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Theory of spatial optical solitons in metallic nanowire materials
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I characterize the spatial optical solitons supported by arrays of metallic nanowires embedded in Kerr-type
material. The array of nanowires is described using an effective medium model and is regarded as a continuous
medium. I show that the conditions necessary for the formation of spatial solitons are radically different in
presence of the nanowires. In particular, within the effective medium model, spatial solitons are allowed in the
nanowire material only when the host material is a “self-defocusing” material. It is proven that the characteristic
soliton beamwidth is related to the degree of hyperbolicity of the isofrequency surfaces of the photonic states
and that a sufficiently strong electric field amplitude may enable subwavelength solitary waves.
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I. INTRODUCTION

Light propagation in nanowire arrays has been a topic of
intense research in recent years due to the opportunity provided
by such structures to manipulate electromagnetic radiation
on a spatial scale much smaller than the wavelength.1–4

More recently, the impact of nonlinear effects5,6 in light
propagation in metallic nanowire arrays and other closely
related nanostructures has been investigated.7–13 It has been
predicted that such “plasmonic waveguide arrays” may support
subwavelength spatial solitons when the metallic inclusions
are embedded in a nonlinear Kerr-type dielectric host.7,8 This
may enable achievement of the subwavelength confinement of
light guided by metallic nanostructures and help reduce the
characteristic size of photonic devices. Several studies have
demonstrated that spatial solitons (also known as plasmonic
lattice solitons) in nanowire arrays are stable when the
nanowires are embedded in a self-defocusing medium,7,8

and a variety of vortex and multipole have been studied in
Refs. 14 and 15. The analysis of these works is based on the
coupled-mode theory, which provides limited physical insight
to the problem. Recently,16 building on the efforts reported
in several earlier papers,17–19 I developed an effective medium
model for regarding the array of metallic nanowires embedded
in a Kerr-type material as a continuous medium characterized
by some nonlinear effective parameters. It was shown that
the nanowire array may behave as a hyperbolic (indefinite)
uniaxial medium (such that the signs of the components of
the permittivity tensor differ) and that a weak nonlinearity
enables control of the degree of hyperbolicity of the dispersion
of the photonic states. In particular, it was predicted that
the nonlinear effects may enhance the negative refraction of
light at an interface between air and nanowire array. In this
paper, I apply the effective medium model to the study of
spatial solitons in nanowire arrays embedded in a nonlinear
host. Based on the effective medium framework, I explain
the mechanism of formation of the spatial solitons. I prove
that the interplay between the nonlinearity of the host and the
wave-guiding properties of the plasmonic inclusions results in
an effective medium response such that if the host dielectric
(i.e., the nonlinear component of the composite material) is a
self-defocusing medium, then the array of nanowires behaves
as a self-focusing medium. I develop an analytical theory
to characterize the spatial solitons and present a parametric

numerical study of the properties of the spatial solitons in
simple, two-dimensional scenarios, including the effect of loss.

II. TRAPPED STATES IN NONLINEAR
HYPERBOLIC MEDIA

In this section, I discuss from a qualitative point of view
the physical requirements for the formation of trapped states
in arrays of metallic nanowires embedded in a nonlinear
host medium with a Kerr-type nonlinearity. The array of
nanowires is treated as an effective medium, and to a
rough approximation, it may be regarded as a hyperbolic
medium. This is because the isofrequency diagrams of the
photonic states associated with the so-called quasitransverse
electromagnetic (quasi-TEM) are hyperbolic contours.18,20 As
discussed in detail in my previous paper,16 the shape of the
isofrequency diagrams depends on the nonlinear effects and
thus on the intensity of the electromagnetic field. Hyperbolic
metamaterials have recently received considerable attention
due to their applications in negative refraction of light21 and
in the enhancement of the Purcell factor,22–24 among others.

The geometry of the nanowire array is illustrated in Fig. 1.
It is assumed that the metallic nanowires are cylindrical, are
oriented along the z direction, and have the radius rw. The
metal electric permittivity is εm. The period of the array is
a. The nanowires are embedded in a host medium with a
Kerr-type nonlinearity such that εh = ε0

h(1 + δε) with δε =
αe∗ · e, where e is the microscopic electric field (i.e., before
any averaging on the scale of the period of the array) and
α = 3χ (3)/ε0

h,r is a constant that determines the strength of the
nonlinear effects.

