
PHYSICAL REVIEW B 88, 035427 (2013)

Quantum friction on monoatomic layers and its classical analog
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We consider the effect of quantum friction at zero absolute temperature resulting from polaritonic interactions
in closely positioned two-dimensional arrays of polarizable atoms (e.g., graphene sheets) or thin dielectric sheets
modeled as such arrays. The arrays move one with respect to another with a nonrelativistic velocity v � c.
We confirm that quantum friction is inevitably related to material dispersion, and that such friction vanishes
in nondispersive media. In addition, we consider a classical analog of the quantum friction which allows us to
establish a link between the phenomena of quantum friction and classical parametric generation. In particular,
we demonstrate how the quasiparticle generation rate typically obtained from the quantum Fermi golden rule can
be calculated classically.
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I. INTRODUCTION

The phenomenon of quantum friction1–6 has attracted
a lot of attention recently,7–22 mostly because of a few
“controversies” linked to this effect, especially at temperatures
approaching absolute zero. At the macroscopic level, the quan-
tum friction force is commonly perceived as a force exerted
on bodies moving in the vicinity of each other, which emerges
from the zero-point fluctuations of the electromagnetic field in
the space surrounding the bodies. This force acts against the
movement of the bodies, and, thus, it is tempting to imagine
that there is a certain “viscosity” associated with the fluctuating
field3 that persists even at T = 0 K. It was recently found
that the normal Casimir forces are also affected by the shear
movement of the bodies.23

Although this picture is very intuitive, it is not immedi-
ately evident how such a nonreversible and nonconservative
effect as friction may result out of the mentioned quantum-
mechanical model. Indeed, in quantum electrodynamics it
is typically assumed that the fluctuating electromagnetic
field, together with the particles that interact with it, is
captured within an adiabatically closed cavity. It is evident
that within such an environment the quasistationary processes
(for instance, slow relative movements of bodies in the cavity
which do not destroy the state of thermodynamic equilibrium)
are reversible at T = 0 K, even if large ensembles of particles
are involved, simply because the Nernst theorem requires the
entropy of the entire system to vanish at T = 0 K.

There is, however, no such contradiction when one deals
with open systems which are not in a state of precise
equilibrium with their background. In such systems there may
exist heat and entropy flows, therefore the extra entropy and
heat created locally in a frictive process can be eventually
transferred to the environment by some intermediate agents.
In the same manner, in this work we understand quantum
friction as a dissipative effect resulting from generation of
excitations (such as plasmons, polaritons, phonons, etc.) that
eventually escape the quantum dynamic system (which is
otherwise conservative) in one way or another. In lossy media
such processes result in generation of heat, however, it is also
known that the quantum friction on rotating bodies in vacuum
is associated with generation of photons.21,22

Here we study the quantum friction between two very
thin (monoatomic in the limiting case) moving dispersive

dielectric sheets separated by a vacuum gap. To account for
the time dispersion we employ a model of discrete oscillators,
in which the polarized atoms of a dielectric are represented
by oscillating dipoles having a certain resonant frequency
and an effective mass. The collective dipole oscillations
in a dielectric—the polarization waves whose quanta are
designated here (following Ref. 24) by polaritons—are then
studied using a Hamiltonian formalism that takes into account
the interaction of the dipoles within a sheet (although in our
theory we consider only near-range excitations for which
one may use nonretarding approximation for the dipole-to-
dipole interaction in thin dielectric layers, one may still
regard such modes to be a blend of the dipole vibrations
and the electromagnetic waves captured within a layer—a
property typical for polaritons, as is commonly understood).
We quantize the polarization waves separately in the two
sheets, while allowing the waves in these sheets to interact.
The interaction Hamiltonian of the two sheets is obtained
under a nonretarding, nonrelativistic approximation for the
electric dipole-to-dipole interaction. When the sheets move,
this interaction results in transitions from the ground state of
the polarization field of the dielectric sheets to the nearby
states, i.e., the relative movement of the sheets generates pairs
of polaritons which eventually leave the system (e.g., get
absorbed) which results in a friction force exerted on the sheets.

It is important to note that the quantum model that we
describe in this work complements the previously available
models of quantum friction4,5,17,18 in continuous media by
highlighting the role of material dispersion and clarifying the
underlying physical mechanisms of this phenomenon. Even
though our theory is based on arrays of discrete oscillators,
in our calculations we consider the limit wherein the spacing
between the discrete oscillators is infinitesimal. In this limit,
from the electromagnetic point of view, the dipole array is
equivalent to a perfectly smooth continuous dielectric sheet.
Thus, the friction force calculated in this work is not the result
of the discreteness of the arrays but rather a consequence of
instabilities of electromagnetic field in moving media.

Under this perspective, the effect of quantum friction
does not appear significantly different from, for instance, the
radiative loss in the Smith-Purcell effect25 or the stopping
power in the Cherenkov effect.26,27 Moreover, in this work
we show that there is not that much specifically quantum

035427-11098-0121/2013/88(3)/035427(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.035427
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in the phenomenon of quantum friction, and that this phe-
nomenon is tightly linked to the classic theories of parametric
generation.28–30 Namely, we show that provided the initial
fluctuating field is given, it is possible to calculate using
classical arguments the growth rate of these fluctuations and
the rate of generation of polaritonic energy. As is shown
in Sec. V, the result of such classical calculation coincides
with the quantum-mechanical calculation of the quasiparticle
generation rate. Moreover, under certain assumptions, the
friction force calculated classically coincides with the one
calculated quantum mechanically if one regards the zero-point
fluctuations as the initial “source” of the fluctuating field at
T = 0. Such a point of view is consistent with explanations
of the quantum friction effect as a result of the interaction
between charge density fluctuations in moving bodies.4–6

Before going into details, we have to note also that a
related model of quantum friction was previously developed
by Pendry8 for the special case of plasmons in metals with
Drude-type dispersion with negligible loss. In Pendry’s case
the phase velocity of short-wavelength plasmons supported
by the metal slabs approaches vph = ωp/k, where ωp is the
plasma frequency and k is the plasmon propagation factor.
A very important point not discussed by Pendry is that for
plasmons with very short wavelength the phase velocity can be
arbitrarily low. In particular, at some k, vph can become much
lower than the velocity of the relative movement of the slabs.
However, within the framework of this paper, it is immediately
understood that such a situation may lead to instabilities
analogous to the instabilities in moving media above the
threshold of the Cherenkov effect.31 Such instabilities in turn
lead to generation of radiation, which in the end gives rise to
quantum friction (for the behavior of the normal Casimir forces
at the threshold of the Cherenkov effect see Ref. 32). A widely
adopted explanation of the quantum friction phenomenon
pictures it as a result of asymmetry in reflections of photons
by moving dielectric slabs.4 This explanation can be found
in many semiclassical works on quantum friction, and is very
different from the picture that emerges from our theory.

In this work we also prove quantum mechanically that in
dense arrays of nondispersive dipolar oscillators the effect
of quantum friction completely disappears at nonrelativis-
tic velocities v � c, even though the dipoles in the two
moving arrays still respond to the electric field and interact
electromagnetically. It must be noted that in the related
quantum-mechanical plasmon-based model of Ref. 8 the
limit of no dispersion (ωp → 0) coincides with the limit
εr = 1 − ω2

p/ω
2 → 1, in which the dielectric response of the

material vanishes. In contrast, in our framework we may
remove the dispersion by letting the resonant frequency of
the dipole vibrations approach infinity, while keeping the
static polarizability of the dipoles constant and greater than
zero.

II. HAMILTONIAN FORMALISM AND
QUANTIZATION OF POLARIZATION WAVES

IN A THIN DIELECTRIC SLAB

Here we are going to consider collective oscillations of the
bounded electrons in a thin dispersive dielectric slab of infinite
extent, i.e., the polarization waves of such a slab. Classically,

such modes are guided waves supported by a dielectric slab
in the case when electrostatic interaction between polarized
atoms remains dominant even on the scale of a wavelength.
These modes split into dispersion branches characterized
by polarization direction and distribution of the polarization
across the slab. In thin dielectric sheets, the modes with less
variation across the sheet are the ones mostly excited. Although
it is possible to develop a formulation in which all the normal
modes are taken into account, in what follows we focus only
on the dominant modes. This allows us to approximate a thin
dielectric sheet by a planar array of oscillators. Physically, in
this model the oscillating electrons in a vicinity of a given line
across a dielectric sheet appear strongly coupled, so that the
dynamics of such a line of oscillators is described with just a
single effective oscillator, characterized by an effective mass
and a resonant frequency. The same model can be applied
without approximation to real two-dimensional structures,
for example, to graphene sheets or other monoatomic or
monomolecular layers.

