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Introduction 
All experimental data have associated uncertainties that ultimately limit the 

conclusions one can make. For example, one may wish to determine if some 
parameter varies linearly as a second parameter is varied.  Whether one can 
determine that the variation is a linear relationship from a particular set of data 
depends on how certain one is about the measured values of each of the two 
parameters. Uncertainty is a part of the experimental process, no matter how 
hard one tries to minimize it. Thus, it is important to express uncertainty clearly 
when giving experimental results.  (In many cases, this quality of an experiment 
is called “error”, but it is not “error” in the common sense of the word, so I prefer 
the word “uncertainty” for this quantity.) 

Accuracy 
When the value of a parameter is determined experimentally, one must 

make some assessment of the "correctness" of the determination.  Accuracy is a 
measure of the agreement of a particular measurement with the “true” (or  
“accepted”) value of the parameter under the conditions.  Accuracy has a sign 
that indicates whether the experimentally measured value is high (+) or low (-), 
compared to the true value. 

For example, suppose a measurement of a resistor gave a resistance of 
6.83 ohms.  If the resistor were purchased from an electronics supply store that 
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certified the resistor has a value of 6.80 ohms, then the accuracy of the 
measurement is 

6.83 ohms - 6.80 ohms  =  + 0.03 ohms. 
Such a calculation gives the absolute deviation of the measurement.   In this 
case, the measurement is said to be “high” relative to the accepted value.  One 
may also define the relative deviation as 

   ( )683 680
680

0 03
680

0 0044 0 44%
. .

.
.
.

. .
ohms ohms

ohms
−

= = =  

A measure of the accuracy can only be determined if some prior knowledge of 
the true value is available.1 

Systematic Errors and Accuracy 
The discrepancy between an accepted value of a parameter and an 

experimentally measured value results from deviations in the manner in which 
the measurement is carried out.  No two measurements are exactly the same. 
Some deviations can be controlled and some cannot.  Those that can, in 
principle, be controlled by careful adjustment of the experimental procedure are 
systematic errors.  They definite values that can, in principle, be measured and 
corrected.  Systematic errors are sometimes called determinate errors.  The 
most common types error are instrumental error, operator error, and method 
error. 

Such errors are often unidirectional, so they slant the result of the 
measurement.  If that is the case, the experiment is said to have a bias.  
Systematic errors can be corrected only after the nature of the bias is identified.  
A common determinate error is an incorrectly calibrated instrument that 
systematically gives results that are either too high or too low.  Recalibration of 
the apparatus should correct this kind of error.  In this laboratory, many of the 
instruments are calibrated before one makes a determination of the value of 
some unknown parameter.  Failure to calibrate the instrument properly is a major 
source of determinate error. 

Indeterminate Errors and Precision 
Were determinate error the only source of uncertainty in a measurement, 

the job of the experimenter would reduce to a sequence of operations to 
eliminate each source of determinate error, after which one would presumably 
measure the “accepted” value of some parameter.  Measuring the parameter 
would always give the same number at each measurement.  However, there are 
additional sources of variation that ultimately determine how “well” one may 
measure a quantity.  These are indeterminate errors (also called random  
errors).  They generally cannot be positively identified as their values from 
                                            
1 Determining “true values” of specific quantities is not easy.  Different methods of measuring the same 
quantity usually give slightly different answers.  There is a great deal of effort put into developing accepted 
values for certain properties that can be measured by a variety of experimenters to calibrate their measuring 
devices.   Even standards change occasionally, when the situation warrants revision.  For example, until 
1948 the coulomb was defined as the quantity of electricity passing through a circuit to deposit 0.0011180 
grams of silver from a solution of silver nitrate.  Now the coulomb is defined as the quantity of electricity on 
the positive plate of a 1-farad capacitor subject to an electromotive force of one volt. 
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measurement to measurement vary randomly.  Some are inherent to the way the 
experiment is set up; some are simply a result of the way nature acts.  A good 
experiment reduces or eliminates systematic error and provides an estimate of 
the indeterminate error, expressed as uncertainty. 

