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It is theoretically demonstrated that electron states in semiconductors or graphene can be perfectly

transmitted through a complementary material with dual properties, independent of the angle of incidence.

It is shown that such complementary material may also provide a strong spatial delocalization of bounded

electronic states, changing dramatically the confinement of the wave function, and acting effectively as a

lens for the probability wave. The results are the electron analogue of a perfect lens for electromagnetic

waves proposed in an earlier work.
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The idea of perfect lensing [1,2] continues to fuel the
imagination of the scientific community due to its ground-
breaking and far-reaching implications in photonics, most
notably the possibility of having imaging with a resolution
not limited by the diffraction of light [3,4]. In particular,
a slab of a material with double negative parameters
["ð!0Þ ¼ �ð!0Þ ¼ �1] standing in a vacuum may permit
two remarkable things: (i) the perfect transmission and
negative refraction of the photonic states of the vacuum
(propagating modes at ! ¼ !0), independent of the angle
of incidence; (ii) the enhancement and the delocalization
of the near field of a source, so that it is spread over a wide
spatial region (beyond the perfect lens exit interface),
rather than being confined to the immediate vicinity of
source. The ‘‘perfect lens’’ idea has been mostly discussed
in the context of electromagnetic waves, and its general-
ization to electronics received little attention, except for
recent works on graphene [5,6]. Here, we unravel the
general principles that enable the perfect tunneling and
strong spatial delocalization of the stationary states of
complementary materials described by the Hamiltonian
formalism. We apply the developed theory to matter waves
in graphene and semiconductor heterostructures.

As a starting point,we consider twobulkmaterialsA andB

that are modeled by a Hamiltonian of the form, Ĥi ¼
ĤiðE;kÞ with k ¼ �ir with rl ¼ @xl , and i ¼ A, B. As

detailed in Ref. [6], the Hamiltonian is allowed to be energy
(E) dependent, because we want to adopt an effective-
medium description of the pertinent wave phenomena (e.g.,
electronwaves) based on an envelope function. Theoperators

Ĥi are independent of r, since within an effective-medium
approach the underlying granularity (e.g., the microscopic
periodic electric potential of the ionic lattice) is hidden. We
consider a global system such that [without loss of generality
the interface is taken at x ¼ 0, as shown in Fig. 1(a)]:

Ĥ ¼
8<
: ĤAðE;�i@x;�i@y; . . .Þ; x < 0

ĤBðE;�i@x;�i@y; . . .Þ; x > 0
: (1)

Next, we show that in certain circumstances two Bloch
stationary states of the sub-systems A and B may be paired

to produce a stationary state, ðĤ� EÞc ¼ 0, of the global

system. Since Ĥ is defined in terms of branches to calculate
the stationary states one needs to specify the boundary
conditions at the interfaces. Here, we only consider mate-
rials such that at the energy level of interest the boundary
conditions are compatible with

SBc Bð0; y; zÞ ¼ SAc Að0; y; zÞ; (2a)

jx;Bð0; y; zÞ ¼ jx;Að0; y; zÞ: (2b)

In the above, Si represent some system-dependent multi-
plication (matrix) operators, and jx;i represents the x com-

ponent of the probability current (i ¼ A, B). For most cases
Si reduces to the identity operator, and in that case the
boundary conditions reduce to the continuity of the enve-
lope wave function at the interface and of the normal
component of the probability current. We can enunciate
the following result. Lemma: Suppose that for some fixed
energy level E, and multiplication operators S0A and S0B, the
Hamiltonians ĤA and ĤB satisfy

S0AĤAðE; kx; ky; . . .ÞS�1
A þ S0BĤBðE;�kx; ky; . . .ÞS�1

B

¼ EðS0BS�1
B þ S0AS

�1
A Þ: (3)

FIG. 1 (color online). (a) The interface between two semi-
infinite regions, such that the electron wave dynamics in each
region is described by the operator Ĥi, i ¼ A, B. (b) Similar to
(a) but for the case of two interfaces.