Nonrelativistic Hamiltonian dynamics of bounded electrons
in a thin dielectric slab is formulated and discussed in
Appendix A. Based on these findings, the Hamiltonian of such
a slab modeled as an array of effective dipolar oscillators can
be written as

H = 1

2

∑
s

[
xs · (meff,⊥�2

⊥I⊥ + meff,‖�2
‖I‖
) · xs

+ ps · (m−1
eff,⊥I⊥ + m−1

eff,‖I‖
) · ps

+ e2

4πε0

∑
q �=s

xs · �sq · xq

]
, (1)

where xs = xs,⊥ + xs,‖, ps = ps,⊥ + ps,‖, with xs,⊥ and xs,‖
being the effective charge displacements in these oscillators
across and along the array plane, respectively, and ps,⊥ and
ps,‖ being the conjugate momenta associated with them.
The parameters meff,⊥, �⊥ and meff,‖, �‖ are the effective
oscillator parameters for the two types of oscillations (see

Appendix A). The dyadics I⊥ and I‖ are the out-of-plane
and in-plane unity dyadics, respectively, and the interaction

dyadic �sq is defined as

�sq = I − 3usqusq

R3
sq

, (2)

where I = I⊥ + I‖ represents the identity dyadic. In Eqs. (1)
and (2) the indices s and q run over the effective oscillators,
with Rsq = usqRsq being the radius vector from the sth
oscillator to the qth oscillator.

Although Eq. (1) associates only a pair of characteristic
frequencies (�⊥ and �‖) with the electron oscillations in
the slab, the quantum theory that we develop next is not
limited by this fact, and is readily generalizable to dielectrics
with multiresonant response. In fact, the Hamiltonian of an
ensemble of coupled oscillators can be also represented more
generally as

H = 1

2

∑
m,n

(
∂2H

∂xm∂xn

xmxn + ∂2H

∂pm∂pn

pmpn

)
, (3)
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where xm are the independent degrees of freedom (three per
each oscillator) and pm are their conjugate momenta. The
dynamic equations for such a system can be written in the
block matrix notation as

i
d

dt

(
[xm]K
[pm]K

)
︸ ︷︷ ︸

F

=
(

0 i

−i 0

)
︸ ︷︷ ︸

J

·
⎛
⎝
[

∂2H
∂xm∂xn

]
K×K

0

0
[

∂2H
∂pm∂pn

]
K×K

⎞
⎠

︸ ︷︷ ︸
M

·
(

[xn]K
[pn]K

)
︸ ︷︷ ︸

F

, (4)

with K being the total number of the degrees of freedom, and
i = √−1. The representation (4) allows us to introduce a basis
in the space of state vectors F and diagonalize the system (4)
using an approach consistent with Ref. 33. Indeed, because
the matrix M of the positive definite quadratic form (3) is
symmetric and real valued, the same matrix is positive definite
in the space of complex vectors, and, thus, we may define a
weighted inner product 〈F1|F2〉 ≡ F†

1MF2, where † denotes
the conjugate transpose (adjoint) operation. Next, because
M and J are self-adjoint matrices, we have 〈JMF1|F2〉 =
(JMF1)†MF2 = 〈F1|JMF2〉, and, thus, the matrix JM defines
a Hermitian operator in the inner product space defined above.
Therefore, the eigenvectors of this operator form an orthogonal
basis Fk, which can be made orthonormal: 〈Fk|Fk〉 = 1. The
eigenvalues ωk of this operator are real valued. Moreover,
it is trivial to see that any eigenvector Fk with ωk > 0 is
accompanied by the eigenvector F∗

k with the eigennumber
−ωk < 0.

In Appendix B we obtain the spectrum of this operator
and prove that in isotropic (e.g., square or hexagonal) dense
lattices the complete phase vector space can be split into
three independent subspaces: Fk = Fk,⊥ ⊕ Fk,L ⊕ Fk,T, which
correspond to the modes that behave as eik·r within the array
plane (with k being the in-plane wave vector) and are polarized
along the complex unit vectors ẽk,⊥ = n, ẽk,L = ik/|k|, and
ẽk,T = [n × ik]/|k|, with n being the unit normal to the array
plane. The dimension of each of these subspaces is 2N ,
with N = K/3. Within each subspace, the eigenvectors Fk,l ,
l = ⊥,L,T (with normalization 〈Fk,l |Fk,l〉 = 1) are found to
be

Fk,l = 1√
2Nωk,l

(
1√

meff,lωk,l

[
ẽk,le

ik·rq
]
N

−i
√

meff,lωk,l

[
ẽk,le

ik·rq
]
N

)
, (5)

with the eigennumbers ωk,l expressed as

ωk,l =
√

�2
l + e2Ck,l

4πε0meff,l
, (6)

where Ck,l =∑q �=0(ẽk,l · �0q · ẽ∗
k,l) cos(k · R0q) is the inter-

action factor for the mode of a given polarization [in (6),
�L,T ≡ �‖].

Therefore, expanding the (real-valued) state vectors over
this basis as F(t) =∑l=⊥,L,T

∑
ωk>0[αk,l(t)Fk,l + α∗

k,l(t)F
∗
k,l]

and using the orthogonality of the basis vectors, we express the
Hamiltonian (3) as H = 1

2 F†MF =∑l=⊥,L,T

∑
ωk>0 |αk,l|2

and obtain from (4) a set of dynamic equations

α̇k,l = −iωk,lαk,l .

It is evident that αk,l has the dimension of the square root
of energy. By introducing the real-valued conjugate canonical
variables

qk,l = αk,l + α∗
k,l

ωk,l

√
2

, πk,l = αk,l − α∗
k,l

i
√

2
, (7)

we reduce the Hamiltonian to the canonical diagonalized form

H =
∑

l=⊥,L,T

∑
ωk>0

[
ω2

k,lq
2
k,l

2
+ π2

k,l

2

]
. (8)

Thus, the dynamics of the system is equivalent to the dynamics
of a set of independent harmonic oscillators, each representing
a given normal mode of the dynamic system (4).

To quantize the system in the Heisenberg picture we
promote the dynamic variables (7) to operators q̂k,l and π̂k,l

which satisfy the canonical commutation relation q̂k,l π̂k,l −
π̂k,l q̂k,l = ih̄. Introducing the (time-dependent) creation and
annihilation operators â

†
k,l , âk,l , such that

q̂k,l =
√

h̄

2ωk,l

(â†
k,l + âk,l), (9)

π̂k,l = i

√
h̄ωk,l

2
(â†

k,l − âk,l), (10)

âk,l â
†
k,l − â

†
k,l âk,l = 1, (11)

we express the total Hamiltonian as

Ĥ =
∑

l=⊥,L,T

∑
ωk,l>0

h̄ωk,l

(
â
†
k,l âk,l + 1

2

)
.

It is seen that the quantization is equivalent in effect to replac-
ing the classical wave amplitudes by the quantum-mechanical
operators as follows: αk,l ↔ √

h̄ωk,l âk,l , α∗
k,l ↔ √

h̄ωk,l â
†
k,l .

