanisms should be implemented 

automatically by the platform, but they must share context with applications using 

meaningful abstractions to delegate trust decisions and others, in a simple, 

effective way. The “security report” proposal is an example of such an approach. 

Web Services technology is indeed promising, but it still has a way to go before it 

can be regarded as truly revolutionary. 

 



28 

References 

 Adams, H., (2004). Best Practices for Web services, Part 11: Web services security, 
IBM Developer Works, 
http://www.ibm.com/developerworks/webservices/library/ws-best11/  

 Anderson, R., (2001). Security Engineering, Wiley 

 Apache, (2006). Securing SOAP Messages with WSS4J, 
http://ws.apache.org/axis2/modules/rampart/1_0/security-module.html  

 Barbir, A.; Gudgin, M.; McIntosh, M. & Morrison, K.S., (2005). WS-I Basic 
Security Profile Version 1.0, WS-I, Nortel Networks, Microsoft, IBM, Layer 7, 
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html  

 Booth, D. & Liu, C.K., (2005). Web Services Description Language (WSDL) 
Version 2.0, W3C, Hewlett-Packard, SAP Labs, http://www.w3.org/TR/2005/WD-
wsdl20-primer-20050803  

 Box, D. & Curbera, F., (2004). Web Services Addressing (WS-Addressing), W3C, 
Microsoft, IBM, BEA, SAP, http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/  

 Bray, T.; Paoli, J.; McQueen, C.M.S.; Maler, E. & Yergeau, F., (2004). Extensible 
Markup Language (XML) 1.0 (Third Edition), W3C, Textuality and Netscape, 
Microsoft, Sun Microsystems, http://www.w3.org/TR/2004/REC-xml-20040204  

 Cantor, S.; Kemp, J.; Philpott, R. & Maler, E., (2004). Assertions and Protocols for 
the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS, Internet2, 
Nokia, RSA Security, Sun Microsystems, http://xml.coverpages.org/SAML-core-20-
CD-01.pdf  

 Clement, L.; Hately, A.; von Riegen, C. & Rogers, T., (2004). UDDI Version 3.0.2, 
OASIS, Systinet, IBM, SAP AG, Computer Associates, http://uddi.org/pubs/uddi-
v3.0.2-20041019.htm  

 Curbera, F. & Schlimmer, J., (2004). Web Services Metadata Exchange (WS-
MetadataExchange), MSDN, Microsoft, IBM, Computer Associates, SAP, BEA 
Systems, Sun Microsystems, webMethods, 
http://msdn.microsoft.com/ws/2004/09/ws-metadataexchange/  

 Curbera, F.; Leymann, F.; Storey, T.; Ferguson, D. & Weerawarana, S., (2005). Web 
Services Platform Architecture: Soap, WSDL, WS-Policy, WS-Addressing, WS-
Bpel, WS-Reliable Messaging and More, Prentice Hall 

 Czajkowski, K.; Ferguson, D.F.; Foster, I.; Frey, J.; Graham, S.; Sedukhin, I.; 
Snelling, D.; Tuecke, S. & Vambenepe, W., (2004). The WS-Resource Framework 
Version 1.0, Computer Associates International, Inc., Fujitsu Limited, Hewlett-
Packard Development Company, International Business Machines Corporation and 
The University of Chicago, http://www.globus.org/wsrf/specs/ws-wsrf.pdf  

 Davis, D., (2005). Web Services Polling (WS-Polling), W3C, IBM, 
http://www.w3.org/Submission/2005/SUBM-ws-polling-20051026/  

 Dumbill, E.; Johnston, J. & Laurent, S.S., (2001). Programming Web Services with 
XML-RPC, O'Reilly 



29 

 Eastlake, D.; Reagle, J. & Solo, D., (2002). XML-Signature Syntax and Processing, 
W3C, http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/  

 Eastlake, D. & Reagle, J., (2002). XML Encryption Syntax and Processing, W3C, 
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/  

 Eddon, G. & Eddon, H., (1998). Inside Distributed COM, Microsoft Press 

 Fallside, D.C. & Walmsley, P., (2004). XML Schema Part 0: Primer Second Edition, 
W3C, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/  

 Feingold, M., (2005). Web Services Coordination (WS-Coordination) Version 1.0, 
IBM, Microsoft, Hitachi, Arjuna Technologies, IONA, 
http://www.ibm.com/developerworks/library/specification/ws-tx/  

 Ferris, C.; Liu, C.K.; Nottingham, M.; Yendluri, P.; Gudgin, M.; Ballinger, K. & 
Ehnebuske, D., (2004). WS-I Basic Profile Version 1.1, WS-I, Microsoft, IBM, SAP, 
BEA Systems, webMethods, http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html  

 Ferris, C. & Langworthy, D., (2005). Web Services Reliable Messaging Protocol 
(WS-ReliableMessaging), Microsoft, IBM, BEA, TIBCO Software, 
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf 

 Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P. & Lee, T.B., 
(1999). Hypertext Transfer Protocol -- HTTP/1.1, IETF, 
http://www.w3.org/Protocols/rfc2616/rfc2616.txt  

 Fowler, M.; Rice, D.; Foemmel, M.; Hieatt, E.; Mee, R. & Stafford, R., (2002). 
Patterns of Enterprise Application Architecture, Addison Wesley 

 Fowler, M. & Scott, K., (1999). UML Distilled, Addison-Wesley 

 Geller, A., (2004). Web Service Enumeration (WS-Enumeration), Microsoft, 
Systinet, Sonic Software, BEA, Computer Associates, 
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf  

 Geller, A., (2004). Web Service Transfer (WS-Transfer), Microsoft, Systinet, Sonic 
Software, BEA, Computer Associates, http://msdn.microsoft.com/ws/2004/09/ws-
transfer/  

 Geller, A., (2004). Web Services Eventing (WS-Eventing), Microsoft, IBM, TIBCO 
Software, BEA Systems, Computer Associates, Sun Microsystems, http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-eventing/  

 Geller, A., (2004). Web Services for Management (WS-Management), Microsoft, 
Sun, Intel, AMD, Dell, http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
management1004.pdf  

 Graham, S.; Simeonov, S.; Boubez, T.; Davis, D.; Daniels, G.; Nakamura, Y. & 
Neyama, R., (2001). Building Web Services with Java: Making Sense of XML, 
SOAP, WSDL, and UDDI, Sams Publishing 

 Graham, S. & Niblett, P., (2004). Web Services Notification (WS-Notification) 
Version 1.0, IBM, Sonic Software, TIBCO Software, Akamaii Technologies, SAP 
AG, Globus, Argonne National Laboratory, Hewlett-Packard, http://ifr.sap.com/ws-
notification/ws-notification.pdf  



30 

 Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J. & Nielsen, H.F., (2003). 
SOAP Version 1.2 Part 1: Messaging Framework, W3C, Microsoft, Sun 
Microsystems, IBM, Canon, http://www.w3.org/TR/2003/REC-soap12-part1-
20030624/  

 Gudgin, M.; Mendelsohn, N.; Nottingham, M. & Ruellan, H., (2005). SOAP 
Message Transmission Optimization Mechanism, W3C, Microsoft, IBM, BEA, 
Canon, http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/  

 Gudgin, M. & Nadalin, A., (2005). Web Services Trust Language (WS-Trust), 
Microsoft, IBM, OpenNetwork, Layer 7, Computer Associates, VeriSign, BEA, 
Oblix, Reactivity, RSA Security, Ping Identity, VeriSign, Actional, 
http://www.ibm.com/developerworks/library/specification/ws-trust/  

 Gudgin, M. & Nadalin, A., (2005). Web Services Secure Conversation Language 
(WS-SecureConversation), Microsoft, IBM, OpenNetwork, Layer 7, Computer 
Associates, VeriSign, BEA, RSA Security, Ping Identity, Actional, Computer 
Associates, http://www.ibm.com/developerworks/library/specification/ws-secon/  

 Guerra, M.; Pardal, M. & da Silva, M.M., (2004). An Integration Methodology based 
on the Enterprise Architecture, Proc. of the 2004 Conference of the UK Academy for 
Information Systems (UKAIS 2004), 
http://mflpar.googlepages.com/GuerraPardalUkais2004.pdf 

 Housley, R.; Ford, W.; Polk, W. & Solo, D., (1999). Internet X.509 Public Key 
Infrastructure, IEFT, http://www.ietf.org/rfc/rfc2459.txt  

 Iwasa, K., (2004). Web Services Reliable Messaging TC WS-Reliability 1.1, OASIS, 
Fujitsu Limited, Novell, Inc., Oracle Corporation, Sun Microsystems, 
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1  

 Kaler, C. & Nadalin, A., (2005). Web Services Security Policy Language (WS-
SecurityPolicy) Version 1.1, Microsoft, IBM, VeriSign, RSA Security, 
http://www.ibm.com/developerworks/library/specification/ws-secpol/  

 Kavantzas, N.; Burdett, D. & Ritzinger, G., (2004). Web Services Choreography 
Description Language Version 1.0, W3C, Oracle, Commerce One, Novell, 
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/  

 Klensin, J., (2001). Simple Mail Transfer Protocol, IETF, 
http://www.ietf.org/rfc/rfc2821.txt  

 J. Kohl, C.N., (1993). The Kerberos Network Authentication Service (V5), IETF, 
http://www.ietf.org/rfc/rfc1510.txt  

 Krafzig, D.; Banke, K. & Slama, D., (2004). Enterprise SOA: Service-Oriented 
Architecture Best Practices, Prentice Hall PTR 

