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1 Introduction

What is optimization?

Optimization is essentially about finding the best solution to a given problem

from a set of feasible solutions. It consists of three components:

• the objective or objectives, that is, what do we want to optimize?

• a solution (decision) vector, that is, how can we achieve the optimal objective?

• the set of all feasible solutions, that is, among which possible options may we

choose to optimize?

Examples

• Airline companies schedule crews and aircraft to minimize their costs

• Investors create portfolios to avoid the risks and achieve the maximum profits

• Manufacturers minimize the production costs and maximize the efficiency

• Bidders optimize their bidding strategies to achieve best results

• Physical system tends to a state of minimum energy

· · ·

Mathematical models

A familiar optimization model is Linear programming model which can be ex-

pressed as:

min cTx

subject to Ax ≤ b

x ≥ 0

where c and b are n-dimensional vector, and A is an m×n matrix. Linear program-

ming models have been proved as a useful tool in operational research.

In practical applications, however, a lot of optimization problems are nonlinear,

that is, either the objective function or the constraints cannot be described by an

affine function. Here we give one example.
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Example 1.1 (Portfolio Optimization, see J. Nocedal and S.J. Wright (1999), Nu-

merical Optimisation, Springer-Verlag.) Suppose that an investor has n investments

with returns ri, i = 1, · · · , n. The returns are unknown in advance and are often

assumed to be random variables with normal distribution. We characterize these

variables by expected return µi = E[ri] and their variance σi = E[(ri − µi)
2].

The investor constructs a portfolio by putting a fraction xi of his funds into

investment i, for i = 1, · · · , n. Assume all funds are invested and short-selling is not

permitted. Then the constraints are xi ≥ 0, i = 1, · · · , n and
∑n

i=1 xi = 1.

The return of the portfolio is given by

R =
n∑

i=1

xiri.

To measure the desirability of the portfolio, we need to obtain measures of its ex-

pected return which is

E(R) = E

[
n∑

i=1

xiri

]
= xT µ.

The variance can be calculated from elementary laws of statistics. It depends on

the covariance between each pair of investments, which are defined by

ρij =
E[(ri − µi)(rj − µj)]

σiσj

for i, j = 1, · · · , n.

The correlation measures the tendency of the return on investments i and j to

move in the same direction. Two investments whose returns tend to rise and fall

together have a positive covariance; the nearer ρij is to 1, the more closely the two

investments track each other. Investments whose returns tend to move in opposite

directions have negative covariance.

The variance of the total portfolio R is

E[(R− E[R])2] =
n∑

i=1

n∑

j=1

xixjσiσjρij = xT Gx

where Gij = σiσjρij.

We are interested in a portfolio that the expected return is large while the vari-

ance is small. Marrkowitz combined these two aims into a single objective function

using a “risk tolerance” parameter η and formulated the following (QP)

max xT µ− ηxT Gx

s.t.
n∑

i=1

xi = 1,

x ≥ 0.
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We will get back to this example later on ( in Chapter 6 Quadratic Programming).

In general, an optimization problem can be formulated as

(max) min
x∈F

f(x), (1)

where f is called the objective function and F is called feasible set, x is called decision

vector.

We only consider minimization problem since a maximization problem can be

easily converted into a minimization problem. Also, we restrict x to be a vector of

n variables.

The focus of this course is NOT on linear programming. It will be on

nonlinear programming, particularly the following programs:

Unconstrained minimization:

min
x∈IRn

f(x)

Quadratic programming:

min
1

2
xT Gx + gTx

s.t. Ax ≤ b

x ≥ 0

where G is a symmetric matric and g is an n-dimensional vector.

Equality and inequality constrained minimization problem:

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

hi(x) = 0, i = 1, · · · , r.

Note also that this course is NOT about modeling of practical problems,

instead, it is about theory and methods of the optimization models described above.
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2 Direct search methods

In this chapter, we will discuss direct methods for solving unconstrained minimiza-

tion problems.

A direct search method is a method which relies only on evaluating f(x) on a

sequence x1, x2, · · · and comparing values in order to calculate a minimizer of f .

Direct methods are usually applied in the following circumstance

• the function f(x) is not differentiable;

• the derivatives of f are complicated to compute or even do not exist;

• the function has few variables;

• the location of an optimal solution is roughly known.