The mechanism of formation of trapped states in con-
ventional self-focusing media is well known and can be
understood from the dynamics of the isofrequency contours
of the photonic states as a function of the nonlinear effects.
Suppose that the direction of propagation is along z and that
kz0 is the wave number that determines the variation in space
of the trapped state along the direction of propagation. For
a fixed frequency, a trapped state associated with certain
kz0 is allowed if the medium supports a photonic state with
kz = kz0 (such that a generic photonic state is characterized
by the wave vector k = kt + kzẑ, where kt = kx x̂ + ky ŷ) for
a sufficiently strong field amplitude and simultaneously there
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FIG. 1. (Color online) A periodic metallic nanowire array em-
bedded in a Kerr-type nonlinear host material.

are no allowed photonic states with kz = kz0 for weak field
amplitudes. In such circumstances, the radiation can become
trapped for sufficiently strong field amplitudes because it
cannot be coupled to photonic states lying in the regions of
weak field amplitude. Thus, the trapping mechanism is related
to the total-internal reflection due to the self-induced refractive
index change.

These ideas are illustrated in Fig. 2(a), which shows the
dispersion of the photonic states k2c2 = ω2n2 (c is the speed

of light in vacuum) for a conventional self-focusing medium
such that index of refraction n grows with the amplitude of
the electric field. In Fig. 2(a), the dotted (green) line intersects
the surface of allowed photonic states in case of a strong field
amplitude (dashed yellow circle) but does not intersect the
surface of allowed photonic states for low field amplitudes
(solid blue circle).

In order to study when solitary waves are allowed in
a nanowire material, I depict in Fig. 2(c) the isofrequency
contours of the quasi-TEM mode in a case of weak fields at
1550 nm for a representative material geometry (solid black
line). It is assumed that the nanowires are made of silver.
The dispersion of silver is described by the Drude permittivity
model with a plasma frequency 2175 THz.25 As seen, the
isofrequency surface of the photonic states resembles a hyper-
bola, rather different from what happens in a vacuum, where it
is a spherical surface. In case the nanowires are embedded in
a nonlinear material, the isofrequency contours depend on the
effective parameters n2

ef,h and n2
w/ζw, whose precise definition

is given in Ref. 16 (see also Sec. III). When the nanowires
are embedded in a self-focusing (self-defocusing) nonlinear
material, n2

ef,h and n2
w/ζw are greater (smaller) than unity and

grow (become smaller) as the amplitude of the fields grows. For
very weak fields (linear approximation), n2

ef,h = n2
w/ζw = 1.

The perturbation in the dispersion of the photonic states caused
by the nonlinear effects is represented in Fig. 2(c) with dashed
green and dot-dashed blue lines for the cases of self-defocusing
and self-focusing host medium, respectively.
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FIG. 2. (Color online) The mechanism that enables the formation of spatial solitons. (a) Dispersion of photonic states in a standard
self-focusing medium for the cases of weak (solid blue line) and strong (dashed yellow line) field amplitudes. (b) Similar to (a) but for an array
of nanowires embedded in a self-defocusing medium. (c) Dispersion of the photonic states associated with the extraordinary (quasi-TEM) wave
at λ0=1550 nm in a nanowire material formed by silver wires in a dielectric background with ε0

h = 1.0ε0, rw = 20 nm, and rw/a = 0.1. The
dispersion of the photonic states is obtained based on the theory of Ref. 16. Solid (black) lines are n2

ef,h = n2
w/ζw = 1.0 (linear host material),

dot-dashed (blue) lines are n2
ef,h = n2

w/ζw = 1.0 + 0.1 (self-focusing host material); and dashed (green) lines are n2
ef,h = n2

w/ζw = 1.0 − 0.1
(self-defocusing host material). The green arrow in (a) and (b) represents a photonic state with kz = kz0 such that it only propagates in case of
a sufficiently strong field.
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It can be checked based on the analytical model of Ref. 16
that the vertex of the hyperbola (point of the hyperbola with
kt = 0) is such that kz = khnef,h, where kh = ω

√
ε0
hμ0 and

ε0
h is the permittivity of the host medium for the case of

weak field amplitudes. Hence, based on this result and on the
isofrequency contours of Fig. 2(c), we can readily understand
in which circumstances trapped states can be formed in the
effective medium. Taking into account the hyperbolic shape of
the isofrequency surfaces, it is seen that the value kz0 associated
with a trapped state must be such that (i) kz0 > khnef,h so that
a photonic state is allowed in the case of a sufficiently strong
field amplitude (i.e., so that the dashed horizontal green line
in Fig. 2(b) intersects the dashed yellow hyperbola) and (ii)
kz0 < kh so that no photonic states are supported in the case
of a weak field (i.e., so that the dashed horizontal green line
in Fig. 2(b) does not intersect the solid blue hyperbola). The
two conditions can be met simultaneously only if nef,h < 1,
i.e., only in the case of a self-defocusing host medium. In
particular, I conclude that within the effective medium model
adopted here, no solitary waves are allowed in the nanowire
material in the case of a self-focusing host medium. Figure 2(b)
illustrates the isofrequency contours in a nanowire material
with a self-defocusing host, and an allowed value for kz0 is
marked on the plot.