Consequently, the state vector is promoted to the following
operator:

F̂ =
∑

l=⊥,L,T

∑
ωk,l>0

√
h̄ωk,l(Fk,l âk,l + F∗

k,l â
†
k,l). (12)

III. POLARITON-TO-POLARITON INTERACTION FOR
A PAIR OF MOVING DIELECTRIC SHEETS

Let us consider a pair of identical dielectric sheets separated
by distance h (see Fig. 1). The dielectric sheets are modeled
as dense planar arrays of electric dipoles, as outlined in the
previous section. One of the sheets slides over the other with
the relative velocity v (we consider only the nonrelativistic case
in which v � c). Under our framework, the total Hamiltonian
of such a system can be written as

Htot = 1
2 F†

1MF1 + 1
2 F†

2MF2 + H12, (13)
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FIG. 1. (Color online) Illustration of the polariton-polariton
interaction for two thin dielectric slabs separated by distance h (see
Sec. III). The bottom slab is at rest. The upper slab slides with velocity
v. The wave vectors of the interacting polaritons in the two slabs
are oppositely directed. Generation of such pairs of polaritons (see
Sec. IV) results in a friction force Ffr acting on the moving slab
(an oppositely directed force of the same magnitude acting on the
stationary slab is not shown).

where F1,2(t) are the state vectors for the two arrays, and H12

describes the interaction between the arrays. The interaction
term is given by [compare with Eq. (1)]

H12 = e2

4πε0

∑
α,β=⊥,L,T

∑
s,q

x1,s,α · �sq(h) · x2,q,β , (14)

where �sq(h) is defined as in Eq. (2), but with indices s and
q running over oscillators in separate arrays, and with Rsq =
r2,q + vt − r1,s + h, where r1,s and r2,q are the in-plane radius
vectors with respect to a fixed oscillator (the “zero” oscillator)
in each array, and the vector h orthogonal to the arrays defines
the separation between the two arrays [also note that the term
with s = q is now included in the summation (14)].

In Appendix C we derive the quantum-mechanical form of
the interaction Hamiltonian (14) for the two arrays in relative
motion, and prove that it can be expressed as

Ĥ12 = h̄

2

∑
α,β=⊥,L

∑
ωk>0

gαβ

√∣∣ω2
k,α − �̃2

α

∣∣∣∣ω2
k,β − �̃2

β

∣∣
√

ωk,αωk,β

× (â1,k,α + â
†
1,−k,α)(â†

2,k,β + â2,−k,β )e−|k|heik·vt ,

(15)

where the tensor gαβ (such that |gαβ | = 1 when α =⊥ ,L,
β =⊥ ,L) is defined in Appendix C [Eq. (C7)] and �̃α =
lim
k→0

ωk,α . As is seen from this result, the T-polaritons do not

contribute to the interaction Hamiltonian of the two arrays
in motion. When deriving Eq. (15) we employ continuous
approximation for the arrays, because it is assumed that the
array separation h is much greater than the lattice period. In this
approximation the interaction between the arrays is equivalent
to the interaction between polaritonic modes in a pair of thin
dielectric sheets.

Let us note that while this result was obtained assuming that
the two dielectric sheets are identical, the representation (15)
is general enough to be applicable to a pair of dielectric sheets
of different physical nature, as long as the natural modes of the
sheets split into the independent polarization states described
by the set of eigenvectors introduced in Sec. II. Moreover,
Eq. (15) may be generalized to dielectrics with a multiresonant
response (i.e., when there are multiple branches of the same

polarization type), in which case the indices α and β should
run over all interacting branches.

As is evident from (15), the interaction between the
slabs can be explained in quantum language as an exchange
of polaritons. Indeed, the term (â†

2,k,β + â2,−k,β ) physically
corresponds to annihilation of a polariton with the wave
vector −k and creation of a polariton with the wave vector
k in the second slab. At the same time, due to the term
(â1,k,α + â

†
1,−k,α), a polariton with the wave vector −k is

created and a polariton with the wave vector k is annihilated
in the first slab.

IV. INDUCED TRANSITIONS BETWEEN POLARITON
STATES AND THE FRICTION FORCE

In the previous section we obtained an expression for the
total Hamiltonian of a system composed of two thin polarizable
slabs sliding one with respect to another with a fixed velocity
v. Without any loss of generality, we may assume the first
slab is at rest (fixed) and the second one being in motion. Due
to a Doppler-like effect, the relative movement gives rise to
oscillating terms eik·vt in the interaction Hamiltonian (15). It is
known that such a periodic perturbation may induce transitions
between the polaritonic states of the slabs.

The well-known Fermi golden rule allows one to calculate
the transition rate between an initial state |i〉 and the final state
|f 〉 of a quantum system under a small perturbation Ĥpert =
V̂ e−iωt as

Ri→f = 2π

h̄2 δ

(Ef − Ei

h̄
− ω

)
|〈f |Ĥpert|i〉|2, (16)

where Ei and Ef are the energies in the initial and the final state,
respectively. From (16) it is seen that the transition happens
only between the states such that Ef − Ei = h̄ω. In our system,
the perturbation is due to the interaction between the slabs:
Ĥpert = Ĥ12.

Let the initial state be the ground state of the system:
No polaritons in both slabs, which can be written as |i〉 =
|0,0〉, and the final state is |f 〉 = |1−k,α,1k,β〉 (here the first
component of the state vector corresponds to the stationary slab
and the second component corresponds to the moving slab,
thus, k is the wave vector of a polariton in the moving slab),
which means that a pair of oppositely propagating polaritons
(in general, with different polarizations denoted by the labels
α and β) has been created in the slabs. Evidently, in this
case Ef − Ei = h̄(ωk,α + ωk,β). Thus, the frequencies and the
wave vectors of the created polaritons (one per slab) satisfy
k1,2 · v = ±(ωk,α + ωk,β), where k ≡ k2.

Calculating |〈f |Ĥ12|i〉|2 for such a transition that corre-
sponds to a single addend of Eq. (15) we find

|〈1−k,α,1k,β |Ĥ12|0,0〉|2

= h̄2
∣∣ω2

k,α − �̃2
α

∣∣∣∣ω2
k,β − �̃2

β

∣∣
4ωk,αωk,β

× e−2|k|h|〈1−k,α,1k,β |(â1,k,α + â
†
1,−k,α)

× (â†
2,k,β + â2,−k,β )|0−k,α,0k,β〉|2

= h̄2
∣∣ω2

k,α − �̃2
α

∣∣∣∣ω2
k,β − �̃2

β

∣∣
4ωk,αωk,β

e−2|k|h. (17)
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The work of the external forces that is spent onto the
creation of the polariton pairs with certain k and all possible
polarizations is, per a time unit,

dW ext
k

dt
=

∑
α,β=⊥,L

h̄(ωk,α + ωk,β)Ri→f .

This amount of work is numerically equal to the work of the
friction force acting on the moving slab (because the work
of the oppositely directed force acting on the fixed slab is
zero): W ext

k = W fr
k . Therefore, the pertinent contribution to the

friction force is

fk = dW fr
k

vdt
=

∑
α,β=⊥,L

h̄(ωk,α + ωk,β)

v
Ri→f , (18)

where Ri→f , from (16) and (17), is

Ri→f = π
∣∣ω2

k,α − �̃2
α

∣∣∣∣ω2
k,β − �̃2

β

∣∣
2ωk,αωk,β

× e−2|k|hδ(ωk,α + ωk,β + k · v). (19)

There is one interesting point about this result that should
be mentioned. The expression for Ri→f does not contain the
Planck constant, which is an indication that (19) can be derived
classically. For example, when only the polaritons of a certain
type can be excited in the slabs (for example, with α = β = L),
the transition rate simplifies to (here for L-type polaritons,
�̃ ≡ �̃L and ωk ≡ ωk,L)

Ri→f = π
(
ω2

k − �̃2
)2

2ω2
k

e−2|k|hδ(2ωk + k · v). (20)

As is shown in Sec. V, a classical analogy of the transition
rate (20) can be found from a process of resonant parametric
excitation of the electron oscillations at the frequency ωk =
|k · v|/2 (previously designated by Pendry as the washboard
effect4,8).

From (18) the total friction force per unit area due to all
possible transitions is

Ffr

A
=
∫∫

fk d2k
(2π )2

= h̄

4πv

∑
α,β=⊥,L

∫∫ (ωk,α + ωk,β)
∣∣ω2

k,α − �̃2
α

∣∣∣∣ω2
k,β − �̃2

β

∣∣
2ωk,αωk,β

× e−2|k|hδ(ωk,α + ωk,β + k · v) d2k

= h̄

8πv2

∑
α,β=⊥,L

∫
ωk,α + ωk,β

ωk,αωk,β

×
∣∣∣∣

(
ω2

k,α − �̃2
α

)(
ω2

k,β − �̃2
β

)
1 + v−1(∂ωk,α/∂kx + ∂ωk,β/∂kx)

∣∣∣∣e−2|k|h dky,

(21)

where in the last integral k = (kx,ky), with kx = −(ωk,α +
ωk,β)/v, where kx is the component of the wave vector k
parallel to the velocity.