PRL 110, 213902 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
24 MAY 2013

0031-9007=13=110(21)=213902(5) 213902-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.213902


Then, any stationary state c AðrÞ of the subsystem A
associated with the energy E, can be used to construct a

stationary state c of the global system (Ĥ), such that

c ðrÞ ¼
8<
: c Aðx; y; . . .Þ; x < 0

c Bðx; y; . . .Þ; x > 0
; (4)

with SBc Bðx; y; . . .Þ � SAc Að�x; y; . . .Þ, provided one
of the following conditions is observed. Case I: The
boundary condition 2(b) is automatically satisfied when 2
(a) is satisfied. Case II: The operators Si and S0i satisfy
SBS

0y
B ¼ SAS

0y
A and the probability current is given by

jx ¼ Refc �ð1=@Þð@Ĥ=@kxÞðE;kÞjk¼�irc g.
The proof of the Lemma is given in the Supplemental

Material [7]. In what follows, we apply this theory to the
scenario of Fig. 1(b), where the regions A and B have
common boundaries at x ¼ 0 and x ¼ d. Let c AðrÞ be a

stationary state of ĤA for the energy level E for which
Eq. (3) is satisfied. Using the Lemma at the two interfaces,
it is readily seen that the system represented in Fig. 1(b)
has the stationary state

c ðrÞ ¼

8>><
>>:
c Aðx; y; . . .Þ; x < 0

S�1
B SAc Að�x; y; . . .Þ; 0< x < d

c Aðx� 2d; y; . . .Þ; x > d

: (5)

At the second interface we applied the Lemma to the
function S�1

B SAc Að�~x� d; y; . . .Þ with ~x ¼ x� d, which
is transformed into S�1

A SBS
�1
B SAc Aðþ~x� d; y; . . .Þ. In

particular, if c Aðx; y; . . .Þ ¼ c 0e
ik�r is a Bloch mode of

the subsystem A, it is clear that this wave is transmitted
with no reflections through the region 0< x< d, and that
the transmission coefficient T [defined so that c Aðx ¼
d; y; . . .Þ ¼ Tc Aðx ¼ 0; y; . . .Þ] is equal to T ¼ e�ikxd.
Thus, we have a ‘‘perfect tunneling’’ through the region
B, independent of the angle of incidence.

As a first example, we consider the case of light waves.
As discussed in Ref. [6], appendix B, the dynamics of the
electromagnetic field in continuous media can be formu-
lated in terms of a Schrödinger-type equation of the form

Ĥc ¼ i@ð@=@tÞc with c ¼ G being a six-component
vector written in terms of the electric displacement and
magnetic induction fields, D and B, such that

G ¼ D

B

 !
:

The operator Ĥ is such that Ĥ ¼ @N̂ �M�1 with

N̂ðkÞ ¼ 0 ir�
�ir� 0

 !

with k ¼ �ir. The material operator M links the
macroscopic fields as G ¼ M � F with

F ¼ E

H

 !
:

In the frequency domain,

Mð!Þ ¼ ��" c�1 ���

c�1 ��� ���

0
@

1
A

reduces to a multiplication operator for the general case of
a bianisotropic material. It should be mentioned that in this

problem Ĥ does not represent the energy of the system, and
obviously c is not a probability density wave. The sta-

tionary states of the electromagnetic field are such ĤG ¼
!G, where for simplicity we put @ ¼ 1. Based on the
Lemma, we prove in the Supplemental Material [7] that
at a fixed frequency !0 the general tunneling condition for
two materials described by the material matrices Mi (i ¼
A, B) reduces to MBð!0Þ ¼ � ~Rx �MAð!0Þ � ~Rx, where

~Rx ¼
Rx 0

0 Rx

 !

and Rxr � ð�x; y; . . .Þ is a reflection operator. For ex-
ample, if the region A is taken as an isotropic material
with " ¼ "A and � ¼ �A then the region B is required to
have "B ¼ �"A and �B ¼ ��A. We can immediately
recognize as particular cases the results of Pendry [1] and
Alù and Engheta [8]. Moreover, the case of anisotropic
materials reduces to a result originally discovered in
Ref. [2]. Our theory generalizes these results to the class
of bianisotropic electromagnetic systems. Interestingly, in
general the perfect tunneling condition may depend on the
orientation of the interface.
As a second example, we consider a massless particle

described by a generalized two-dimensional Dirac equa-

tion. Specifically, it is assumed that ðĤc ÞðE;kÞ ¼
½@vF�ef � kþ VefðEÞ� � c , with k ¼ �ið@x; @yÞ and