Ref. 8 reported that discrete spatial solitons may be
supported by arrays of metallic nanowires embedded in a
Kerr self-focusing medium, in apparent contradiction with my
theory. However, the two theories can be reconciled because
for a self-focusing medium, the trapped states found in Ref. 8
are staggered solitons. Such trapped modes have strong spatial
field variations on the scale of the period of the nanowire
material and thus cannot be described within an effective
medium approach, which is the scope of my paper.

The trapped waves described previously are partly related to
gap solitons,10–13,26,27 because the dispersion of the photonic
states in the nanowire array has a directional band gap.
However, here the spatial soliton formation does not involve
Bragg scattering and is rooted on the effective medium
response. The emergence of gap solitons in metamaterials has
been discussed, for example, in Refs. 12 and 28.

III. EFFECTIVE MEDIUM MODEL FOR THE
CHARACTERIZATION OF THE SPATIAL SOLITONS

In order to put the ideas of the previous section in a firm
theoretical standing, I next derive the equations that allow
calculating the spatial solitons in the nanowire material. The
analysis is based on the effective medium model derived in
Ref. 16, which describes the electrodynamics of the wire
medium in terms of the state vector (E,H,ϕw,I ), where (E,H)
are the macroscopic electromagnetic fields, I is the current
in the nanowires, and ϕw is the average quasistatic electric
potential drop from a given nanowire to the boundary of the
respective unit cell. Both I and ϕw are continuous functions
of the position, so the wire array is regarded as a continuous
medium. The state vector (E,H,ϕw,I ) satisfies a nonlinear
first-order partial-differential system. However, it is possible
to eliminate (H,I ) in favor of (E,ϕw). This yields the following

second-order partial-differential system (Ref. 16, Eq. 36):

∇ × ∇ × E − k2
hn

2
ef,hE = iωμ0jext + β2

p

ζw

(
∂ϕw

∂z
− Ez

)
ẑ

+β2
pk2

hỸϕw, (1a)

∂2ϕw

∂z2
+ k2

hn
2
wϕw = −ζwk2

hỸ · Et + ∂Ez

∂z
. (1b)

where k2
h = ω2ε0

hμ0, Et = Ex x̂ + Ey ŷ is the transverse elec-
tric field component, jext is a macroscopic current density that
models external sources of radiation (in this paper jext = 0),
ζw = 1 + Zw

−iωL
, Zw = − 1

iωπr2
w(εm−ε0

h)
is the per unit of length

(p.u.l.) self-impedance of the nanowires, L = μ0

2π
log( a2

4rw(a−rw) )
is the p.u.l. geometrical inductance of the nanowires, and
βp = a−1√μ0/L is the geometrical component of the effective
plasma-wave number of the metamaterial.19

As a consequence of the nonlinear response of the host
medium (described by the parameter α), the effective parame-
ters Ỹ = α

2 (ϕwE∗
t + ϕ∗

wEt ), n2
ef,h = 1 + α(E∗ · E + β2

pϕwϕ∗
w),

and n2
w = ζw[1 + α(E∗ · E + B̃ β2

pϕwϕ∗
w)] are quadratic

forms of the state vector. The dimensionless parameter B̃

depends exclusively on the normalized radius of the nanowires,
rw/a. An explicit formula for B̃ can be found in Ref. 16. The
system of equations in Eq. (1) is the starting point for the
calculation of the spatial solitons supported by the nanowire
array based on the effective model.

To make further progress, it is necessary to simplify
somewhat the system in Eq. (1). I consider two approaches
based on different simplifications of the formulas for n2

ef,h,

n2
w, and Ỹ. The parameters n2

ef,h and n2
w depend on |Ez|2,

|Et |2, and |ϕw|2, with |Et | = √|Ex |2 + |Ey |2. In the case of
paraxial spatial solitons propagating along the z direction, the
light beam is expected to be a quasiplane wave that barely
penetrates into the metallic nanowires; thus, the associated
electric field is mainly confined to the xoy plane so that
|Ez| � |Et |. Moreover, because ϕw is the quasistatic electric
potential created by the electric charge density induced on
the metallic wires,16 for paraxial propagation we may also
expect that |ϕw/a| � |Et |. This will be confirmed later with
numerical simulations. Hence, in the paraxial case, we can
neglect contributions to the nonlinear dynamics arising from
both Ez and ϕw. Thus, we may assume that

n2
ef,h ≈ n2

w

ζw

≈ 1 + αE∗
t · Et , and Ỹ ≈ 0. (2)

With these approximations, the nonlinear system in Eq. (1)
is considerably simplified:

∇ × ∇ × E − k2
hn

2
ef,hE = iωμ0jext + β2

p

ζw

(
∂ϕw

∂z
− Ez

)
ẑ,

(3a)

∂2ϕw

∂z2
+ k2

hζwn2
ef,hϕw = ∂Ez

∂z
. (3b)

In this approach, I retain Ez and ϕw because they
are necessary to couple the two second-order equations.
The double curl operator could be further simplified using
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the paraxial approximation, but this is not required unless
someone is interested in studying the effect of perturbations
(e.g., loss) in the propagation (see Sec. V).