Note that we have expressed Eq. (21) exclusively in terms
of the the dispersion properties of the slab eigenmodes. This
suggests that Eq. (21) can be applied not only to the two-
dimensional arrays with the modal dispersion given by Eq. (6),

but also to systems with qualitatively different dispersion
behavior, provided that the polarization waves in these systems
are confined within thin layers (e.g., skin depth layers), and
split into the same independent polarization states.

For example, we may apply Eq. (21) to thin plasmonic slabs
(e.g., slabs of noble metals described by the Drude model)
which support short range (SR) and long range (LR) surface
plasmon-polariton (SPP) modes.34 It can be verified that the SR
SPP mode of such a slab corresponds to the L-polarized wave
of our theory with the parameter �̃L = lim|k|d→0 ωk,SR = 0,
where d is the slab thickness. Respectively, the LR SPP
mode corresponds to the ⊥-polarized wave with the param-
eter �̃⊥ = lim|k|d→0 ωk,LR = ωp, provided that |k| � ωp/c,
where ωp is the plasma frequency of the metal. In addition,
for full equivalence it is required that meff,⊥ = meff,‖ (see
Appendix C).

For such SPP-like modes under the condition ωk,SR ≈
ωk,LR ≈ ωSPP = ωp/

√
2, which holds for strongly confined

SPPs with |k| � ωSPP/c, we obtain for the friction force

Ffr

A
≈ h̄ω3

SPP

πv2

∫
e
−2h

√
( 2ωSPP

v
)2+k2

y dky. (22)

This result is in agreement with semiclassical theories of
quantum friction known from the literature.4–6 In a more recent
work8 based on a quantum-mechanical model for plasmons on
metal surfaces, Pendry obtained a result which differs from
(22) (as well as from his original theory4) by a factor of 1/2.

Pendry’s quantum-mechanical model8 assumed lossless
Drude-type dispersion for the metal conductivity, i.e., it was
essentially a free electron plasma model. In contrast, our theory
is based on an oscillatory model for the bounded electrons with
the characteristic resonant frequency ω0 �= 0. This allows us
to obtain an important result that does not follow immediately
from the quantum-mechanical model of Pendry.

Namely, taking the limit ω0 → ∞ under the condition
meω

2
0 = const, which corresponds to arrays of dispersionless

oscillators, we find that ωk,α ∝ ω0 in this limit, and, respec-
tively, ω2

k,α − �̃2
α ∝ ω2

0. At the same time, the argument of
the exponent in integral (21) is such that |k|h ∝ ω0h/v → ∞.
Thus, despite that the factor before the exponent grows as ω3

0,
integral (21) vanishes in this limit at any finite separations
h > 0 because of the quickly decaying exponential factor in
the integrand. Thus, our model predicts (for the nonrelativistic
case when v � c, as the theory is valid only in this case)
that the quantum friction vanishes for slabs of nondispersive
dielectrics.

This is illustrated numerically in Fig. 2, in which we
calculate the friction force per unit area [Eq. (21)] between two
identical sheets supporting L-polarized polaritons. In order
to make the calculation we take into account the results of
Appendix B [Eq. (B4)], from which it follows that
∂ωk,α/∂kx = [(ω2

k,α − �̃2
α)/(2ωk,α)][C̃−1

k,α(∂C̃k,α/∂kx)], and
in the continuous limit C̃−1

k,α(∂C̃k,α/∂kx) = kx/|k|, and sub-
stitute these relations into Eq. (21).

In the considered numerical example the polaritonic modes
are characterized by meff,L�̃2

L = f × me × 1031 s−2 = f ×
9.10938 kg s−2, with the factor f taking the values 0.3, 1,
and 3. The sheets are separated by 3 nm and move with the
relative velocity v = 3 m/s.
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FIG. 2. (Color online) The friction force (per unit area) due to
generation of the L-polarized polaritons as a function of the parameter
�̃L, under the condition that meff,L�̃2

L = f × 9.10938 kg s−2 = const.
The three curves are for the values of f equal to 0.3, 1, and 3.
The arrow indicates the direction in which f increases. The two
sheets are separated by 3 nm and move with the relative velocity
v = 3 m/s.

In each of the three curves in Fig. 2 we keep the parameter
meff,L�̃2

L constant while varying �̃L. One may see that with the
increase of �̃L the friction force initially grows, however, after
a certain threshold it decreases monotonically. This confirms
that in the limit of no dispersion, the quantum friction vanishes.

In Figs. 3 and 4 we show the dependence of the same friction
force on the separation h and the velocity v, respectively.
In these calculations, �̃L = 109 s−1, while the parameter
meff,L�̃2

L takes the same values as in Fig. 2. The values of
the other parameters are indicated in the figure captions.
Note the counterintuitive dependence of the friction force
on the velocity: The force initially grows very rapidly with
v, however, starting from v � 3 m/s the friction force
monotonically decreases with the velocity. Similar behavior of

FIG. 3. (Color online) The friction force in the same system as
in Fig. 2 as a function of the separation of the sheets, for the case
�̃L = 109 s−2. The sheets move with the relative velocity v = 3 m/s.
The meaning of the curves is the same as in Fig. 2.

FIG. 4. (Color online) The friction force in the same system as
in Fig. 2 as a function of the relative velocity v, for the case �̃L =
109 s−2. The slabs are separated by h = 3 nm. The meaning of the
curves is the same as in Fig. 2.

the friction force can be as well observed in systems involving
plasmonic slabs [Eq. (22)].

V. QUANTUM FRICTION FROM
A CLASSICAL PERSPECTIVE

In this section we consider a process of parametric
excitation of polaritonic oscillations in the two slabs using
the classical Hamiltonian formalism. This will allow us to es-
tablish a connection between the quantum-mechanical friction
force and a classical process, and obtain a classical equivalent
of the quantum-mechanical transition rate. To simplify writing,
we consider the case when only the polarization waves of a
single type are excited in both slabs. Extending the derivation
to the case of all polarizations is straightforward.

Let us first derive the dynamic equations for the time-
dependent complex amplitudes of the polarization waves in
the interacting slabs. It is convenient to switch temporarily to a
new orthonormal basis Qk,l , Pk,l in the subspace of the waves
of the single polarization we are interested in (for example,
with l = L), such that

Qk,l = Fk,l + F∗
−k,l√

2
, Pk,l = i

Fk,l − F∗
−k,l√

2
, (23)

with Fk,l defined by Eq. (5). It is evident that Q†
k,lMQk,l =

P†
k,lMPk,l = 1, and P†

k,lMQk,l = 0. In addition, it is seen
that JMQk,l = −iωk,lPk,l and JMPk,l = iωk,lQk,l . In what
follows, we suppress the polarization subindex l for brevity.

Expanding the state vectors in the basis of Eq. (23), we
write Fj (t) = ∑

ωk>0(αj,kFk + α∗
j,kF∗

k) = ∑
ωk>0(Aj,kωkQk+

Bj,kPk), where Aj,k = (αj,k + α∗
j,−k)/(ωk

√
2), Bj,k =

(αj,k − α∗
j,−k)/(i

√
2), with j = 1,2 labeling the two slabs.

Note that Aj,−k = A∗
j,+k and Bj,−k = B∗

j,+k.
The dynamic equations for the coupled polarization waves

in the two slabs can be formulated (independently of the basis)
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within our framework as

iḞ1(t) = JMF1(t) + JM12F2(t), (24)

iḞ2(t) = JMF2(t) + JM†
12F1(t), (25)

where M12 is such that H12 = F†
1M12F2. The basis (23) is

useful because, as is easy to prove, M12Pk = 0 and M12Qk =
e2

4πε0
C−k k(h) · Qk, where Ck1k2 (h) is defined in Appendix C

by Eq. (C3). Thus, the vectors Qk diagonalize the interaction
matrix M12 (the vectors Fk do not have this property).