Consider a simple act such as weighing a sample.  This may be carried 
out several times on a single sample, simply to be certain of the value.  Suppose 
the object of an exercise is to create a sample that weighs 2.0000 grams.  To be 
sure of this weight, the experimenter measures the weight in five repeated 
measurements.  It is unlikely that the five weights will be exactly the same, as 
shown in the table. 

 
Weight as Measured in Five Different Experiments 
2.0001 grams 2.0000 grams 1.9997 grams 1.9998 grams 2.0004 grams 
 

The question is the following: is this sample 2.0000 grams?  It seems that 
one measurement indicates this is the case.  However, the other four 
measurements deviate from this value.  The variation across the set of 
measurements produces some uncertainty about the weight.  Any expression of 
the weight must include some indication of this uncertainty. 

The uncertainty is a function of the type of sample, the conditions under 
which it is being weighed, the balance, and the person doing the weighing.  
Presuming there is no determinate error, one may state these measurements 
reflect something about the random error associated with the measurement of 
the weight. 

As a first approximation, one could round these numbers to the nearest 
0.001 gram, in which case each would be said to weigh 2.000 ±0.001 grams.  But 
this implies the weight is known only to the nearest milligram, a reduction in 
information about the sample’s weight that may not be necessary. 

The last digit contains some information.  It shows that all of the five 
measurements fall between 1.9997 grams and 2.0004 grams.  Thus, one could 
say that the actual value, based only on these measurements is 2.0000±0.0004 
grams.  This gives a statement of the uncertainty by including the range of all 
values in the set. 

The statements above are attempts to quantify a quality of the 
measurement.  This quality is the precision.  It is defined as the degree of 
agreement between replicate measurements of the same quantity.  There is a 
distinction between precision and accuracy one should always make.  Even if the 
measurement’s precision is excellent, it may be inaccurate if a determinate error 
is present. 

Quantifying Uncertainty Due to Random Variations 
Uncertainty in experimental data caused by random fluctuations can be 

quantified. A report of the precision gives a measure of the “goodness” of a 
measurement.  Knowledge of precision also makes possible comparison among 
repeated measurements or measures of the same quantity made by different 
techniques or different laboratories.  Thus, one may decide, based on reported 
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precision, whether two measures of the same quantity (perhaps by two different 
techniques or by two different people) are identical within the uncertainty of the 
experiment. 

Quantifying uncertainty can take many forms, from very simple analyses 
to sophisticated computer-based methods.  In the end, the reported precision is a 
statement of the experimenter’s best estimate of the range of values that should 
be considered identical to the reported value.  Because this decision is 
somewhat subjective, several different analysts examining the same data may 
arrive at slightly different measures of precision.  Nevertheless, there are some 
consistent ways of reporting uncertainty in an experimental result.  Here are 
some measures of precision and, hence, uncertainty. 

Average of a Finite Set 
In repeated measurements of the same quantity, one obtains a set of 

values, as given above.  Generally, unless one knows that one or several of the 
data are suspect (because of presumed determinate errors during those 
measurements), one must give equal weight to all measurements.  Thus, the 
“best” value for the measurement is simply the average over the set. For 
example, the average of the weights in the table above is: 

< > = + + + + =w grams grams
1
5

2 0001 2 0000 19997 19998 2 0004 2 0000( . . . . . ) .  

It would appear that a correct interpretation of the set of measurements is that 
the weight is, indeed, 2.0000 grams.  The question one must answer in reporting 
of the results is, given the repeated measurements, how certain is this 
statement? 