The other approach considered here is based on a less drastic
simplification of the effective medium model. As detailed in
Appendix A, in this second approach, only the contribution
from |Ez|2 to the nonlinear dynamics is discarded so that n2

ef,h

and n2
w are given by Eqs. (A1a) and (A1b), respectively, and

the exact form of Ỹ is retained. The neglect of |Ez|2 is justified,
because even in the nonparaxial case, we may expect |Ez| �
|Et |. It is known that in wire media formed by metals with high
conductivity, the extraordinary wave remains a quasi-TEM
with |Ez| � |Et |, even when the fields vary appreciably along
the x and y directions.17–19 This is especially accurate when
the radius of the wires is at least few times larger than the
metal skin depth.

To determine the spatial solitons, we can solve either Eq. (3)
(paraxial approach) or Eq. (1) (nonparaxial approach), assum-
ing that the dependence on z of (E,ϕw) is of the form eikzz.
For simplicity, I only consider two-dimensional solitary waves
with Ex = 0 and ∂x = 0. Moreover, for the reasons explained
in Appendix A, we are interested in spatial solitons such that
Ey and ϕw are in phase and Ey and Ez are in quadrature.
Thus, we may look for solutions such that Ey = Ẽy(y)eikzz

and ϕw = ϕ̃w(y)eikzz with the respective envelopes Ẽy and ϕ̃w

real valued. It is proven in the Appendix A that within the
paraxial approximation (Eqs. (2) and (3)) Ey and ϕw satisfy

∂ϕw

∂y
= − k2

z − k2
hn

2
ef,h

k2
hζw

(
n2

ef,h + αEyE∗
y

) − k2
z

Ey, (4a)

∂Ey

∂y
= −k2

hζwn2
ef,h − k2

z − β2
p

n2
ef,h + 2αEyE∗

y

n2
ef,hϕw, (4b)

where n2
ef,h is given by Eq. (2). In the more general nonparaxial

approach [Eqs. (1) and (A1)], the fields Ey and ϕw satisfy
a similar but more complex first-order nonlinear system
[Eq. (A4)]. We restrict attention to solitons such that Ẽy(y)
is an even function of y; consequently, Ẽz(y) and ϕ̃w(y) are
odd functions of y. Thus, the boundary conditions at y = 0
are such that

ϕw|y=0 = 0 Ẽy |y=0 = Ẽy0 (5)

The value of Ẽy0 depends on kz and is determined iteratively
in order to ensure that for y → +∞ the electromagnetic fields
vanish: Ey,ϕw → 0.

In the case of perfectly electric conducting (PEC) metallic
wires, the normalized impedance ζw is equal to the unity.
In such a case and for a linear host (n2

ef,h = n2
w/ζw = 1 and

Ỹ = 0), it can be verified that when kz = kh, Eq. (1) admits a
solution with Ez = 0 (TEM wave beam). Indeed, for kz = kh

and Ez = 0, Eq. (1b) is satisfied for an arbitrary envelope
ϕ̃w(y) of the additional potential (ϕw = ϕ̃w(y)eikzz), whereas
Eq. (1a) is satisfied with E = Ey ŷ provided that

∂Ey

∂y
= β2

pϕw. (6)

Thus, provided the envelope ϕ̃w(y) is chosen such that∫ +∞
−∞ ϕ̃w(u)du = 0 (e.g., any odd function localized in the

vicinity of the origin), it follows that the corresponding wave

beam, characterized by the envelope Ẽy = β2
p

∫ y

−∞ ϕ̃w(u)du,
is also localized in space and propagates along the z direction
with no diffraction, even though the host material is assumed to
be linear. Thus, the PEC wire medium supports nondiffracting
waves even in the limit of a linear response. This property is
a consequence of the diffractionless nature of TEM waves
in PEC wire media and of the effective medium being
characterized by extreme anisotropy, as widely discussed in
the literature.17,18,29

IV. NUMERICAL RESULTS

As a first example of the application of the theory of the
previous section, Fig. 3 plots the normalized field profiles
associated with a spatial soliton with kz = 0.990kh at λ0=1550
nm in an array of silver nanowires embedded in a self-
defocusing host medium. It is supposed that the radius of the
nanowires is rw = 20 nm and that the period is a = 200 nm.
The effect of dielectric and metallic loss is neglected here
but is discussed in detail in the next section. It can be
checked that the electric field and additional potential profiles
associated with a given spatial soliton depend on the specific
value of the nonlinear parameter (α < 0) as 1/