Deriving from here the dynamic equations for the ampli-
tudes Aj,k and Bj,k and using the aforementioned properties of
these quantities and the expression for the interaction dyadic
from Sec. III, we find that Ȧj,±k = Bj,±k, j = 1,2, and

Ḃ1,−k = −ω2
kA1,−k − (ω2

k − �̃2
)
e−|k|he+ik·vtA∗

2,+k, (26)

Ḃ∗
2,+k = −ω2

kA
∗
2,+k − (ω2

k − �̃2
)
e−|k|he−ik·vtA1,−k. (27)

From here,

Ä1,−k = −ω2
kA1,−k − (ω2

k − �̃2
)
e−|k|he+ik·vtA∗

2,+k, (28)

Ä∗
2,+k = −ω2

kA
∗
2,+k − (ω2

k − �̃2
)
e−|k|he−ik·vtA1,−k. (29)

These two equations are the dynamic equations that we
need. We have written these equations in a form that highlights
the coupling between oppositely propagating polarization
waves. As one can see, Eqs. (28) and (29) are ordinary
linear differential equations with a time-dependent coupling
parameter. On the other hand, it is seen that these equations
correspond to a system of two coupled oscillators, in which the
alternating coupling strength plays a role of a parametric pump.
Thus, for the system of two moving slabs these equations
constitute the mathematical formulation of the washboard
effect mentioned in Pendry’s works.4,8 Analogous equations
appear, for example, in the theory of parametric amplifiers.28–30

In order to solve Eqs. (28) and (29) we make a substitution

A1,−k(t) = u1(t)e+i k·v
2 t , A∗

2,+k(t) = u2(t)e−i k·v
2 t ,

after which we obtain

ü1 + i(k · v)u̇1 − (k · v)2

4
u1 = −ω2

ku1 − (ω2
k − �̃2)e−|k|hu2,

(30)

ü2 − i(k · v)u̇2 − (k · v)2

4
u2 = −ω2

ku2 − (ω2
k − �̃2)e−|k|hu1,

(31)

which is a system of two ordinary linear differential equations
with constant parameters. Therefore, we may look for the
solution of (30) and (31) having the form uj (t) = cj e

λkt , which
results in the following characteristic equation for λk:[
λ2

k + ω2
k − (k · v)2

4

]2

+ (k · v)2λ2
k − (ω2

k − �̃2
)2

e−2|k|h = 0.

This biquadratic equation can be easily solved. The result is

λ2
k = −ω2

k − (k · v)2

4
±
√

ω2
k(k · v)2 + (ω2

k − �̃2
)2

e−2|k|h.

(32)

Under the assumption of weak coupling (which is essen-
tially the same as the small perturbation assumption in the
quantum theory) we may approximate the square root in (32)
and write

λ2
k ≈ −ω2

k − (k · v)2

4
± ωk|k · v|

[
1 +

(
ω2

k − �̃2
)2

e−2|k|h

2ω2
k(k · v)2

]

= −
(

ωk ∓ |k · v|
2

)2

±
(
ω2

k − �̃2
)2

e−2|k|h

2ωk|k · v| . (33)

The case of resonant parametric amplification occurs with
the choice of upper signs in (33) because in this case, for the
polarization waves with the wave vectors such that∣∣∣∣ωk − |k · v|

2

∣∣∣∣ <
∣∣ω2

k − �̃2
∣∣e−|k|h

√
2ωk|k · v| , (34)

there exists a real root of (33) satisfying λk > 0. The amplitude
of such waves grows exponentially with time.

The maximum amplification occurs for the polarization
waves which are in exact resonance with the parametric pump,
i.e., when ωk = |k · v|/2. For these waves, λk = λ0,k > 0,
where

λ0,k =
∣∣ω2

k − �̃2
∣∣e−|k|h

2ωk
. (35)

Note that such a growing solution is always accompanied by
a decaying one which has λk = −λ0,k < 0.

For the polarization waves which are not in exact resonance
but still satisfy the condition (34), the amplification rate λk > 0
can be approximated as

λk ≈
√

λ2
0,k −

(
ωk − |k · v|

2

)2

� λ0,k (36)

because within the narrow range (34) it is possible to replace
|k · v| by 2ωk in the second parcel of the last identity of
Eq. (33).

To further understand the structure of the exponentially
growing solutions we substitute uj = c∗

j,ke
λkt [with λk given

by (36)] into the linear system (30) and (31), keeping in
the result only the terms up to the first order with respect
to the small parameter λ0,k. In this way we find that
for such waves c2,k/c1,k = eiψ , being ψ = arcsin[sgn(ω2

k −
�̃2)] + arccos[sgn(k · v)(λk/λ0,k)], i.e., the polarization waves
parametrically excited in the two slabs have the same intensity,
but, in general, different initial phase.

On the other hand, for these waves A1,k = c1,ke
(λk−i k·v

2 )t and
A2,k = c2,ke

(λk+i k·v
2 )t , while |A1,k| = |A2,k|. Returning back to

the original basis Fk = (Qk − iPk)/
√

2 we may write for the
polarization waves within the amplification range:

Fj (t) =
∑
kampl

[αj,k(t)Fk + α∗
j,k(t)F∗

k], (37)

where we sum over the wave vectors that satisfy Eq. (34)
and consider only the growing solutions with λk > 0. The
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amplitudes αj,k = (ωkAj,k + iȦj,k)/
√

2 satisfy

α1,k(t) = 1√
2

(
ωk + k · v

2
+ iλk

)
A1,k(t), (38)

α2,k(t) = 1√
2

(
ωk − k · v

2
+ iλk

)
A2,k(t). (39)

The eigenvectors Fk behave as eik·r in the slab plane,
therefore, the complex modes in the sum (37) have the
propagation factor e±ik·(r1− vt

2 ) in the first slab, while the same
modes in the second slab behave as e±ik·(r2+ vt

2 ), i.e., the
polarization waves generated in the first slab all propagate with
the velocity v/2 with respect to the local coordinate frame fixed
in this slab, while the same waves in the second slab propagate
in the opposite direction (with the velocity −v/2) with respect
to the local frame.

Additionally, it follows from Eqs. (38) and (39), and the
fact that Aj,−k = A∗

j,+k, that |α1,+k| � |α1,−k| and |α2,−k| �
|α2,+k|, where k is such that k · v < 0, because within the
amplification range λk � ωk and ωk ≈ |k · v|/2. Taking into
account these results, we may express the total energy E = Htot

[Eq. (13)] of the polarization waves generated in both slabs
(neglecting the small interaction term) as

E ≈
∑
kampl

(|α1,k|2 + |α2,k|2) ≈
∑
k·v<0
(ampl)

Ek(t0)e2λk(t−t0), (40)

where Ek(t0) = |α1,−k(t0)|2 + |α2,+k(t0)|2 = 2|α1,−k(t0)|2 is
the contribution to the polaritonic energy (at the time instant
t = t0) of a pair of dominantly excited eigenmodes of the two
slabs characterized with oppositely directed wave vectors.

In order to establish a correspondence between the
quantum-mechanical polariton generation problem and the
classical parametric excitation problem we note that the ap-
proach of Sec. IV assumes that the polaritons generated in
the transitions |0,0〉 → |1−k,1k〉 get absorbed (or in any other
way leave the system) soon after being generated. This ensures
that all subsequent transitions initiate from the ground state,
which allows us to express the quantum friction only in terms
of such transitions. Thus, we may say that in the processes we
are interested in, the rate at which the polaritons are generated
is equilibrated by the absorption rate of the same polaritons.

In what follows we consider the classical parametric
generation problem under a similar assumption that, in steady
state, the rate of pumping the energy into the system is
compensated by some concurrent absorption process. We do
not need to specify any details about this process except that we
assume that there is a dynamic equilibrium between the two
concurrent processes, and that for the real polaritonic state
characterized with a certain k that belongs to the amplification
range (34) such an equilibrium is reached at a certain energy
level Ek > 0, which is a smooth function of k. It is evident that
in steady state only the polaritonic solutions with λk > 0 may
contribute to this dynamic equilibrium.

One may picture such a steady state as follows. Consider
that at a time instant t0 the total polaritonic energy E was
at the equilibrium level E0. After a small time interval dt ,
due to the parametric amplification process, the polaritonic
energy may grow by a small amount dE up to E0 + dE . The
action of the absorbing process is such that during this small

interval of time it absorbs exactly the same amount of energy
as it was generated, i.e., the same dE . The dynamics of the
parametric amplification allows us to calculate dE/dt . Indeed,
if there were no absorption, the energy of polarization waves
within the amplification range would grow as given by Eq. (40).
Differentiating (40) with respect to time we obtain for the total
energy growth rate at t = t0:

dE
dt

=
∑
k·v<0
(ampl)

2λkEk. (41)

Using (36) we express (41) as

dE
dt

= 2
∑
k·v<0
(ampl)

Ekλ0,k

√
1 − (ωk − |k · v|/2)2

λ2
0,k

= 2A

(2π )2

∫∫
k·v<0
(ampl)

Ekλ0,k

√
1 − (ωk + kxv/2)2

λ2
0,k

dkx dky,

(42)

where we replaced summation over discrete states by inte-
gration over the wave vectors k = (kx,ky) in the slab plane,
with the kx component antiparallel to the velocity and A → ∞
being the broadside area of the slabs.