There are many direct search methods. Here we introduce the most popular five:

• Golden section method

• Fibonacci method

• Hooke and Jeeves’ method

• Spendley, Hext and Himsworth’s method

• Nelder and Mead’s method

The first two methods deal with a function of a single variable, the rest four deal

with a function of several variables.
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2.1 Golden section method

2.1.1 Unimodal function

We consider the following minimization problem

min f(x)

s.t. x ∈ [a, b]
(2)

where f : IR → IR is a univariate function and [a, b] is an interval.

Let x∗ denote a minimizer of f(x) in [a, b]. f is said to be unimodal on [a, b] if

f(x) is decreasing for a ≤ x ≤ x∗ and increasing for x∗ ≤ x ≤ b.

Remark 2.1 1. In some textbooks, a function which is increasing for a ≤ x ≤ x∗

and decreasing for x∗ ≤ x ≤ b is also called a unimodal function. Of course in this

case x∗ is a maximizer.

2. A sufficient condition for f to be unimodal on [a, b] is that f(x) is convex (to

be introduced in Chapter 3) over [a, b]. But a unimodal function is NOT necessarily

a convex function.

2.1.2 Golden section

Throughout this subsection, we assume the objective function f in (2) is unimodal

over [a, b].

What is the golden section?

The golden section is a line segment divided into two parts. Point C is positioned

such that the ratio of the short half to the long half is equal to the ratio of the long

half to the whole. Symbolically:

A——C—B where CB
AC

= AC
AB

= τ , or AC2 = BC × AB.
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2.1.3 Golden section algorithm
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Algorithm 2.1 (Golden section algorithm)

Step 1. Given initial interval [a1, b1] and precision ε. Set τ = 0.618. Calculate

x1
1 = b1 − τ(b1 − a1)

and

x1
2 = a1 + τ(b1 − a1)

set i := 1;

Step 2. If f(xi
2) > f(xi

1),

ai+1 = ai

bi+1 = xi
2

xi+1
2 = xi

1

xi+1
1 = bi+1 − τ(bi+1 − ai+1)

If f(xi
2) ≤ f(xi

1),

ai+1 = xi
1

bi+1 = bi

xi+1
1 = xi

2

xi+1
2 = ai+1 + τ(bi+1 − ai+1)

Step 3. If |bi+1 − ai+1| ≤ ε, stop; otherwise, set i := i + 1, go to Step 2.

2.1.4 Derivation of the golden section method

Consider minimization problem (2). Observe first that

• It is necessary to evaluate the function at two interior points of [a, b] before

the minimizer can be located in a sub-interval of [a, b].
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• By the repeated evaluation of f , the minimum can be located to any prescribed

precision.

• The efficiency of this process depends on the choice of the points at which

function is evaluated.

• Although two function evaluations are required initially, only one further func-

tion value is required in the subsequent process because the other lies in the

interior of the reduced interval.

Motivation: Is it possible to arrange that the size of the interval containing the

minimum be decreased by a constant factor τ at each step?

Let the current interval be (ai, bi) and let the points at which f is evaluated be

xi
1 and xi

2 where xi
1 < xi

2. For i = 1, a1 = a, b1 = b. Then

1. The reduced interval is either [ai, x
i
2] or [xi

1, bi].

2. To make the length of the reduced interval to be a constant factor of [ai, bi],

it is necessary that xi
1, x

i
2 satisfy

xi
2 − ai

bi − ai

=
bi − xi

1

bi − ai

= τ. (3)

3. To update, if f(xi
2) > f(xi

1), then the minimizer must be located in [ai, x
i
2],

hence we set

ai+1 = ai, bi+1 = xi
2, (4)

and

xi+1
2 = xi

1 (5)

xi+1
1 = bi+1 − (xi+1

2 − ai+1).

If f(xi
2) ≤ f(xi

1), then the minimizer must be located in [xi
1, bi], hence we set

ai+1 = xi
1, bi+1 = bi

and

xi+1
1 = xi

2

.xi+1
2 = ai+1 + bi+1 − xi+1

1
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4. The relationship in (3) must hold for i + 1, that is

xi+1
2 − ai+1

bi+1 − ai+1

=
bi+1 − xi+1

1

bi+1 − ai+1

= τ (6)

Based on the above observation, we can derive τ . Suppose f(xi
2) > f(xi

1).