√|α|. For this
reason, the field profiles in Fig. 3 are given in normalized
unities. Without loss of generality, the permittivity of the host
medium for weak field amplitudes is taken to be equal to
the permittivity of vacuum ε0

h = 1.0ε0. The results remain
qualitatively similar in the more realistic situation ε0

h > ε0.
As seen in Fig. 3, the spatial soliton is a quasi-TEM beam,
with |Ez| � |Et | and |ϕw/a| � |Et |. The dot-dashed black
lines in Fig. 3 represent the field profiles obtained based on
the paraxial approximation described in Sec. III, whereas the
solid blue lines represent the field profiles obtained using the
more rigorous (nonparaxial) theory of Appendix A. The two
approaches yield nearly coincident results, consistent with the
beam being a quasi-TEM wave. In particular, it is seen in the
lower-right panel of Fig. 3 that n2

ef,h ≈ n2
w/ζw, consistent with

Eq. (2). In the region where the field intensity is stronger,
n2

ef,h < 1, because the dielectric host is a self-defocusing Kerr
medium. The envelope of Ey has even parity, whereas the
envelopes of Ez and ϕw have odd parity with respect to the
coordinate y.

It can be checked that for the example of Fig. 3,
the half-power beamwidth (which is roughly determined
by the envelope of Ey) is such that W = 1.06λ0; thus, it
is on the order of the free-space wavelength. As could be
expected, the beamwidth depends on the strength of the
nonlinear effects, and for greater field intensities (smaller
values of kz), W becomes increasingly smaller and may even
become subwavelength. This is illustrated in Fig. 4, where
the half-power beamwidth is depicted as a function of the
required value of n2

ef,h at the center of the beam. The results of
Fig. 4 were obtained based on the nonparaxial approximation.
Unfortunately, the condition to have a subwavelength solitons
may require unrealistically strong nonlinear effects, associated
with a significant depression of n2

ef,h (at least 5%) compared
to the case of a linear response.

To understand how the specific geometry of the nanowire
material affects the profile of the spatial solitons, I computed
the solitons associated kz = 0.993kh in a material formed by
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FIG. 3. (Color online) Normalized field profiles (Ey = Ẽy(y)eikzz, Ez = i Ẽz(y)eikzz, and ϕw = ϕ̃w(y)eikzz) for a spatial soliton with
kz = 0.990kh at λ0=1550 nm in a nanowire material formed by silver wires in a dielectric background with ε0

h = 1.0ε0, rw = 20 nm, and
rw/a = 0.1. Solid blue lines are profiles calculated based on the nonparaxial approximation. Dot-dashed black lines are profiles calculated based
on the paraxial approximation. The dashed green line (virtually coincident with the solid blue line) in the lower-right panel represents n2

w/ζw .

an array of silver nanowires embedded in a self-defocusing
dielectric, considering different frequencies of operation and
different nanowire radii and periods. The results of Fig. 5
indicate that for a fixed value of kz/kh, the electric field
amplitude required to have the formation of a spatial soliton is
nearly independent of rw,a,λ0.

In addition, Fig. 5(d) shows that the characteristic spatial
width of the soliton depends directly on the degree of
hyperbolicity of the dispersion curve of the photonic states
in the linear case. Specifically, if for a specific combination of
the parameters rw,a,λ0 the dispersion curve of the photonic
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FIG. 4. (Color online) Normalized half-power beamwidth W of
the spatial solitons as a function of n2

ef,h at λ0 = 1550 nm in a
nanowire material formed by silver wires in a dielectric background
with ε0

h = 1.0ε0, rw = 20 nm, and rw/a = 0.1.

states becomes more hyperbolic, then the beamwidth of the
solitary wave becomes larger (Fig. 5(a) and (d)). This result
is consistent with the property discussed in Sec. III that in
the limit of flat dispersion contours (in case of a PEC metal),
the nanowire material can support nondiffracting waves with
an arbitrary transverse beamwidth length, even in the limit of
vanishingly small nonlinear effects. Because of the plasma-
type electric response of the nanowires, the isofrequency
contours of the photonic modes become more hyperbolic for
shorter wavelengths and very dilute systems (rw/a very small).
As a consequence, in these scenarios, the beamwidth of the
spatial solitons tends to increase, as illustrated in Fig. 5(a).

V. EFFECT OF LOSS

In the previous sections, the impact of dielectric and metal
loss was not taken into account. In order to characterize the
characteristic propagation length of the spatial solitons in more
realistic scenarios, I next investigate the spatial evolution of
the solitary wave in the presence of material loss.