Range as a Measure of Precision 
While working in the laboratory, one often wants some sense of the 

precision of a measurement that requires an easy calculation.  For a series of 
measurements of a single parameter, it is reasonable to approximate the 
uncertainty crudely by the range, i.e. the difference between the maximum and 
minimum values of the set.  For example, for the example set, the range is: 

  range gram gram= − =( . . ) .2 0004 19997 0 0007  
For example, one might express the uncertainty as the half range of the set, so 
one would express the measurement above as 
   w grams= ±2 0000 0 00035. .  
Clearly, this gives a reasonable estimate of the uncertainty in this measurement. 

Average Deviation as a Measure of Precision 
A second quantity that can be easily estimated in the laboratory is the 

average absolute deviation.  It is the average of the absolute deviations from 
the average: 
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For the example, the average absolute deviation is: 
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( ) gramgramw 00025.00004.00002.00003.00000.00001.0
4
1|| =++++=>∆<  

Thus one might express the result of the measurement as 
    gramsw 0025.00000.2 ±=  
The average absolute deviation will usually be slightly smaller than the half 
range, but it is another reasonable estimate of uncertainty.  Remember that the 
statement of uncertainty is a somewhat subjective process, so that different 
measures, provided they are clearly defined, of a single set may express 
uncertainty in slightly different ways. 

Statistical Measures of Precision 
If the variations from the average are truly randomly dispersed, then 

repeated measurements are represented by a normal probability distribution, 
a function that indicates the likelihood of finding a particular value in the set of 
measured values.  When the width of this function is small compared to the 
average value, the average represents, relatively closely, a large percentage of 
the measurements; when the width of this function is large compared to the 
average value, it does not represent the overall set as well.  Thus, some 
measure of the distribution’s width will specify the precision of the measurement.  
I say more about this particular function below. 

The statements in the previous paragraph apply, in principle, to a very 
large set of measurements (theoretically infinitely large). Generally, 
experimenters do not generate such large sets, so one has to develop a 
formalism applicable to sets of finite size.  For a set that is less than infinite, one 
can calculate the average by a straightforward procedure.  One may also 
calculate the average sum of squares of the deviation from the average.  In so 
doing, it is important to remember that there are now N –1 degrees of freedom 
(since one degree of freedom was used up in defining the average) 

   ( )< >
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This number, the variance of the set, gives a measure of the spread of the data 
around the average.  For the example set, one calculates 

< > = × −δw gram2 8 27 5000 10. . 
The square root of the variance is the standard deviation, σ.  For the 

data above, the standard deviation is2 
    σ = 0 00003. gram  

Using the standard deviation to represent the precision, one might choose to 
report the example measurement in the following way: 
    w grams= ±2 0000 0 0003. .  
This is less than either the half range or the average absolute deviation. 

One may also express precision as the relative uncertainty (in this case, 
the standard deviation of the set divided by the average of the set): 

                                            
2 Note that the variance has units of the square of the quantity, whereas the standard deviation has units 
that are the same as the measured quantity. 
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Giving the standard deviation specifies the error at a specific level of confidence, 
which may be lower than scientists would generally accept. 

Gaussian (Normal Probability) Distribution for an Infinitely Large Set 
The standard deviation, the variance and the average arise from the 

theory of probability.  For a very large set of repeated determinations of a value 
subject only to random error, the distribution of measurements is symmetrically 
distributed about the average value.  This situation is described by a gaussian 
(or normal probability) function: 
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where ε is the deviation from the average (which can be either negative or 
positive) and σ is the standard deviation of the gaussian distribution.  σ is related 
to the full width at half height of the function.3  The smaller it is, the narrower will 
be the spread of values about the average; the larger it is, the larger the spread.   
A mathematical calculation shows that σ is the root-mean-square deviation of the 
set from the average: 
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The standard deviation defined in this way for a large (effectively infinite) 
continuous set of data is equivalent to the standard deviation calculated by the 
operation described above on a finite set of measurements. 
 Since the integral of the gaussian function is 1, it represents a probability.  
Thus, the integral of this function from one value to a second value represents 
the fraction of data points that fall within that range.  So, the gaussian function 
allows one to specify the probability that, any number from the set will fall in a 
given range.  Usually, this range is specified in terms of standard deviation.  The 
table gives the fraction of determinations that fall in the indicated ranges.  A 
range that extends by ± 2 σ about the average encompasses over 95% of all 
measured data for an infinitely large set.  Scientists often quote uncertainties to 
encompass 95% of the values.  One is said to quote the uncertainty “at the 95% 
confidence level”. 
 