Substituting xi+1
2 , ai+1, bi+1 from (4) and (5) into the left side of (6), we obtain

xi+1
2 − ai+1

bi+1 − ai+1

=
xi

1 − ai

xi
2 − ai

= τ.

Since

xi
1 − ai = bi − ai − (xi

2 − ai)

We have from (3) and (6)

τ =
xi

1 − ai

xi
2 − ai

=
bi − ai

xi
2 − ai

− 1 =
1

τ
− 1

from which we can solve

τ =

√
5− 1

2
= 0.618 · · · .
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Example 2.1 Consider the minimization problem

min f(x) := − 1
(x−1)2

(
log x− 2x−1

x+1

)

s.t. x ∈ [1.5, 4.5].

(a) Estimate the number of function evaluations needed for the Golden Section

method to reduce the size of interval to be less or equal to 0.2 (Do not carry

out actual computation).

(b) Use the golden section algorithm to find an approximate minimum and mini-

mizer of the problem (Stop if the interval size is reduced to be less or equal to

0.2).

Computational results.

i ai xi
1 xi

2 bi update

1 x 1.5 2.65 3.35 4.5 x1
1 = b1 − τ(b1 − a1)

100f(x) -2.188 -2.588 -2.327 -1.899 x1
2 = a1 + τ(b1 − a1)

2 x

100f(x) -2.188 -2.671 -2.588 -2.327

3 x

100f(x) -2.188 -2.633 -2.671 -2.588

4 x 1.95 2.20 2.65

100f(x) -2.633 -2.671 -2.650 -2.588

5 x 2.20 2.40

100f(x) -2.633 -2.670 -2.671 -2.650

6 x 2.15 2.35 2.40

100f(x) -2.670 -2.671 -2.658 -2.650
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Example 2.2 Consider the following minimization problem

min f(x) ≡ e−x − cos x

s.t. x ∈ [0, 1].

(a) Prove that f is a unimodal function and there is a unique global minimizer in

the interior of [0, 1].

(b) Reduce the size of the interval containing the global minimizer to less or equal

to 0.5 using Golden section method.
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2.2 Fibonacci method

In this subsection, We continue to discuss the minimization problem (2) where f(x)

is unimodal on [a, b].

In the golden search method, two function evaluations are made at the first

iteration and then only one function evaluation is made for each subsequent iteration.

The ratio for the reduction of intervals at each iteration remains constant.

The Fibonacci method differs from the golden ratio method in that the ratio for

the reduction of intervals is not constant. Additionally, the number of subintervals

(iterations) is predetermined and based on the specified tolerance.

2.2.1 Fibonacci numbers

The Fibonacci search is based on the sequence of Fibonacci numbers which are

defined by the equations

F0 = 1

F1 = 1

FN+1 = FN + FN−1, forN = 1, 2, · · ·

Thus the Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34 · · ·.

2.2.2 Fibonacci method

1. Determine the number of function evaluations, N − 1.

2. Divide the initial interval [a1, b1] evenly into FN subintervals and hence the

length of each suinterval is 1
FN

(b1 − a1). Grid point Pi, i = 1, · · · , FN − 1, in the

interval can be expressed as

Pi = a1 +
i

FN

(b1 − a1).

3. In the first iteration, take the FN−2-th grid point from left as x1
1 and the
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FN−1-th grid point from left as x1
2, that is,

x1
1 =

FN−2

FN

(b1 − a1) + a1

and

x1
2 =

FN−1

FN

(b1 − a1) + a1.

Compare the function values at these two points and decide a2 and b2 as in the

Golden search method. Repeat the process with N := N − 1 to obtain x2
1, x2

2, · · ·.

You will find that N − 1 function evaluations are made at N − 1 of the FN − 1

grid points. Try N = 3, 4 with a1 = 0, b1 = 1.
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2.2.3 Fibanacci algorithm

Algorithm 2.2 (Fibonacci algorithm) Let initial interval [a1, b1] be given and the

number of function evaluations N − 1 (N ≥ 3) be preset.