To this end, consider again Eq. (3) with jext = 0, Ex = 0,
and ∂x = 0. It is simple to verify that ∇ × E = Fx x̂ with Fx =
∂Ez

∂y
− ∂Ey

∂z
. Evidently, Fx is proportional to the x component

of the macroscopic magnetic field: Fx = iωμ0Hx . It is simple
to check that Eq. (3) can be rewritten as

∂Fx

∂z
= k2

hn
2
ef,hEy, (7a)

∂ϕw

∂z
= ζw

β2
p

[
−∂Fx

∂y
−

(
k2
hn

2
ef,h − β2

p

ζw

)
Ez

]
, (7b)
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FIG. 5. (Color online) (a) and (b) Normalized field profiles (Ey = Ẽy(y)eikzz, Ez = i Ẽz(y)eikzz) for a spatial soliton with kz = 0.993kh

in a material formed by silver nanowires in a dielectric background with ε0
h = 1.0ε0. (c) Profile of the index of refraction associated with

the spatial soliton. (d) Dispersion of the photonic states associated with the extraordinary (quasi-TEM) wave in case of a linear host with
n2

ef,h = n2
w/ζw = 1.0. Solid blue lines are rw = 20 nm, a = 200 nm, and λ0 = 1550 nm; dashed green lines are rw = 20 nm, a = 200 nm, and

λ0 = 1300 nm; dot-dashed black lines are rw = 20 nm, a = 267 nm, and λ0 = 1550 nm; and long-dashed dark yellow lines are rw = 14 nm,
a = 200 nm, and λ0 = 1550 nm.

∂Ez

∂z
=

(
k2
hζwn2

ef,h + ∂2

∂z2

)
ϕw, (7c)

∂Ey

∂z
= ∂Ez

∂y
− Fx. (7d)

Since the dominant component of the solitary wave is Ey ,
we can assume that ∂

∂z
→ ikz0 when the operator ∂z acts over

ϕw and Ez. Hence, Eqs. (7b) and (7c) yield

ikz0ϕw = ζw

β2
p

[
−∂Fx

∂y
−

(
k2
hn

2
ef,h − β2

p

ζw

)
Ez

]
, (8a)

ikz0Ez = (
k2
hζwn2

ef,h − k2
z0

)
ϕw. (8b)

Substituting Eq. (8a) into (8b), it is found that(
1 − β2

p

k2
hζwn2

ef,h − k2
z0

)
k2
hn

2
ef,hEz = −∂Fx

∂y
. (9)

Substituting this result into Eq. (7d), it follows that

∂Ey

∂z
= − ∂

∂y

[(
1 − β2

p

k2
hζwn2

ef,h − k2
z0

)−1 1

k2
hn

2
ef,h

∂Fx

∂y

]
− Fx.

(10)

Because n2
ef,h is expected to vary relatively slowly in space,

it is possible to neglect its derivatives with respect to y and z.
Differentiating both members of Eq. (10) with respect to z and

using Eq. (7a), it follows after some simplifications that

∂2Ey

∂z2
+ k2

hn
2
ef,hEy = −

(
1 − β2

p

k2
hζwn2

ef,h − k2
z0

)−1
∂2Ey

∂y2
.

(11)

Writing Ey = Ẽy(y,z)eikz0z and using the standard paraxial
approximation ∂2

∂z2 → 2ikz0
∂
∂z

− k2
z0, reveals an equation that

enables calculation of the spatial evolution of the field envelope
Ẽy(y,z) along the direction of propagation:

2ikz0
∂Ẽy

∂z
= −

(
1 − β2

p

k2
hζwn2

ef,h − k2
z0

)−1
∂2Ẽy

∂y2

− (
k2
hn

2
ef,h − k2

z0

)
Ẽy. (12)

Specifically, the spatial evolution is determined assuming
that Ẽy(y,z = 0) is the profile of the spatial soliton associated
with kz = kz0 in the lossless case, calculated as explained in
Sec. III. Then, the evolution of Ẽy(y,z) is determined by
solving Eq. (12), including the effect of metal loss in the
parameter ζw and the effect of dielectric loss in kh = ω

√
ε0
hμ0

and using the boundary conditions Ẽy(±ymax,z) = 0, where
ymax 	 W is and W is the beamwidth of the spatial soliton.
In the calculations, the effect of loss in silver was modeled
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FIG. 6. (Color online) Normalized field profile of a spatial soliton
with kz = 0.990kh at λ0 = 1550 nm in a nanowire material formed
by silver wires in a dielectric background with Re{ε0

h} = 1.0ε0, rw =
20 nm, and rw/a = 0.1 after a propagation distance of 12λ0. (a) Solid
blue line: Loss effect is neglected. Green dashed line: Effect loss in
the silver nanowires and host medium is taken into account. Black
dashed line: Only loss in the metal is taken into account. Dark yellow
long-dashed line (practically coincident with the green line): Only
loss in the host dielectric is taken into account. (b) Profile of the
spatial soliton when loss is considered in both the dielectric and the
silver. The host medium is modeled as a lossy dielectric with the loss
tangent tan δ = 0.01.

by assuming that the collision frequency associated with the
Drude model is 4.35 THz.25