At a fixed ky the inner integration in (42) is done over a
small interval of the width

kx ≈ 2λ0,k

|∂ωk/∂kx + v/2| .

Within this small interval we may approximate λ0,k by its
value at the middle point of the interval, so that it becomes
independent of kx . The same approximation can be used for
the polaritonic energy Ek. Then, introducing a new variable
κ = λ−1

0,k(ωk + kxv/2), we obtain

dE
dt

= 2A

(2π )2

∫ Ekλ
2
0,k dky

|∂ωk/∂kx + v/2|
∫ 1

−1

√
1 − κ2 dκ

= 2A

(2π )2

∫ Ekλ
2
0,k dky

|∂ωk/∂kx + v/2|
π

2
, (43)

which is the same as
dE
dt

= A

(2π )2

∫∫
2πλ2

0,kEkδ(2ωk + k · v) d2k.

The increase in the polaritonic energy is due to the
mechanical work done on the moving slab: dE/dt = vFclass,
therefore, we may write for the force acting on this slab (per
unit area)

Fclass

A
= 1

v(2π )2

∫∫
2πλ2

0,kEkδ(2ωk + k · v) d2k, (44)

which is the classical analogy of the quantum friction force.
Substituting here the expression for λ0,k from Eq. (35) and
comparing Eqs. (44) and (20) we immediately obtain that

Fclass

A
= 1

v(2π )2

∫∫
RgenEk d2k, (45)

with the classical equivalent of the polariton generation rate
Rgen, which is identical to the quantum-mechanical transition
rate from Eq. (20):

Rgen = 2πλ2
0,kδ(2ωk + k · v) = Ri→f . (46)
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The quantum result for the friction force due to the
transitions from the ground state is recovered from (45) by
replacing Ek by 2h̄ωk, which is the zero-point energy of
four modes with the wave vectors ±k in both slabs. Note,
however, that one might as well argue that only two modes
(the mode with k · v > 0 in the first slab, and the mode with
k · v < 0 in the second slab) should be considered, as these
are the modes most relevant in the classical problem [see the
discussion above Eq. (40)], in which case one would have
Ek = 2 × (h̄ωk/2) = h̄ωk.

There is, in fact, no contradiction here, because the
correspondence principle requires that the two approaches
(the classical one and the quantum one) match only when the
initial number of quanta in the system is large. From Eq. (40)
it is evident that such a correspondence is, indeed, in place:
The quantization of the polarization waves in both slabs is
equivalent to replacing |αj,k|2 with h̄ωk(nk + 1/2), where nk
is the number of quanta, therefore, Ek = 2|α1,−k|2 ≈ 2h̄ωknk,
when nk � 1. The same result can be obtained by considering
quantum transitions initiating from a state with a large number
of quanta, instead of the ground state.

VI. CONCLUSION

In this work we have considered the quantum friction force
resulting from generation of polariton pairs in thin moving
dielectric slabs (modeled as two-dimensional arrays of dipoles)
separated by a vacuum gap. Using a harmonic oscillator model
for the polarizable atoms of the dielectric we have proven
that the quantum friction completely vanishes in nondispersive
dielectrics at nonrelativistic velocities v � c.

When the dispersion is present, the quantum friction
resulting from generation of polaritons in moving dielectric
slabs appears somewhat similar to the Cherenkov or Smith-
Purcell effects, in which charges moving with a velocity above
a certain threshold start losing their kinetic energy due to a
generation of photons.

In the quantum friction phenomenon, however, the dielec-
tric slabs are electrically neutral and, thus, a better physical
model is required. In order to find such a model, in this work we
have established a link between generation of quasiparticles in
moving slabs by quantum transitions and the classical process
of parametric amplification of the field fluctuations in the same
slabs.

The theory of Sec. V shows that even in a classical picture
the movement of one slab over the other may result in the
amplification of the classical electromagnetic field, resulting
from the transfer of kinetic energy of the moving slab to the
radiation field. The same result also demonstrates how the
quasiparticle generation rate which is usually calculated from
the Fermi golden rule can be obtained by solving a related
classical parametric amplification problem.

APPENDIX A: HAMILTONIAN DYNAMICS OF
ELECTRON OSCILLATIONS IN A DIELECTRIC SLAB

We are interested in collective oscillations of the bounded
electrons in a dielectric slab. Because the bounded electrons
belong to atoms which are electrically neutral as a whole, the
oscillations of these electrons appear (to the first degree of

approximation) as electric dipole harmonic oscillations with
the effective dipole moments d = ex, where x is the electron
displacement. For simplicity we assume a cubic lattice and
isotropic dipole oscillators (anisotropy, however, will reappear
in the model at a later step).

For such an ensemble of interacting dipole oscillators, the
total Hamiltonian can be written as

H = H0 + Hint, (A1)

where H0 is

H0 =
∑
m

(
meω

2
0x2

m

2
+ p2

m

2me

)
(A2)

and the interaction Hamiltonian is, neglecting all retardation
effects,

Hint = e2

8πε0

∑
m,n

m�=n

xm · xn − 3(umn · xm)(umn · xn)

R3
mn

, (A3)

where Rmn = umnRmn is the radius vector from the mth
oscillator to the nth one, and the indices m and n run over
all oscillators in the slab.

Such a form of the Hamiltonian corresponds to the single-
electron dynamic equation of the form

meẍm + meω
2
0xm = eEloc

m , (A4)

where xm is the displacement of the mth electron, e = −|e| is
the electron charge, me is the electron mass (me � matom), ω0

is the characteristic frequency of the oscillations, and the local
field Eloc

m is produced by all other dipoles except dm:

Eloc
m = − 1

4πε0

∑
n�=m

dn − 3umn(umn · dn)

R3
mn

.

Let us divide the dielectric slab into macroscopic cubic
cells with the dimensions equal to the slab thickness. Each
cell contains a large number of polarized atoms, which we
model as electric dipole oscillators. Because we are interested
only in the dominant modes propagating along the slab under
the condition that the slab thickness is much less than the
wavelength, we may assume that the dipoles within a single
cell are all (on average) polarized along the same direction and
oscillate in-phase. The amplitude profile of these oscillations
within a single cell is approximately uniform in the plane of the
slab, while in the orthogonal direction it is symmetric (even)
with respect to the middle plane of the slab.

Physically, the above assumptions mean that the dipole
oscillators within a single cell are strongly coupled. The
cell symmetry suggests that the collective dynamics of these
oscillators can be described with just a pair of conjugate-
canonical vector variables xs,l and ps,l per cell (indexed by s)
per polarization type (indexed by l =‖ , ⊥). The latter takes
into account that the interaction energy in the modes polarized
across the slab (⊥-polarized modes) and along the slab
(‖-polarized modes) can be different, as is evident from the
form of the interaction Hamiltonian (A3).

It is straightforward to prove that these variables can be
defined by the following relations (here the index m runs over
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the oscillators belonging to the same cell):

xm = fm,‖xs,‖ + fm,⊥xs,⊥, (A5)

pm =
(

me

meff,‖

)
fm,‖ps,‖ +

(
me

meff,⊥

)
fm,⊥ps,⊥, (A6)

where the amplitude coefficients fm,l (such that
∑

m fm =
1) determine the profile of the respective modes, and ẋs,l =
ps,l/meff,l .

Under these assumptions, the total Hamiltonian of an
isolated cell (which includes the interaction between the
oscillators in the same cell) can be written as

H0,s =
∑

l=‖,⊥

(
meff,l�

2
l

2
x2

s,l + p2
s,l

2meff,l

)
, (A7)

with the effective parameters

�2
l = ω2

0 + e2

4πε0me

∑
m

∑
n�=m fm,lfn,l�mn,l∑

m f 2
m

, (A8)

meff,l = me

∑
m

f 2
m,l, (A9)

where the indices m and n iterate over the oscillators in the
cell, and �mn,l = (1 − 3 cos2 αmn,l)/R3

mn, where cos αmn,l =
(umn · xs,l)/|xs,l|, l = ‖,⊥. The cross-term corresponding to
the interaction between the ‖- and ⊥-polarized dipoles within
a single cell vanishes from (A7) due to the assumed symmetry
of the polarization distribution in a cubic cell (see above).