For i = 1, · · · , N − 2, do

xi
1 =

FN−i−1

FN−i+1

(bi − ai) + ai

and

xi
2 =

FN−i

FN−i+1

(bi − ai) + ai

If f(xi
2) > f(xi

1),

ai+1 = ai

bi+1 = xi
2

If f(xi
2) ≤ f(xi

1),

ai+1 = xi
1

bi+1 = bi

Remark 2.2 1. Number of function evaluations. First note that if f(xi
2) > f(xi

1),

xi+1
2 = xi

1

if f(xi
2) ≤ f(xi

1),

xi+1
1 = xi

2

Summary: at first step, 2-evaluations are needed, 1-evaluation is needed for each
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of later N − 2 iterations. Total number of evaluations is 2 + N − 2(= N − 1).

2. Reduction of interval size. Since

bi+1 − ai+1 = xi
2 − ai = bi − xi

1 =
FN−i

FN−i+1

(bi − ai),

after N − 1 evaluations the length of the interval is

δ =
FN−1

FN

FN−2

FN−1

· · · F3

F4

F2

F3

(b1 − a1) =
2(b1 − a1)

FN

3. Properties of Fibonacci algorithm.

• Fibonacci algorithm is optimum in the sense that it gives the largest ratio of

initial to final interval for a fixed number of function evaluations.

• the relationship between Fibnacci algorithm and Golden section algorithm can

be observed by

lim
N→∞

FN−1

FN

=

√
5− 1

2
= 0.618 · · · .
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Example 2.3 Use Fibonacci algorithm to minimize

f(x) = − 1

(x− 1)2

(
log x− 2

x− 1

x + 1

)
.

It is known that the minimizer is in the range [1.5, 4.5]. Reduce the interval to 2/21

of the original.

We want
2(4.5− 1.5)

FN

≤ 2

7

Thus FN ≥ 21.

Computational results.

i ai xi
1 xi

2 bi update

1 x 1.5 2.64 3.36 4.5

100f(x) -2.188 -2.591 -2.323 -1.899

2 x 1.5 3.36

100f(x) -2.188 -2.670 -2.591 -2.323

3 x 1.5 2.64

100f(x) -2.188 -2.621 -2.670 -2.591

4 x 1.92 2.64

100f(x) -2.621 -2.670 -2.660 -2.591

5 x 1.92 2.34

100f(x) -2.621 -2.57 -2.670 -2.660
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Example 2.4 Consider Example 2.2. Reduce the size of the interval containing the

global minimizer to less or equal to 0.5 using Fibonacc method.
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2.3 Hooke and Jeeves’ method

We consider minimization problem

min f(x)

s.t. x ∈ IRn

Hook and Jeeves’ method, which dates from 1961, is one of the most widely used

search methods. The method proceeds by a sequence of exploratory and pattern

moves from a base point. If an exploratory move leads to a decrease of the value of

f(x) it is called a success; otherwise it is called a failure.

Exploratory moves

Step 1. Choose a base point b1 and step length h1.

Step 2. Evaluate f(b1 + h1e1) where the first unit coordinate vector, that is,

e1 = (1, 0, · · · , 0)T . If

f(b1 + h1e1) < f(b1),

replace b1 by b1 + h1e1. Otherwise evaluate f(b1 − h1e1). If

f(b1 − h1e1) < f(b1),

replace b1 by b1 − h1e1. Otherwise retain b1.

Step 3. Repeat the procedure in Step 2 for the second variable x2 (note that

f(x) has n variables) by considering variations +(−)h2e2 from the base point which

results from Step 2. Apply the procedure to each variable in turn, finally arriving

at a new base point b2 (after at most (2n + 1) function evaluations).

Step 4. If b2 = b1, halve each of the step lengths hj and return to Step 1.

Terminate when the lengths have been reduced to the prescribed precision.

If b2 6= b1, make the following pattern moves:

Step 1. Move from b2 to p1 = 2b2 − b1 and continue with a new sequence of

exploratory moves about p1.

Step 2. If the lowest function value obtained during the pattern and exploratory

moves of Step 1 is less than f(b2), then a new base point b3 has been reached.