Fractional Proabability Inside a Range, <w> - nσ  <  w  <  <w> - nσ     

n P(n) n P(n) 
0.5 0.38292 2.0 0.95450 

                                            
3 The full width at half height (FWHH) of the normal probability distribution is σ2ln2 . 
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1.0 0.68269 2.5 0.98758 
1.5 0.86639 3.0 0.99730 

 

Practical Uncertainty Estimates in Single Measurements 
When only a single determination of a parameter’s value is made or when 

it is not possible to repeat an experiment enough times for a reasonable 
statistical treatment of the 
data, uncertainty must be 
approximated.  This often 
occurs when one is, for 
example, reading a scale 
or a meter.  Ultimately, 
every datum in a set can 
be said to have an 
associated uncertainty.  
These uncertainties are 
not based on a statistical 
analysis, but rather on the 
judgment of the 
experimenter, and it is 
important to be consistent 
in judging the uncertainty 
at this level. 

When measuring against a scale, one has to estimate how precisely one 
can infer the value of a parameter.  In many cases, the uncertainty in a single 
measurement is given as ½ the smallest scale graduation.  For example, 
consider the measurement of an object’s length using a ruler, as shown in Figure 
1.  The measurement gives a value between 5.7 and 5.8 cm, which one would 
assign as 5.75 cm.  As for uncertainty, the value lies between the two 
graduations, so one assigns an uncertainty of ±0.05.  So, the reported result of 
the measurement is 5.75 ±0.05 cm. 

In some cases, it is possible to estimate the value more closely, 
depending on the scale and the ability to view it. In the bottom part of Figure 1 an 
expanded view is shown.  In this case, one might be able to estimate length to 
the nearest 0.02 cm.  So, one would report the result as 5.78±0.02 cm. 
 In reading a scale, whether it be a ruler or a meter, one specifies the 
uncertainty from a judgment about the ability to discern the parameter’s value.  A 
good rule of thumb is to report the largest possible uncertainty with which you 
feel comfortable. 
 To avoid systematic errors in reading a scale, care must be taken in 
making the judgment.  For example, because the meter movement and the scale 
are not in the same plane, where the pointer appears on the scale depends on 
the position of the eye relative to the pointer and scale.  Readings taken from 
different positions can give different apparent results.  To avoid this source of 
systematic error, some instruments provide a mirror whose plane is very near the 

Figure 1 Measurements of length with a scale. 
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plane of the scale.  By lining up the image of the pointer with its image in the 
mirror, one is assured that the line of sight is the same in each measurement. 

Uncertainties in Graphing 
When graphical techniques are used to determine a quantity, one must 

analyze the uncertainty in the measurement of the quantity, as one would do in 
determining the 
uncertainty in a set of 
repeated measurements 
of a quantity. In all cases, 
one should ensure that 
the range of data points 
used for determination of 
a quantity spans the 
range of the data over 
which one wishes to 
express the relationship. 
Generally one is seeking 
to determine parameters 
that express the trend of 
one variable with respect 
to another; this is the 
reason for a graph.   That 
is, one may be seeking, 

for example, a linear relation between two parameters: 
  bxmy +=  

and the object is to determine the “best” values of m and b, given a set of pairs 
{(xi,yi)}.  Generally one might wish to treat sets with a small number of data points 
(say, less than 10) differently from those with a large number of data points 
(greater than 25). 
 