On the other hand, the coupling between two separate cells
is described by the interaction Hamiltonian

Hint,sq = e2

4πε0

∑
m,n

∑
l,l′=‖,⊥

fm,lfn,l′

× xs,l · xq,l′ − 3(umn · xs,l)(umn · xq,l′ )

R3
mn

, (A10)

where the indices m and n run over oscillators in two distinct
cells (indexed by s and q, s �= q).

We may approximate the radius-vector Rmn = umnRmn in
Eq. (A10) by the radius-vector between the middle points
of the two cells: umnRmn ≈ usqRsq (which is the same as
concentrating the dipole moments at the middle points of
the cells). Under this approximation, taking into account that∑

mn fm,lfn,l′ = 1, we obtain from Eqs. (A7) and (A10) the
total Hamiltonian of Sec. II [Eq. (1)].

APPENDIX B: SPECTRUM OF THE OPERATOR
JM AND ITS PROPERTIES

As is seen from Eq. (4), the dispersion equation for the
normal modes on a single array is JMFk = ωkFk, with M
being the matrix of the quadratic form H = 1

2 F†MF consistent
with Eq. (1). It is evident that in an infinite regular array the
normal modes are harmonic waves, and, thus, in such a mode,
xq,pq ∝ eik·rq , where k is the in-plane wave vector of a mode.
Therefore,

Fk =
(

[xke
ik·rq ]N

[pke
ik·rq ]N

)
, (B1)

with N being the number of oscillators in the array: N = K/3.

Based on Eqs. (1) and (B1) it is simple to prove that the
dispersion equation reduces to[

meff,‖
(
ω2

k − �2
‖
)
I‖ + meff,⊥

(
ω2

k − �2
⊥
)
I⊥ − e2

4πε0
Ck

]
·xk = 0, (B2)

where Ck is the interaction dyadic defined by

Ck =
∑
q �=0

�0qe
ik·R0q =

∑
q �=0

�0q cos(k · R0q).

It is clear from Eqs. (1) and (2) that the total Hamiltonian
H = H0 + Hint splits into two independent addends: H =
H⊥(ps,⊥,xs,⊥) + H‖(ps,‖,xs,‖). Hence, the in-plane and the
out-of-plane oscillations are completely uncoupled. Moreover,
it can be verified that in isotropic (e.g., square or hexagonal)
dense lattices the interaction between the in-plane modes
polarized along k (longitudinal ‖ modes) and perpendicular
to k (transverse ‖ modes) is negligible (more strictly, in
an isotropic array such interaction vanishes for k directed
along the primitive lattice vectors, while in the continuous
medium limit it vanishes for arbitrary directed k). Hence,
within the continuous limit approximation, the unit vectors
ek,l given by ek,⊥ = n, ek,L = k/|k|, and ek,T = [n × k]/|k|,
where n is the unit normal to the array plane, diagonalize

the interaction dyadic Ck, and thus also the complete tensor
in Eq. (B2). Therefore, within this approximation the phase
vector space can be divided into three independent subspaces:
Fk = Fk,⊥ ⊕ Fk,L ⊕ Fk,T. The dimension of each of these
subspaces is 2N . The frequency dispersion of each normal
mode can be computed from meff,l(ω2

k − �2
l ) − e2

4πε0
Ck,l = 0,

l = ⊥,L,T (with meff,L,T ≡ meff,‖ and �L,T = �‖), where

Ck,l = ek,l · Ck · ek,l , which yields the eigennumbers defined
by Eq. (6). Note that the frequencies of the normal modes
satisfy ω−k,l = ωk,l .

The associated eigenvector with the normalization
F†

k,lMFk,l = 1 is given by

Fk,l = eiψl√
2Nωk,l

(
1√

meff,lωk,l

[
ek,le

ik·rq
]
N

−i
√

meff,lωk,l

[
ek,le

ik·rq
]
N

)
, (B3)

where the initial phase ψl can be chosen at will. It is convenient
to set ψ⊥ = 0 and ψL,T = π/2, and introduce complex unit
vectors ẽk,l such that ẽk,l = eiψl ek,l . Evidently, ẽk,l · ẽ∗

k,l = 1,
and ẽ∗

−k,l = ẽk,l . In the new notation, Eq. (B3) assumes the
form of Eq. (5).

Additionally, it is convenient to split the interaction factors
as Ck,l = C0,l + C̃k,l , where C0,l is the limit of Ck,l at k → 0.
Evidently, limk→0 C̃k,l = 0. Then,

ωk,l =
√

�̃2
l + e2C̃k,l

4πε0meff,l
, (B4)

with �̃2
l = �2

l + C0,le
2/(4πε0meff,l), which are the squares of

the normal frequencies of oscillation in the long-wavelength
limit: �̃l = limk→0 ωk,l .
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APPENDIX C: THE INTERACTION HAMILTONIAN
OF TWO ARRAYS IN RELATIVE MOTION

To quantize H12 we replace x1,s,α and x2,q,β in Eq. (14)
by the respective operators defined consistently with Eq. (12).
We note that from Eqs. (5) and (12), and the properties of
the complex unit vectors ẽk,l , it follows that the displacement
component x̂q,l of the state operator F̂ can be expressed as

x̂q,l =
√

h̄

2N

∑
ωk,l>0

âk,l ẽk,le
ik·rq + â

†
k,l ẽ

∗
k,le

−ik·rq

√
meff,lωk,l

=
√

h̄

2N

∑
ωk,l>0

(âk,l + â
†
−k,l)ẽk,le

ik·rq

√
meff,lωk,l

. (C1)

From here it is found that

Ĥ12 = h̄e2

8πε0

∑
α,β=⊥,L,T

∑
ωk1,α>0

ωk2,β >0

Ck1k2,αβ (h)√
meff,αmeff,βωk1,αωk2,β

× (â1,k1,α + â
†
1,−k1,α

)(
â2,k2,β + a

†
2,−k2,β

)
, (C2)

with Ck1k2,αβ(h) = ẽk1,α · Ck1k2 (h) · ẽk2,β , and

Ck1k2 (h) = 1

N

∑
s,q

�sqe
ik1·r1,s eik2·r2,q . (C3)

The separation Rsq = usqRsq between a pair of selected
oscillators in the two moving arrays changes with time, and,

therefore, �sq(h) ≡ (I − usqusq)/R3
sq also does. However,

in the limit when the lattice period tends to zero (the
continuous limit), the vector vt at any fixed time instant
may be approximated by the nearest translation vector of the
lattice, i.e., for any q there exists such q ′ that r2,q ′ ≈ r2,q +
vt and Rsq ≈ r2,q ′ − r1,s + h ≡ Rsq ′ . Therefore, Ck1k2 (h)

reduces to Ck1k2 (h) = δk1,−k2e
−ik2·vtCk2 (h), with Ck2 (h) =∑

q ′ �0q ′ (h)eik2·R0q′ .
Substituting these results into Eq. (C2) we obtain

Ĥ12 = h̄e2

8πε0

∑
α,β=⊥,L,T

∑
ωk>0

Ck,αβ(h)√
meff,αmeff,βωk,αωk,β

× (â1,k,α + â
†
1,−k,β )(â†

2,k,β + â2,−k,β ) eik·vt , (C4)

where we put Ck,αβ(h) = ẽk,α · C−k(h) · ẽ∗
k,β . Evidently,

C−k,αβ (h) = [Ck,αβ(h)]∗, which ensures that Ĥ12 is a Hermi-
tian operator. It should be noted that because the operators
associated with each array commute, the multiplication order
in (C4) is irrelevant.