Return to Step 1 with all suffices increased by 1. Otherwise, abandon the pattern

move from b2 and continue with a new sequence of exploratory moves.
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Example 2.5 Use Hooke and Jeeves’ method to minimize

f(x) = 3x2
1 − 2x1x2 + x2

2 + 4x1 + 3x2.

Take b1 = (0, 0)T as the initial base point, h1 = h2 = 1 as initial step lengths and

h1 = h2 = 0.25 as the stopping criterion.
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(Example 2.5 continued)

20



2.4 Spendley, Hext and Himsworth’s method

Spendley, Hext and Himsworth’s (1962) devised a method based on the geometrical

design known as a regular simplex. A simplex in IRn consists of n + 1 points which

do not lie on a hyperplane, together with every convex combination of these points.

The simplex is regular if the vertices are equally spaced.

Examples of regular simplices: an equilateral triangle in IR2 and a regular tetra-

hedron in IR3.

Two dimensional case. Consider the minimization of f(x). The idea of the

simplex method can be explained as follows.

Let x1 be an initial estimate of x∗, a minimizer. Let x1,x2,x3 be the vertices of

a regular simplex.

Calculate the reflection of the vertex x1 with respect to the line segment joining

x2 and x3 as

x4 =

If f(x) is a linear function, then

f(x4) = f(x2) + f(x3)− f(x1)

Suppose that f(x1) > max(f(x2), f(x3)). Then

f(x4) < min(f(x2), f(x3)).

We therefore replace x1 with x4 and obtain a new simplex, and repeat the process

described above.

The idea is used to minimize a general nonlinear function. The procedure can

be stated as follows.

Step 1. Given an initial estimate x1 of x∗ and find x2 and x3 to form a regular

simplex.
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Step 2. Evaluate f at these points and identify the point with highest function

value.

Step 3. Calculate the reflection of the point with respect to the line segment

joining the rest two points.

Step 4. Evaluate the value of f at the reflected point.

Step 5. If the highest value occurs at the new vertex in the new simplex, reflect

the vertex with second highest function value to avoid oscillations.

Step 6. If one vertex persists for four iterations, reduce the size of the most

recently simplex by halving the distances of the remaining vertices from that vertex.

This step is called a contraction.

Step 7. Stop after a prescribed number of contractions have been carried out.

The method can be generalized to n-dimensional case. Let x1, · · · ,xn+1 be the

vertices of a regular simplex in IRn. The reflection of the vertex xp is defined by

xq = 2xc − xp

where

xc =
1

n
(x1 + · · ·+ xp−1 + xp+1 + · · ·+ xn+1)

is the centroid of the remaining vertices.

2.5 Nelder and Mead’s method

Nelder and Mead increased the efficiency of Spendley, Hext and Himsworth’s method

by allowing the simplices to become non-regular.

Let x1 be initial estimate of x∗ and let the vertices of the initial simplex be

x1, · · · ,xn+1, where

xj+1 + x1 + hjej, j = 1, · · · , n,

the ej are the usual coordinate vectors and hj are scalars choses to equalize, as far

as possible, the quantities

|f(x1 + hjej)− f(x1)|.

In the current simplex, let
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• xh be the vertex with the highest function value

• xs be the vertex with the second highest function value

• xl be the vertex with the lowest function value

• xc be the centroid of all vertices except xh, that is,

xc =
1

n

n+1∑

j=1,j 6=h

xj.

Also, for the simplicity of notation, let y = f(x) and yh = f(xh).

Nelder and Mead’s algorithm.

Step 1. Choose the vertices of the initial simplex as described above and

evaluate f(x) at the vertices.

Step 2. Reflection. Reflect xh using a reflection factor

x0 = xc + α(xc − xh),

where α > 0.

Step 3. If

f(xl) ≤ f(x0) ≤ f(xs)

replace xh by x0 and return to Step 2.

Step 4. Expansion. If f(x0) < f(xl), expand the simplex using an expansion

factor γ > 1,

x00 − xc = γ(x0 − xc)

where γ > 1.

(a) if f(x00) < f(xl), replace xh by x00 and return to Step 2.
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(b) If f(x00) ≥ f(xl), replace xh by x0 and return to Step 2.

Step 5. Contraction. If f(x0) > f(xs), contract the simplex using an contrac-

tion factor β ∈ (0, 1),

(a) if f(x0) < f(xh), find x00 such that

x00 − xc = β(x0 − xc)

where 0 < β < 1.