�ef ¼ vxx�xx̂þ vyy�yŷ, where vll are constant parame-

ters (independent of both E and k) and �l are the Pauli
matrices (l ¼ x, y). Moreover, it is supposed that the
effective potential Veff satisfies Veff ¼ V0 � �ðE� V0Þ
with � ¼ vxx � 1 and V0 is some constant. When vll¼1
this Hamiltonian may describe the dynamics of electrons
associated with the K-Dirac cone in pristine graphene, vF

being the Fermi velocity [9,10]. We have recently shown
that electron waves (associated with the K point of the
Brillouin zone) in x-stratified graphene superlattices may
be described by the general form of the Hamiltonian with
vll � 1 [6]. In particular, when the anisotropy parameter
� ¼ vyy=vxx is such that j�j � 1, the electron waves may

be supercollimated along the x direction [6,11,12]. The
perfect tunneling of electron waves in graphene superlat-
tices predicted in Ref. [6] can be easily explained in the
framework of the present theory. Indeed, let us assume that

Ĥi ¼ @vF�eff;i � kþ Veff;i with i ¼ A, B, and that the

boundary conditions at the interfaces between the
two materials are consistent with Eq. (2a) with SA
and SB scalars. Taking S0i ¼ ��1

xx;iSi it follows that Eq. (3)

is satisfied provided @vFð�A þ �BÞ�yky þ ��1
xx;AVef;A þ
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��1
xx;BVef;B ¼ Eð��1

xx;A þ ��1
xx;BÞ. Using the relation

��1
xx;iVeff;i ¼ V0;i þ ð��1

xx;i � 1ÞE, we find that the tunneling

condition is @vFð�A þ �BÞ�yky ¼ 2E� V0;A � V0;B. This

can only hold for an arbitrary wave vector if the energy
level is E ¼ ðV0;A þ V0;BÞ=2, and if the anisotropy parame-

ters of the two superlattices are symmetric �A ¼ ��B,
which is the result of Ref. [6]. Notice that we are in the
conditions of the case I of the Lemma because for massless
particles the boundary condition 2(a) is sufficient to match
the pseudospinors at the two sides of the interface. It is also
interesting to note that if the material A is pristine graphene

then the material B is required to have �B ¼ �1. Thus ĤB

is formally analogous to the Hamiltonian that describes the
dynamics of electrons in pristine graphene close to the
second Dirac cone (located at K0), within the Dirac-
fermion approximation.

In the final example, we study the tunneling of matter
waves in II–VI semiconductor heterostructures. The elec-
tronic structure of such heterostructures can be determined
using the envelope-function approximation [13]. Within
this approach, the effective Hamiltonian of a bulk semi-

conductor may be taken ĤðE;kÞ ¼ ð@2=2Þk �M�1 � kþ
V, where V ¼ VðEÞ and M ¼ MðEÞ are, respectively, the
effective potential and the (energy dependent) effective
mass [14]. Let us suppose that two lattice matched
semiconductors—described by the parameters Vi and Mi

(i ¼ A, B)—are paired. We assume that generalized Ben
Daniel-Duke boundary conditions hold at the interfaces, so
that the envelope function c and x̂ �M�1 � rc are con-

tinuous [13]. Thus, we take Si ¼ S0i ¼ Î equal to identity

operator in Eq. (2a), and hence, provided Ĥi (i ¼ A, B)

satisfy ĤAðE;kÞ þ ĤBðE;RxkÞ ¼ 2E, we are in the con-
ditions of case II of the Lemma. For semiconductors with a
zinc blende structure, the effective potential V can be
assumed energy independent, and is equal to V ¼ Ec

where Ec ¼ E�6
is the conduction band (s-type symmetry)

edge energy [13,14]. Thus, in order that the tunneling
condition is satisfied it is necessary that E ¼ ðEc;A þ
Ec;BÞ=2 and that M�1

A ðEÞ ¼ �Rx �M�1
B ðEÞ �Rx. When

the dispersive mass is a scalar we obtain simply MAðEÞ ¼
�MBðEÞ; i.e., the effective mass in the two materials must
be symmetric at the energy level E ¼ ðEc;A þ Ec;BÞ=2. For
narrow-gap II–VI semiconductor compounds, to a good
approximation the effective mass varies linearly with the
energy, so that MiðEÞ ¼ ðE� Ev;iÞ=ð2v2

P;iÞ, Ev ¼ E�8

being the valence band (p-type symmetry) edge energy

and the velocity vP is defined by vP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EP=ð3m0Þ

p
, where

EP ¼ 2P2m0=@
2, m0 is the free-electron mass, and P is

Kane’s parameter [14,15]. Supposing that vP;A � vP;B, it is

simple to check that the tunneling condition reduces to
Eg;A ¼ �Eg;B Eg ¼ Ec � Ev being the band gap energy.