Method of Limiting Slopes 
 It is easy to estimate error in the slope, m, and intercept, b, of a linear 
graph by the "method of limiting slopes".  (This works best with a limited number 
of points, as the plotting can become tedious with very large numbers of points.) 
The technique consists of drawing rectangles to represent uncertainties in the 
quantities at each point.  The “best” values of b and m are determined from the 
“best” line through all the points, which is usually obvious from the data, as is 
indicated in Figure 2.  Two other lines, which approximate the maximum or 
minimum acceptable slopes, are also drawn so that they pass through the 
rectangles, thereby giving a minimum and maximum acceptable deviation from 
this best line.  The difference between the slopes of these two lines can be taken 
as twice the uncertainty in the slope of the line, and the difference between the 
intercepts of these limiting lines can be taken as twice the uncertainty in the 
intercept.  Remember that this process is a judgment on the part of the 
experimenter. 

Figure 2  Determining the uncertainty in slopes 
and intercepts by the method of limiting slopes. 
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Regression Analysis 
 When one has a relatively large number of data, for which the relationship 
between x and y is predicted to be of a certain form, a satisfactory way to 
analyze the data is a procedure known as regression analysis.  Many hand-
held calculators give a form of least-squares linear regression.  Computer 
programs such as Excel and Mathcad do a similar analysis.  The problem is often 
transforming the information given by the program into meaningful estimates of 
uncertainty. 
 Simple regression analysis begins with the assumption that each datum 
consists of the real value plus some random noise.  It is frequently assumed that 
one of the variables, usually x, has little or no error and that the dominant source 
of error is random noise in y.   The criterion for “best line” is then the minimization 
of all the deviations of the actual data from this theoretical best line over the 
whole set of data.  There are several ways to define the deviation, but the 
common way considers the deviations that are perpendicular to the x axis: 
     ∆i  =  yi – (m xi + b) 
If these are truly random and the set is large enough, then the sum of these 
deviations will tend towards zero: 

Σi  ∆i  =  0 
However, the sum of the squares of these quantities, called the residual, will not 
be zero in general.   In fact, it will be a function of the values of m and b. 

R(m,b)  =  Σi  ∆i
2  =  Σi yi2  - 2m Σi yixi  - 2 b Σi yi  + 2 mb Σi xi + m2 Σi xi2  +N b2 

 

where N is the number of pairs of values.  The minimum of this sum of squares is 
found by setting the derivatives of R with respect to m and b equal to zero.  
These relationships give equations for the “best” m and b.  These equations can 
be found in various reference books.4 
 Obviously, these best values of m and b are not without uncertainty.  The 
question is how to express the uncertainty.  A quantity often reported with linear 
least squares regression is the correlation factor, r, or its square.  For a perfect 
fit (one in which every point falls exactly on the theoretical line), r2 = 1; for total 
lack of correlation (that is, no fit), r2 = 0.  One may use this quantity together with 
calculable functions of the set of data to give expressions for the standard 
deviation of the slope, σm, and the standard deviation of the intercept, σb.  These 
are given by the equations below: 

   2
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4 For example, see Appendix I of J. H. Noggle, Physical Chemistry, 3rd Edition, Addison-Wesley-Longmans, 
San Francisco, 1997. 
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Hence, one may use the correlation coefficient to estimate the relative standard 
deviation of the slope and, with a calculation of a single sum, the standard 
deviation of the intercept of the line that best expresses the linear relationship.  
Knowing the standard deviation of these parameters and the number of degrees 
of freedom, N-2, one has a prescription for stating the uncertainty. 
 One should always remember that tools like linear least squares 
regression work well if applied to situations in which there is a reason for 
believing a linear relationship exists.  The use of any tool in situations to which it 
does not apply yields only nonsensical results. 
 There are many other regression analyses that may be applied, more or 
less easily, to determine some characteristic relation between two measured 
quantities.  For example, one may generalize the regression to include 
polynomial expressions.  For complex functions, one may use an algorithm such 
as Simplex to determine a set of parameters of the function that select the “best” 
curve to describe the data.  Almost all of these procedures rely in some way on 
finding the minimum in some residual over the set of data.  Still, a human being 
must always make the judgment about whether the data appropriately are 
modeled by the functional form. 