I calculated the amplitude of the field envelope profile for
the case of a spatial soliton associated with kz = 0.990kh at
λ0=1550 nm, which corresponds to the same example as in
Fig. 3. The normalized calculated |Ẽy |, after a propagating
distance of 12λ0, is shown in Fig. 6(a) for the lossless case
(solid blue line) and several lossy cases. As shown by the
(black) dashed curve, the effect of metal loss is relatively
weak, and the reduction in the soliton amplitude is almost
insignificant. This is explained in part by the relatively weak
loss of silver in the infrared regime. However, the main
reason for the weak sensitivity to loss in the metal is that the
solitary wave is a quasi-TEM beam (see Fig. 3); consequently,
it interacts relatively weakly with the metallic wires, being
the electric field mostly concentrated in the dielectric host.
Consistent with this observation, it is seen in Fig. 6(a) (dark
yellow long-dashed curve) that the amplitude of the soliton is
notably affected by the dielectric loss in the self-defocusing
host dielectric. The green dashed curve in Fig. 6(a), calculated
for the case in which metal and dielectric loss are both

considered, further supports that the impact of metal loss is
negligible compared to dielectric loss.

Figure 6(b) reports the detailed spatial evolution of the
solitary wave when loss is considered in both the dielectric
and the silver. The numerical simulations, based on Eq. (12),
also indicate that the profile of the solitary waves is stable
to perturbations. The considered spatial solitons cannot, as a
result of some perturbation, be collapsed into an increasingly
narrower beam, because at a scale length on the order of the
period a, the effective medium approximation ceases to work.
In particular, a beam more localized than the period of the
nanowire material effectively sees the “self-defocusing” host.
Thus, the granularity of the lattice prevents the concentration
of the solitary beam in a scale length smaller than the period a.

VI. CONCLUSION

Based on an effective medium approximation, I charac-
terized the spatial solitons supported by metallic nanowire
arrays embedded in a Kerr-type medium. I studied the
physical requirements for the formation of spatial solitons in
nanowires structures. Taking into account the dynamics of the
isofrequency surfaces of the photonic states in the nanowire
material with respect to intensity of the electromagnetic field, it
was shown that within the continuous medium approximation,
spatial solitons are supported only when the host dielectric
is a self-defocusing material. It was demonstrated that, for
sufficiently strong electric field amplitude, the spatial solitons
may become subwavelength and that the main decay channel
for the solitons is related to the loss in the dielectric, being
the metallic loss comparatively less relevant. The developed
theory provides a simple means to characterize and analyze
the formation and propagation of optical lattice solitons in
metallic nanowire structures.
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APPENDIX A

Here, the formalism used to determine the spatial solitons is
developed. First, consider the more general case (nonparaxial
approach) wherein only the contribution of |Ez|2 to n2

w and
n2

ef,h is neglected so that

n2
w ≈ ζw

[
1 + α

(
E∗

t · Et + B̃ β2
pϕwϕ∗

w

)]
, (A1a)

n2
ef,h ≈ 1 + α

(
E∗

t · Et + β2
pϕwϕ∗

w

)
. (A1b)

We want to solve the nonlinear system in Eq. (1) based
on the preceding approximate formulas for n2

w and n2
ef,h and

using the exact formula of Ỹ. We are interested in solitons
such that the dependence on z of (E,ϕw) is of the form eikzz,
Ex = 0, and ∂x = 0 (the wave propagation and the electric
field are in the yoz plane). In this case, Eq. (1a) with jext = 0
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can be spelled out as follows:

ikz

∂Ez

∂y
= −(

k2
z − k2

hn
2
ef,h

)
Ey + β2

pk2
hỸyϕw,

(A2a)

−∂2Ez

∂y2
+ ikz

∂Ey

∂y
=

(
k2
hn

2
ef,h − β2

p

ζw

)
Ez + β2

p

ζw

ikzϕw,

(A2b)

with Ỹy = α
2 (ϕwE∗

y + ϕ∗
wEy). On the other hand, using

Eq. (1b), it is possible to obtain an explicit expression for
Ez in terms of Et and ϕw:

Ez = [(
k2
hn

2
w − k2

z

)
ϕw + ζwk2

hỸ · Et

]/
(ikz). (A3)

It is proven in Appendix B that by substituting this result
into Eq. (A2), it is possible to eliminate Ez and obtain a
nonlinear system for Ey and ϕw. We are interested in spatial
solitons such that Ey and ϕw are in phase. Specifically, it is

assumed that Ey = Ẽy(y)eikzz and ϕw = ϕ̃w(y)eikzz, with the
envelopes Ẽy and ϕ̃w real valued. In these circumstances, Ey

and ϕw satisfy the first-order partial-nonlinear system (see
Appendix B)