Thus, to have ‘‘perfect tunneling’’ one of the materials
should have a negative band gap. This can occur in semi-
conductors with an inverted band structure, such that the

conduction band (s-type symmetry) lies below the valence
bands (p-type symmetry). An example is the
II–VI binary compound (semimetal) HgTe for which Eg ¼
�0:3 eV [16]. Let us suppose that the material A is such
that Eg;A > 0 and that the material B (e.g., HgTe) satisfies

Eg;B ¼ �Eg;A. We can have two distinct situations: (i) if

0< ðEc;A � Ec;BÞ=2< jEgj, or equivalently if 0<�=2<

jEgj, the energy level for which the tunneling occurs lies in
the band gap of both materials [Fig. 2(a)]; (ii) otherwise the
energy level for which the tunneling occurs lies
either in the conduction or valence bands of both materials
[Fig. 2(b)]. In above, we defined � ¼ Ev;B � Ev;A the

valence band offset between the two materials, and used
ðEc;A � Ec;BÞ=2 ¼ jEgj ��=2. The case (i) may be real-

ized based on heterostructures of Hg1�xCdxTe (A) and
HgTe (B). For example, if the mole fraction is taken x ¼
0:35 the condition Eg;B ¼ �Eg;A is expected to be fulfilled

with � ¼ 0:12 eV [14,17]. In Ref. [17] we considered
the same material combination to predict the super-
collimation of electron waves and an extreme anisotropy
regime in a semiconductor superlattice exhibiting a highly
anisotropic effective mass for electrons. Here, we study
instead the strong delocalization of electronic states of a
semiconductor heterostructure. The tunneling of electron
waves in related heterostructures was recently discussed in
Ref. [18], but only for normal incidence.
In the present framework, the heterostructure A-B-A

[Fig. 1(b)] can be regarded as a semiconductor quantum
well (QW). Mercury telluride-cadmium telluride semicon-
ductor quantum wells have recently received significant
attention in the context of the spin Hall effect [19–21]. It
was shown that quantum wells with an inverted electronic
structure may enable the transport associated with edge
states, when the thickness of the well is beyond a certain
critical value [19,20]. We calculated the electronic band
structure of HgCdTe-HgTe quantum wells using the
envelope-function approach [7,22]. Our effective medium
theory yields results qualitatively (and also to some extent
quantitatively) consistent with those obtained with the
Burt-Foreman theory [23,24], which was the basis of
the calculations of Ref. [19]. Within our calculations
[Fig. 2(c)], the topological phase transition where the
electronic states change from a normal to an ‘‘inverted’’
type occurs at the critical thickness dc � 12as ¼ 7:8 nm
with as ¼ 0:65 nm the lattice constant of the bulk semi-
conductors. This value of dc is of the same order (dc ¼
6:4 nm) as that predicted in Ref. [19], which gives us
confidence in the validity of our approach. In Fig. 2(d)
we show the electronic structure of the interfaces states
of a QW of Hg0:65Cd0:35Te-HgTe-Hg0:65Cd0:35Te (green
lines) with thickness d ¼ 6as, which corresponds to the
above mentioned combination of materials (A-B-A) with
Eg;2 ¼ �Eg;1 and that may enable ‘‘perfect tunneling’’ at

the energy level E ¼ ðEc;A þ Ec;BÞ=2 � E0. As seen, at

E ¼ E0 (gray horizontal gridline) the QW does not support
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interface states, and this is qualitatively analogous to
Pendry’s lens which also does not support guided modes
at the frequency where "ð!0Þ ¼ �ð!0Þ ¼ �1.

In the scenario of Fig. 2(a) the energy levelE ¼ E0 lies in
the band gap of thematerialA. To showhow theQW formed
by two complementary materials with symmetric band
gap energies may provide a strong delocalization of elec-
tronic states, we consider a second QW (Hg0:90Cd0:10Te—
material C) in the A region (Hg0:65Cd0:35Te) such that the
well has thickness 6as. The dispersion of the light-hole (H1)

type interface states for this QW is represented in Fig. 2(d)
with a dot-dashed black line, showing that at E ¼ E0 the
interface states have kkas ¼ 0:14, where kk ¼ ð0; ky; kzÞ is
the in-plane quasimomentum. Let us suppose next that the
well A-B-A is placed in the vicinity of the well A-C-A, such
that the spacing between regions B and C is lQW ¼ 8as. In
these circumstances the two wells are coupled and the
confinement of the electronic states can change. The inter-
face states of the coupled QWs at E ¼ E0 can be easily
calculated from the knowledge of the interface states of