 Laudon, K. & Laudon, J., (2002). Management Information Systems, Pearson 
Prentice-Hall 

 Little, M., (2003). Web Services Composite Application Framework (WS-CAF) 
version 1.0, Sun, Oracle, IONA, Arjuna, Fujitsu, 
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CAF-Primer.pdf  

 Lockhart, H., (1994). OSF DCE Guide to Developing Distributed Applications, 
McGraw-Hill 



31 

 MacDonald, M., (2003). Microsoft .NET Distributed Applications: Integrating XML 
Web Services and .NET Remoting, Microsoft Press 

 Malek, H.B. & Durand, J., Kitsuregawa, M. (eds.), (2005). A SOAP Container 
Model for e-Business Messaging Requirements, Proceedings of WISE 2005, 
Springer-Verlag, , LNCS 3806, 643–652  

 McGovern, J.; Tyagi, S.; Stevens, M. & Matthew, S., (2003). Java Web Services 
Architecture , Morgan Kaufmann 

 Microsoft, (2005). Microsoft Web Services Enhancements (WSE) 3.0 
documentation, 
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx  

 Anthony Nadalin, C.K., (2004). Web Services Security: SOAP Message Security 1.0 
(WS-Security 2004), OASIS, IBM, Microsoft, Verisign, Sun, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss  

 OMG, (1991). The Common Object Request Broker: Architecture and Specification 
(CORBA) 

 Pardal, M., (2006). WS-Map: Web Services Standards Map, WWW, 
http://mega.ist.utl.pt/~mflpar/ws-map  

 Pardal, M.F.L., (2006). Security of Enterprise Applications in Service Architectures, 
Instituto Superior Técnico, http://mflpar.googlepages.com/MScMflp20060908.pdf  

 Rescorla, E., (2000). HTTP Over TLS, IETF, http://www.ietf.org/rfc/rfc2818.txt  

 Schlimmer, J., (2005). Devices Profile for Web Services, Microsoft, Ricoh, Intel, 
Lexmark, http://specs.xmlsoap.org/ws/2005/05/devprof/devicesprofile.pdf  

 Schlimmer, J., (2006). Web Services Policy Framework (WSPolicy) Version 1.2, 
Microsoft, IBM, VeriSign, Sonic Software, SAP, BEA Systems, 
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf  

 Sedukhin, I. & Vambenepe, W., (2005). Web Services Distributed Management: 
Management of Web Services (WSDM-MOWS) 1.0 and Management Using Web 
Services (MUWS 1.0), OASIS, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm  

 Spewak, S. & Hill, S., (1993). Enterprise Architecture Planning, John Wiley & Sons 

 Sun, (2006). Java Web Services Developer Pack, Sun Microsystems Web Site, 
http://java.sun.com/webservices/  

 Sun, (1997). Java Remote Method Invocation (RMI), Sun Microsystems Web Site, 
http://java.sun.com/products/jdk/rmi/index.jsp  

 Thatte, S., (2003). Business Process Execution Language for Web Services Version 
1.1, Microsoft, IBM, Siebel Systems, BEA, SAP, 
http://www.ibm.com/developerworks/library/specification/ws-bpel/  

 

 



32 

Acronyms 

Acronym Meaning 
AXIOM Axis Object Model 
CORBA Common Object Request Broker Architecture 
DCE Distributed Computing Environment 
DCOM Distributed Component Object Model 
HTML HyperText Markup Language 
HTTP Hyper Text Transfer Protocol 
HTTPS HTTP over SSL 
JAX-B Java Architecture for XML Data Binding 
JAX-RPC Java APIs for XML-based RPC 
JAX-WS Java API for XML Web Services 
MTOM Message Transmission Optimization Mechanism 
RMI (Java) Java Remote Method Invocation 
RPC Remote Procedure Call 
SAML Security Assertion Markup Language 
SMTP Simple Mail Transfer Protocol 
SOA Service-Oriented Architecture  
SOAP Service Oriented Architecture Protocol , Simple Object Access 

Protocol, (no meaning just a name) 
SPEF SOAP Profile Enabling Framework 
SSL Secure Sockets Layer 
STS Security Token Service 
UDDI Universal Description, Discovery, and Integration 
UML Unified Modelling Language 
WCF Windows Communication Foundation 
WS Web Service(s) 
WS-BPEL Web Services Business Process Execution Language 
WS-CDL Web Services Choreography Description Language 
WSDL Web Service Description Language 
WSE Web Services Enhancements 
WS-I Web Services Interoperability Organization 
WSIT Web Services Interoperability Technology (Project Tango) 
WS-MEX WS-MetadataExchange 
WSS4J Web Services Security For Java 
XML eXtensible Markup Language 
XOP XML-binary Optimized Packaging 
XPath XML Path 
XSD XML Schema Definition 
XWSS XML and Web Services Security 
 