A · y = b, (A4)

where y = ( ∂ϕw

∂y

∂Ey

∂y
)T and the 2 × 2 matrix A = [ai,j ] has the

elements

a11 = k2
hn

2
w − k2

z + αζwk2
hEyE

∗
y + 2αζwk2

hB̃ β2
pϕwϕ∗

w,

(A5a)

a12 = ζwk2
hỸy + 3αζwk2

hEyϕ
∗
w, (A5b)

a21 = −(
β2

pỸy + 3αβ2
pEyϕ

∗
w

)
, (A5c)

a22 = −(
n2

ef,h + 2αEyE
∗
y + αβ2

pϕwϕ∗
w

)
. (A5d)

Vector b in the right-hand side of Eq. (A4) is
given by

b =
( −(

k2
z − k2

hn
2
ef,h

)
Ey + β2

pk2
hỸyϕw(

k2
hn

2
ef,hζw − β2

p

)
ỸyEy + [(

k2
hn

2
w − k2

z

)
n2

ef,h − β2
p

ζw
n2

w

]
ϕw

)
. (A6)

The reason we look for spatial solitons such that Ey and
ϕw are in phase is that in such circumstances, it follows from
Eq. (A3) that Ey and Ez are in quadrature in the limit of
negligible material loss. The n2

w, ζw, and Ỹy are real valued
when loss is negligible and Ey and ϕw are in phase. For
a plane wave natural mode in the uniaxial wire medium, it
can be proven that in the linear case (α = 0) and in the limit
of negligible loss, the phase difference between Ey and Ez

(with Ex = 0) is the same as the phase difference between
ky and kz, where k = (0,ky,kz) is the wave vector of the
plane wave.17,18 Thus, when Ey and Ez are in quadrature,
the wave vector components ky and kz are also in quadrature.
In particular, when kz is real valued, the natural mode has an
exponential-type variation along the y direction. This suggests
that solutions of Eq. (A2) with Ey and Ez in quadrature
and a variation along z of the form eikzz with kz real valued
may be associated with waves that decay exponentially when
y → ±∞ and propagate along z, which is the desired behavior
for the spatial solitons.

In the paraxial approximation, only the contributions to
the nonlinear dynamics arising from terms of the form EyE

∗
y

should be retained. Hence, within this approximation, we
should set equal to zero terms of form Ỹy , ϕwϕ∗

w, and Eyϕ
∗
w in

Eqs. (A5) and (A6). It can be readily checked that this yields
the nonlinear system of Eqs. (3a) and (3b).

APPENDIX B

To obtain the nonlinear differential system in Eq. (A4), first
calculate ∂2Ez

∂y2 = ∂
∂y

∂Ez

∂y
in the left-hand side of Eq. (A2b) with

the help of the explicit formula for ∂Ez

∂y
, given by Eq. (A2a).

This gives

∂

∂y

[
k2
hn

2
ef,hEy + β2

pk2
hỸyϕw

] = (−ikz)

(
k2
hn

2
ef,h − β2

p

ζw

)
Ez

+ β2
p

ζw

k2
zϕw. (B1)

By substituting Eq. (A3) into Eqs. (A2a) and (B1), it is
found after straightforward simplifications that

∂

∂y

[(
k2
hn

2
w − k2

z

)
ϕw + ζwk2

hỸyEy

] = b1, (B2a)

− ∂

∂y

[
n2

ef,hEy + β2
pỸyϕw

] = b2, (B2b)

where b1 and b2 are such that b = (b1b2)T is given by Eq. (A6).
Next, we calculate explicitly the derivatives in the left-hand
side of Eq. (B2) with the help of Ỹy = α

2 (ϕwE∗
y + ϕ∗

wEy) and
of the formulas for n2

w and n2
ef,h (Eqs. (A1a) and (A1b)). This

yields a nonlinear system that can be written in the matrix
form

M · x = b, (B3)

with x = ( ∂ϕw

∂y

∂ϕ∗
w

∂y

∂Ey

∂y

∂E∗
y

∂y
)T . The 2 × 4 matrix M = [mi,j ] has

the following elements:

m11 = k2
hn

2
w − k2

z + α

2
ζwk2

hEyE
∗
y + αζwk2

hB̃ β2
pϕwϕ∗

w

(B4a)

m12 = αζwk2
hB̃ β2

pϕ2
w + α

2
ζwk2

hE
2
y (B4b)

m13 = ζwk2
hỸy + α

2
ζwk2

hEyϕ
∗
w + αζwk2

hϕwE∗
y (B4c)
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m14 = 3

2
αζwk2

hEyϕw (B4d)

m21 = −
(

β2
pỸy + αβ2

pEyϕ
∗
w + α

2
β2

pϕwE∗
y

)
(B4e)

m22 = −3

2
αβ2

pϕwEy (B4f)

m23 = −
(

n2
ef,h + αEyE

∗
y + α

2
β2

pϕwϕ∗
w

)
(B4g)

m24 = −α

(
E2

y + 1

2
β2

pϕ2
w

)
(B4h)

If Ey and ϕw are assumed to be in phase, it is straightforward
to check that the system in Eq. (B3) reduces to Eq. (A4).
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