(b) If f(x0) ≥ f(xh), find x00 such that

x00 − xc = β(xh − xc)

(c) If f(x00) < f(xh) and f(x00) < f(x0), replace xh by x00 and return to

Step 2.

(d) If f(x00) ≥ f(xh) or f(x00) > f(x0), reduce the size of the simplex by

halving the distances from xl and return to Step 2.

Nelder and Mead suggest values of α = 1, β = 0.5 and γ = 2 for reflection.
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Example 2.6 Use the method of Nelder and Mead to minimize

f(x1, x2) = 4(x1 − 5)2 + 6(x2 − 6)2

The initial simplex has the following three vertices

A(8, 9), B(10, 11), C(8, 11)

Carry out 4 iterations.

Solution.

Iteration =1

f(8, 9) = 90.0

f(10, 11) = 250.0

f(8, 11) = 186.0

Therefore

Xh = (10, 11),

Xs = (8, 11),

Xl = (8, 9)

Xc = 1
2
((8, 9) + (8, 11)) = (8.0, 10.0)

Reflection

X0 = 2 (8, 10)− (10, 11) = (6.0, 9.0)

We need to check if an expansion or a contraction is needed. Since

f (6.0, 9.0) = 58.0

f (6.0, 9.0) = 58.0 < f(xl),

an expansion is needed.

(8.0, 10.0) + 2((6.0, 9.0)− (8.0, 10.0)) = (4.0, 8.0)

X00 = (8.0, 10.0) + 2((6.0, 9.0)− (8.0, 10.0))

= (4.0, 8.0)
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Since

f(4, 8) = 28.0

f (x00) = 28 < f(Xl),

the expansion is accepted and we update the simplex vertices

Xh = (8, 11),

Xs = (8, 9),

Xl = (4, 8)

Iteration =2

Reflection

Xc = 1
2
((8, 9) + (4, 8)) = (6.0, 8. 5)

X0 = 2 (6.0, 8.5)− (8, 11) = (4.0, 6.0)

f (4.0, 6.0) = 4.0

therefore f(X0) < f(Xl) An expansion is needed.

(6.0, 8. 5) + 2((4.0, 6.0)− (6.0, 8. 5)) = (2.0, 3. 5)

f(2, 3.5) = 73. 5

replace Xh by X0, we obtain a new simplex with vertices

Xh = (8, 9),

Xs = (4, 8)

Xl = (4.0, 6.0)

Iteration =3

Reflection

Xc = 1
2
((4, 8) + (4.0, 6.0)) = (4.0, 7.0)
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X0 = 2 (4.0, 7.0)− (8, 9) = (0, 5.0)

f (0, 5.0) = 106.0 > f(Xh) = 90 A contraction is needed

X00 = (4.0, 7.0) + 0.5((8, 9)− (4.0, 7.0)) = (6.0, 8.0)

f(6.0, 8.0) = 28.0 = f(Xs)

Since

f (1.578 3, .871 16) = −14.49 < min(f(X0), f(Xh))

we replace Xh by X00 and obtain a new simplex with vertices

Xh = (6.0, 8.0)

Xs = (4, 8)

Xl = (4.0, 6.0)

Iteration =4

Reflection

Xc = 1
2
((4, 8) + (4.0, 6.0)) = (4.0, 7.0)

X0 = 2 (4.0, 7.0)− (6.0, 8.0) = (2.0, 6.0)

Since

f(2.0, 6.0) = 36.0 > f(Xh)

f (.871 2, 1.578 3) = −11.201 > f(Xh) = −13.585

a contraction is needed.

(4.0, 7.0) + 0.5((6.0, 8.0)− (4.0, 7.0)) = (5.0, 7. 5)

X00 = (4.0, 7.0) + 0.5((6.0, 8.0)− (4.0, 7.0)) = (5.0, 7. 5)

Since

f (5.0, 7. 5) = 13. 5

f (2.126, 1.242) = −15.266 < min(f(Xh), f(x0))
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X00 is accepted. We obtain a new simplex with vertices

Xh = (4.0, 8.0)

Xs = (5.0, 7.5)

Xl = (4.0, 6.0)
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