In the continuous limit,

Ck(h) = 1

Ac

∫
(I − 3rr/r2) eik·r

r3
dS

= − 1

Ac

∫
∇∇
(

1

r

)
eik·r dS, (C5)

where r =∑α xαeα − he⊥, α = ⊥,L,T, r ≡ |r|, Ac is the unit
cell area, and the integration is done over the plane x⊥ = 0 (the

array plane). From Eq. (C5), assuming h > 0,

Ck(h) = 2π

Ac

KK
|k| e−|k|h = 4π |k|e−|k|h

Ac
ẽk,−ẽ∗

k,+, (C6)

where K = k + i|k|ek,⊥ and ẽk,± = (ẽk,L ± ẽk,⊥)/
√

2. The
vectors ẽk,± satisfy ẽ∗

−k,± = ẽk,±, ẽk,±·ẽ∗
k,± = 1, ẽk,±·ẽ∗

k,∓ = 0,
and ẽk,± = −ẽ∗

k,∓.
It is evident that the interaction factors Ck,αβ = ẽk,α ·

C−k(h) · ẽ∗
k,β can be understood as the matrix elements of

C−k(h) in the complex basis e1,2,3 = ẽk,⊥,L,T. Using (C6) and
performing the necessary calculations we find that Ck,αβ(h) =
2πA−1

c |k| e−|k|hgαβ , where gαβ is given by

[gαβ]3×3 =

⎛
⎜⎝−1 −1 0

1 1 0

0 0 0

⎞
⎟⎠ , (C7)

from which it is seen that the T-polaritons do not contribute to
the interaction Hamiltonian.

It is convenient to introduce the normalized interaction
factor ck,αβ = Ck,αβ(h)/

√
|C̃k,αC̃k,β | (where α = ⊥,L, β =

⊥,L), with C̃k,α being the interaction constant defined in
Appendix B above Eq. (B4). In Appendix D we prove that in
the continuous limit C̃k,α = Ck,αα(0), and thus the normalized
interaction factor equals ck,αβ = gαβ exp(−|k|h). Then, using
the formula |C̃k,α| = (4πε0meff,α/e2)|ω2

k,α − �̃2
α| [Eq. (B4)],

we obtain from Eq. (C4) the interaction Hamiltonian of Sec. III
[Eq. (15)].

The single-component form of the interaction dyadic Ck(h)
[Eq. (C5)] suggests that the interaction Hamiltonian (15) can
be further simplified if one changes to a suitable basis in the
subspace Fk,L ⊕ Fk,⊥. Below we show that in the degenerate
case when ωk,⊥ = ωk,L = ωk and meff,⊥ = meff,‖ = meff such
a basis is essentially a basis of SPP-like modes.

Let us note that in our model the degeneracy conditions
can be fulfilled only approximately, when ωk ≈ const(k),
which implies that |C̃k,l| � |C0,l|, l = ⊥,L. Under these
conditions the L- and ⊥-polarized modes strongly hybridize.
Indeed, in the degenerate case one may introduce a new
orthonormal basis Fk,± = (Fk,L ± Fk,⊥)/

√
2. When ωk,⊥ =

ωk,L and meff,⊥ = meff,‖ the components of Fk,± are collinear
with the vectors ẽk,± = (ẽk,L ± ẽk,⊥)/

√
2, through which the

interaction dyadic (C5) is expressed. Thus, the electric dipole
moment associated with these polarization waves, dk,± =
exk,± [here, xk,± is the displacement component of Fk,± as
in Eq. (B1)], is such that dk,± ∝ ẽk,±.

In this basis the interaction Hamiltonian (C4) assumes the
simplest form

Ĥ12 = e2h̄

8πε0

∑
ωk>0

Ck,±(h)

meffωk
eik·vt

× (ĉ1,k,− + ĉ
†
1,−k,−)(ĉ†2,k,+ + ĉ2,−k,+), (C8)

where Ck,±(h) = ẽk,− · C−k(h) · ẽ∗
k,+ = 4πA−1

c |k|e−|k|h and

ĉl,k,± = (âl,k,L ± âl,k,⊥)/
√

2, l = 1,2, are the annihilation
operators in the new basis. Note that the interacting modes
are just the “−” modes of the first slab and the “+” modes of
the second slab.
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It is possible to associate the “±” modes with SPPs at
the surfaces of a plasmonic slab. Indeed, in such SPPs the
polarization vector P ≈ Pke

ik·re|k|(n·r) (here n is the outward
unit normal to a surface, and k is the in-plane component
of the wave vector, |k| � ωk/c) is such that (n · Pk) ≈
−i(k · Pk)/|k|. This holds because inside the slab ∇ · P = 0.
For the two surfaces of the slab, n1 = −n2, therefore, for
the SPPs localized at these surfaces, Pk ∝ ik/|k| + n1,2 =
ẽk,L ± ẽk,⊥, i.e., Pk ∝ dk,±. Therefore, the modes Fk,± are
fully analogous to the SPPs at the surfaces of a plasmonic
slab. On the other hand, the modes Fk,L = (Fk,+ + Fk,−)/

√
2

and Fk,⊥ = (Fk,+ − Fk,−)/
√

2 can be understood as the result
of hybridization of such SPPs, i.e., as the SR SPP and LR SPP
modes of a plasmonic slab.

APPENDIX D: RELATION BETWEEN C̃k,α AND
Ck,αα(h) IN THE CONTINUOUS LIMIT

Let us consider the lattice sum C̃k,α = Ck,α − C0,α . It can
be written as

C̃k,α =
∑
q �=0

1 − 3(eα · u0q)2

R3
0q

(cos k · R0q − 1). (D1)

One may notice that in a dense lattice (i.e., when k
√

Ac �
1, with Ac being the unit cell area) the terms with k · R0q � 1
may contribute less to the value of the sum than the distant
terms. Namely, we may write Eq. (D1) as∑

q �=0

�q,α =
∑

R0q<R�

�q,α +
∑

R0q�R�

�q,α, (D2)

where kR� � 1, and �q,α = [1 − 3(eα · u0q)2](cos k · R0q −
1)/R3

0q . Expressing cos k · R0q − 1 = −2 sin2 k·R0q

2 and using
the inequality | sin x| � |x|, we obtain that∣∣∣∣∣Ac

∑
R0q<R�

�q,α

∣∣∣∣∣ � Ac

∑
R0q<R�

(k · R0q)2

R3
0q

� k2Ac

∑
R0q<R�

1

R0q

. (D3)

From here, using that min(R0q) ∼ √
Ac and that there are about

πR2
�/Ac terms in the summation, we obtain∣∣∣∣∣Ac

∑
R0q<R�

�q,α

∣∣∣∣∣ � (πk)(kR�)

(
R�√
Ac

)
.

Because in the continuous limit we may always ensure that
R� � √

Ac, while kR� � √
Ac/R� , the summation over

R0q < R� may be neglected in (D2) and the summation over
R0q � R� replaced by integration. Thus, in the continuous
limit,

Ac

∑
q

�q,α ≈
∫

r�R�

(
1 − 3r2

α

/
r2
)
(cos k · r − 1)

r3
dS.

Next, because this integral does not have a singularity at r = 0,
we may as well include the region r < R� into the integration
(the contribution of this region is on the order of k2R�/2) and

obtain that in the continuous limit

C̃k,α = 1

Ac

∫ (
1 − 3r2

α

/
r2
)
(cos k · r − 1)

r3
dS

= 1

Ac

∫ [(
1 − 3r2

α

/
r2
)
eik·r

r3
−
(
1 − 3r2

α

/
r2
)

r3

]
dS.

(D4)

Next, for any finite h > 0 and k = 0 we get from Eq. (C5) that

∫ (
1 − 3r2

α

/
r2
)

r3
dS = ek,α · Ck(h) · ek,α = 0.

Therefore, we may write based on Eq. (D4) that

lim
h→0

(ek,α · Ck(h) · ek,α)

= 1

Ac
lim
h→0

∫ (
1 − 3r2

α

/
r2
)
(eik·r − 1)

r3
dS

= C̃k,α. (D5)

From here, because, ek,α · Ck(0) · ek,α = ẽk,α · C−k(0) · ẽ∗
k,α

we get that C̃k,α = Ck,αα(0).
In Fig. 5 we compare the interaction factors C̃k,α computed

numerically by direct summation of the absolutely convergent
series (D1) with the same obtained in the continuous approx-
imation (D5). One may see that the agreement is quite good
even for arrays that are far from the continuous limit ka → 0.
We conclude that this approximation may work quite well
already for ka � 0.5.

FIG. 5. (Color online) Normalized interaction factors a3C̃k,α =
a3(Ck,α − C0,α), α = ⊥,L,T, computed numerically by direct sum-
mation of the series (D1) over a 600 × 600 element square-cell
lattice (dash-dotted lines), and analytically by using the continuous
approximation (D5) (solid lines), as functions of the normalized
in-plane wave number ka, where a is the lattice constant.
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