Propagation of Uncertainty 
When the quantity one wishes to specify is not directly measured, but is 

calculated from two or more directly measured quantities, the uncertainty in the 
derived quantity must be determined from the (presumably known) uncertainties 
in the measured quantities from which it is calculated.  This is the concept of the 
propagation of uncertainty. 

Differential Analysis 
To propagate uncertainty, one must have a connection between the 

quantity calculated, x, and several other measured parameters, {a, b, c, …..}.  
Mathematically, these measured quantities are independent variables and x is a 
dependent variable.  The relation is expressed functionally by the general 
equation: 
    ..)f(a,b,c,..x =  
Suppose that we have a series of points at which a, b, c, … have been 
determined and that these vary from determination to determination.  Then, for 
each determination, use of the functional form above will give a slightly different 
value of x.  We may, however, determine the average of these, which we might 
designate 

 ∑=><
i

iii ),c,b,f(a
N
1x L  

Since the measured variables a, b, c,… are not identical from measurement to 
measurement, they have associated uncertainties which can be calculated, as 
shown above.  The question to answer is “How do these uncertainties get 
translated into uncertainties in x?” 

We begin with a fundamental rule of calculus: a differential change in a 
function is caused by a differential change in the independent variables: 
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This equation tells how the functional form transforms changes in the 
independent variables into changes of the dependent variable.  The deviations 
from the average values are caused by deviations of the independent variables 
about their average values, e.g. ∆ai  =  ai - <a>.  Of course, the sum of these 
deviations due to random error in each of the measured quantities, the average 
deviation of the calculated quantity, is zero. 
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Thus, this quantity does not give information about uncertainty.  Consider the 
average of the square of this deviation, using the differential form above for the 
deviations and considering only three variables (Extension to more variables 
should be obvious.). 
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Expansion of the right-hand side, along with the definition of the average of a 
quantity gives: 
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If the quantities a, b, and c are truly independent variables, then deviations in one 
measurement of a and b should be uncorrelated from those in another, and the 
average <∆a∆b> should be zero.  Similarly, the other two cross terms are zero. 
We make the assumption that these are independent in that sense, and the last 
three terms in this equation do not contribute.  Now, one defines the uncertainties 
in each of the quantities as the root-mean-square deviation over the set to find 
the relation: 
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This gives a simple equation for estimating the uncertainty in a calculated 
quantity from the uncertainty in measured quantities from which it is calculated.    
This is what is meant by propagation of error. 
 Here are simple examples.  See if you can determine the resulting 
equation for the uncertainty from the derivatives of the function in each case. 
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Functional Form Uncertainty 
bax +=  22 b)a)(x ∆+∆= (∆  
bax −=  22 b)a)(x ∆+∆= (∆  

bax =  2222 b)(aa)(bx ∆+∆=∆  

b
ax =  2

4

2
2

2 b)(
b
aa)(

b
1x ∆+∆=∆  

nmbax =  21)2(nm222n1)2(m2 b)(bana)(bamx ∆+∆= −−∆  
alnx =  

2

2

a
a)(∆x ∆

=  

 
In the equations of the table, a and b refer average values of the measured 
quantities and x is the function whose uncertainty is to be determined.  The third 
and fourth equations are correct, but a clearer view of how uncertainty 
propagates can be obtained by rewriting these slightly.  