FIG. 2 (color online). (a) Perfect tunneling of an electron wave through a semiconductor heterostructure such that the two materials
have symmetric band gap energy Eg;2 ¼ �Eg;1 when the valence band offset satisfies �< 2jEgj. The perfect tunneling occurs for the

energy level indicated by the dashed arrows, E0 ¼ ðEc;A þ Ec;BÞ=2. (b) Similar to (a) but for the case �> 2jEgj. (c) Electronic band
structure for the interface states of a quantum well Hg0:32Cd0:68Te-HgTe-Hg0:32Cd0:68Te, qualitatively analogous to Ref. [19]. Black
lines: d ¼ 6as. Green (light gray) lines: d ¼ 12as. Blue (dark gray) lines: d ¼ 18as. The solid, dot-dashed, and dashed lines represent
the E1 states with even parity, the H1 states with even parity, and the states with odd parity, respectively. (d) Electronic band structure
for the interface states of a quantum well Hg0:65Cd0:35Te-HgTe-Hg0:65Cd0:35Te, which may correspond to a combination of materials
such that Eg;2 ¼ �Eg;1. The gray horizontal gridline represents the energy level E0. The black dot-dashed line represents the H1

interface states of a quantum well Hg0:65Cd0:35Te-Hg0:90Cd0:10Te-Hg0:65Cd0:35Te. In all the examples, the energy level E ¼ 0
corresponds to the edge of the valence band (�8) of HgTe.

FIG. 3 (color online). Squared amplitude of the electron wave function (normalized to arbitrary units) for an interface state when
the quantum well A-C-A (region C has thickness 6as, and the direction of growth is along x) is in the vicinity of an ‘‘electronic lens’’ (the
region A-B-A delimited by the dot-dashed vertical gridlines). In the region x > 0 the wave function is strongly delocalized from the
quantum well. Regions A, B, and C correspond to Hg0:65Cd0:35Te, HgTe, and Hg0:90Cd0:10Te, respectively. The spacing between regions
C and B is 8as. (a) The thickness of the quantum wellB is d ¼ 6as. (b) The thickness of the quantumwell B is d ¼ 10as. The dot-dashed
vertical lines are at a distance d=2 from the region B. The wave function has exactly the same value at these virtual planes.
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A-C-A, and with the understanding that Bloch modes are
transmitted through the region A-B-A with a transmission
coefficient T ¼ e�ikxd. Obviously, the electronic states of
the well A-C-A are characterized by an imaginary pure kx
(�A ¼ �ikx > 0) in material A, which corresponds to the
exponential tail of the interface state. Hence,T ¼ e�ikxd is a
real valued growing exponential, and therefore the wave
function amplitude is strongly enhanced in the QW A-B-A
(Fig. 3). This result is the electronic analogue of the
enhancement of evanescent waves in Pendry’s lens. In the
electronic case, it implies that the lens formed by the two
complementary materials with symmetric band gaps pro-
vides a strong delocalization of the electronic states asso-
ciated with the well A-C-A, so that the quantumwell A-B-A
behaves to some extent as an electron sink at E ¼ E0, and
the probability of finding the electron beyond the exit inter-
face of the well A-B-A is strongly enhanced. Counter-
intuitively, this effect becomes more pronounced when
the thickness of the material B is increased, as shown in
Figs. 3(a) and 3(b). However, themaximum thickness of the
region B is limited by the mean free path length of an
electron, which is determined by the temperature, disorder,
and defects, among others.Note that because of the ‘‘perfect
lensing’’ effect, the profile of the wave function is not
disturbed in the region of the well A-C-A, apart from a
change of magnitude due to the delocalization of the elec-
tronic state. Similar properties can be enunciated for the
case of 3D imaging, e.g., for the imaging of a stationary
state of a quantum dot at E ¼ E0. Here, we highlighted the
imaging of a single Fourier harmonic in order to have our
proposal closer to a real-world experiment.

In conclusion, we theoretically derived the general
physical principles that may enable the perfect tunneling
of stationary states, independent of the angle of incidence,
and strong delocalization of interface states in materials
with complementary properties, revealing the electronic
analogue of the perfect lens effect originally introduced
in the context of electromagnetic metamaterials. It can be
verified that in the semiconductor and graphene examples
considered here (see Ref. [6]), the perfect tunnelling of the
propagating stationary states at the interface of the com-
plementary materials is accompanied of a ‘‘negative re-
fraction’’ of the electron velocity, similar to what happens
in the case of light waves [1].
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