The "Worst- Case" or Range Method 
A quick method for estimating uncertainty uses the maximum uncertainties 

to estimate the range of values of a calculated quantity.  It can best be illustrated 
by example.  Consider the calculation of x through the formula: 

   bax +=  
Suppose that a and b have been measured and are known to have the following 
values: 

    
bbb

aaa

∆±=

∆±=

0

0
 

Obviously, the most likely value for x is a0 + b0.  However, one needs to specify 
the uncertainty in this value, given the known uncertainties in a and b.  To do so, 
one must find the range of possible values given the ranges of a and b.  One 
may do this, for addition, by noting that adding the maximum of the range of 
values of a with maximum of the range of values of b gives the maximum of the 
range of x.  Adding the minima of these ranges gives the minimum of the range 
of x.  The maximum value of x is therefore, a0 + b0 + ∆a + ∆b and the minimum of 
this range is a0 + b0 - ∆a - ∆b.  Thus, the range of values of x is: 
 

   
( )

( )ba

babababaxRange

∆+∆=

∆−∆−+−∆+∆++=

2

)( 0000
 

 
One may then determine an uncertainty as one-half of this range.  So, the 
reported determination of x would be as shown in the table. 
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Function Value of x Uncertainty in x 
bax +=  00 ba +  ba ∆+∆  
bax −=  00 ba −  ba ∆+∆  

bax =  00 ba  abba ∆+∆ 00  

b
ax =  

0

0

b
a  22

0

00

)( bb
abba

∆+
∆+∆  

 
In general, these values of the uncertainty will be somewhat larger than the root-
mean-square uncertainties for the same functions determined by the calculus of 
variations shown above.  Nevertheless, these are reasonable estimates of the 
uncertainty. 
 Once again one may show that, for the product (line 3), the relative 
uncertainty in x is the sum of the relative uncertainties in a and b.  However, for 
the quotient in line 4, one finds the following for the relative uncertainty: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+

∆

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
+

=
∆

00
2

0

1

1
a
a

b
b

b
bx

x  

If the uncertainty in b is small compared to the average value, then the relative 
uncertainties in a and b add to give the relative uncertainty in the quotient, just as 
for the product. 

Significant Figures 
One thing that shows a grader a student’s lack of knowledge of 

uncertainty is the number of significant figures reported by the student.  
Reporting the proper number of figures to describe the uncertainty of a 
calculation shows an understanding of the process of propagation of uncertainty. 
One often sees students’ data reported with large numbers of digits that 
substantially overstate the precision of the experimental determination of a 
quantity by orders of magnitude.  The National Institute of Standards and 
Technology expends a great deal of effort to measure and report data as 
precisely as possible.  For example, the speed of light in a vacuum is reported to 
be 

c = 299 792 458 m s-1. 
However, for most of us, achieving that precision is exceedingly difficult, if not 
impossible. 

The concept of significant figures applies only to calculations involving 
imprecisely known numbers.5   Suppose one is calculating the density of an 
object from measurements of its weight and volume.   Each of these measured 

                                            
5 Nobody is concerned about significant figures when doing arithmetic in a mathematics class since all the 
numbers are assumed to be absolutely precise. 
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numbers is defined to a certain precision, and the density is found by division, 
e.g. as 

49.853g/50.002mL 
In principle, one can use a calculator to specify this number.  On the calculator 
screen one might then see the number 

0.997020119 g/mL. 
Of course, this number is certainly not known to that precision.  Propagating 
uncertainty, as discussed above, can inform a scientist of the true nature of 
uncertainty.  For the example above, a calculation based on percentage error, 
assuming an uncertainty of ±1 in the last digit of each factor, shows that the 
density calculated has a precision of ± 0.00003 g/mL.  So, including this 
precision, the value of the density – showing reasonable significant digits – 
should be reported as 
   49.853g/50.002mL = 0.9970 g/mL 
to indicate (in fact, it slightly overestimates the uncertainty) the uncertainty 
propagated.  This is a shorthand statement of the uncertainty. Stating the result 
this way means the true value lies between 0.9969 g/mL and 0.9971 g/mL.   Of 
course, the actual uncertainty would allow one to report this as: 
   49.853g/50.002mL = 0.99702 (± 0.00003) g/mL 
 A rule of thumb in assessing the number of significant figures to report is 
that the number of significant figures in a calculated result can never be greater 
than the number of significant figures in the factor with the least number of 
significant figures.6  By this rule, one might have supposed that the number of 
significant figures in the density calculated above would have been 5 since each 
of the two factors has 5 significant figures.  With this rule, one would have 
reported a result as 
   49.853g/50.002mL = 0.99702 g/mL 
This reporting of significant figures is FAR, FAR better than reporting all of the 
figures a calculator gives.  

Significant Figures in Factors 
 Before using numbers in calculations, one must identify the significant 
figures they contain.  This is often obvious.  However, when zeros are present, 
there is some confusion.  Here are the conventions used: 
(a) Zeros to the left of the first nonzero digit are not significant; they are 

placeholders.  One can see this by expressing the number is scientific 
notation.  For example, the number 0.00123 has three significant figures.  
This can easily be seen by rewriting this number as 1.23 × 10-3.  

(b) Zeros to the right of a nonzero digit may or may not be significant.  The 
significance lies in whether the person who wrote the number is trying to 
say by incorporating the zeros that the value is precise to that many 
figures.  Sometimes it is simply not possible to tell whether all of the digits 
in a reported number are significant.  Using scientific notation usually 

                                            
6 This is a commonsense rule.  It states that the percentage error in the calculated result can never be less 
than the percentage error in any factor.  Such a statement, of course, has exceptions.  For example, taking 
roots of an imprecise number may result in an increase in the number of significant digits. 
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makes the ambiguity of significance of zeros a moot point.  For example, 
the number 20,000 may have 1, 2, 3, 4, or 5 significant figures.  By writing 
this as 2.000 × 104, it is clear that it is indicated to be precise to 4 
significant figures. Written in this manner, this statement implies that the 
number is somewhere between 19,999 and 20,001.  However, use 
discretion. 

Carrying Significant Figures in Calculations 
As said above, the values determined experimentally have associated 

uncertainty which can be expressed directly. When multiple determinations of 
some value are made, a standard deviation of the set gives the precision.  The 
problem is often how to express this precision in terms of significant figures. 

The most common calculation that most chemists do is the calculation of 
concentration.  Suppose the concentration of HCl is determined in triplicate, as 
shown in the table. 
Calculation 1 0.18492 moles/L 
Calculation 2 0.18517 moles/L 
Calculation 3 0.18534 moles/L 
 
The “best” estimate of the concentration, given these three calculations, is the 
average: 

 
L

moles
L

molescave 18514.0)18534.018517.018492.0(
3
1

=++=  

The standard deviation of this result is σ = 0.00021 moles/L.  Thus, one should 
properly express this to four significant figures: 

   
L

molescave 1851.0=  

If a result is to be used in calculations, one may want to retain an 
additional figure or two past the first uncertain one.7  Looking at the three lines in 
the table, the first three figures are identical, 0.185, by rounding.  This means one 
has to keep at least the next figure in each to introduce uncertainty into the 
calculation.   Even the fourth digits span only a small range: 49-53, a range of 4 
in that place.  As a rule of thumb, if the range of the uncertain figure is less than 
6, keep this figure after the first uncertain one for purposes of calculating of the 
average and standard deviation.  Doing this to the above calculation gives an 
average of 0.18513 moles/L, essentially the same as the result when keeping all 
five digits.  Rounding off individual values or dropping digits too early in a 
calculation can result in a much lower precision than one may be entitled to 
report.  When in doubt, it is better to keep an extra figure until the standard 
deviation is determined, on the basis of which one can make a decision on the 
number of significant figures. 

                                            
7 Often calculators that retain many digits are used.  It is fine to retain these in calculations, but at the end 
one must specify the result only to the number of digits valid, given the limited certainty of the numbers put 
into the calculation. 


