
Ultrahigh Casimir interaction torque in 
nanowire systems 

Tiago A. Morgado, Stanislav I. Maslovski, and Mário G. Silveirinha* 
University of Coimbra, Department of Electrical Engineering–Instituto de Telecomunicações, 3030-290 Coimbra, 

Portugal 
*mario.silveirinha@co.it.pt 

Abstract: We study the Casimir torque arising from the quantum 
electromagnetic fluctuations due to the interaction of two interfaces in a 
system formed by a dense array of metallic nanorods embedded in dielectric 
fluids. It is demonstrated that as a consequence of the ultrahigh density of 
photonic states in the nanowire array it is possible to channel the quantum 
fluctuations, and thereby boost the Casimir torque by several orders of 
magnitude as compared to other known systems (e.g., birefringent parallel 
plates). 
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1. Introduction 

In the last few years, the Casimir effect [1–3] has received considerable attention, mainly 
because of its importance in micro- and nano-electromechanical systems (MEMS and NEMS) 
[4–7]. The Casimir interactions result from the confinement of the quantum-mechanical zero-
point fluctuations of the electromagnetic fields and may cause the permanent adhesion of 
nearby surface elements in MEMS/NEMS (a phenomenon known as ‘stiction’, or static 
friction [4,5]), severely affecting the device reliability. On the other hand, the Casimir 
interaction phenomena may also open new and promising directions in the field of micro and 
nanomechanics [8], potentially allowing for the design of, for example, Casimir oscillators 
[9], nanoscale racks and pinions [10], and Casimir ratchets [11]. 

The Casimir effect was first studied by H. Casimir in 1948. In his pioneering work [1], an 
attractive force between two electrically neutral metallic plates in a vacuum was predicted, as 
a result of the zero-point energy of the electromagnetic field. This theory was some years later 
generalized by E. Lifshitz to the case of dielectric plates [2], and subsequently extended to the 
case of having a third dielectric in between the plates [3]. A further generalization of the 
Casimir theory included the possibility of considering anisotropy in the plates, and was first 
investigated in the nonretarded regime (small separation distances) [12], and later extended to 
arbitrary distances [13]. In these works [12,13], it was also shown that in systems formed by 
two parallel birefringent plates (with in-plane optical anisotropy) a mechanical torque may 
arise that forces the rotation of the plates towards the position that minimizes the zero-point 
energy, corresponding to the alignment of the optical axes of the plates. This Casimir torque 
was further investigated in Refs [14,15], and some experiments aiming to observe and 
measure the torque were suggested [14–16]. The Casimir torque was also studied in a system 
formed by two parallel corrugated plates [17] when the corrugation directions are not aligned. 

Recently, the Casimir-Lifshitz interaction was also investigated in structured materials 
(metamaterials) [18–23]. In particular, in [24,25] it was demonstrated that the Casimir 
interaction in systems comprising nanowire materials may be characterized by ultralong-
range forces, in contrast to the short-range forces inherent to systems with isotropic 
backgrounds. Nanowire materials support quasi-transverse electromagnetic (q-TEM) photonic 
states, whose dispersion contours are hyperbolic [26]. The enhanced Casimir forces in 
nanowire media are a consequence of the ultra-large density of photonic states in such 
materials in the low frequency limit, which promotes the quantum induced interactions 
between the two plates in the Casimir problem, resulting in an ultralong-range force. In this 
work we further study the Casimir interaction in nanowire material environments, proving 

#185968 - $15.00 USD Received 27 Feb 2013; revised 17 Apr 2013; accepted 17 Apr 2013; published 17 Jun 2013
(C) 2013 OSA 17 June 2013 | Vol. 21,  No. 12 | DOI:10.1364/OE.21.014943 | OPTICS EXPRESS  14944



that the Casimir torque in this kind of systems is qualitatively and quantitatively very 
different from the usual torques in either birefringent parallel plates [14,15] or corrugated 
metallic parallel plates [17]. 

2. Zero-point energy in nanowire materials 

The geometry of the structure under study is illustrated in Fig. 1. It consists of a dense array 
of parallel metallic nanowires arranged in a square lattice with period a. The nanowires have 
radius wr  and are oriented along the direction ˆ ˆ ˆsin cosy zα α α= +u u u  (forming an angle α  

with the z-direction) (Fig. 1), where ˆ
yu  and ˆ

zu  are the unit vectors along the coordinate 

axes. The nanowires are embedded in three dielectric fluids with relative permittivities h,1ε , 

h,2ε , and h,3ε , respectively. 

 

Fig. 1. Illustration of the system under study. A square array of parallel metallic nanowires 
embedded in three dielectric fluids. The z-axis is chosen to be orthogonal to the three dielectric 

layers. α  is the angle between the axial direction of the nanowires ( ûα ) and the z-direction. 

Next, we describe the effective medium model used in this work to calculate the zero-
point interaction energy of the system (Fig. 1) and discuss its validity. 

2.1 Effective medium model 

In general, the uniaxial wire medium is characterized by strong spatial dispersion and its 
electromagnetic response is described by a nonlocal dielectric function that depends on the 
component of the wave vector parallel to the wires ˆk α α= ⋅k u  ( i= − ∇k  is the wave vector) 
[26–29]. Within this framework, the wire medium is modeled by the permittivity tensor 

( )eff h
ˆ ˆ ˆ ˆ ˆ ˆ

x x p p αα α αε ε ε= + +u u u u u u , where hε  is the permittivity of the host material, and 

( )

1
2 2
hh

2
h h

1
m V p

k

f
αα αε βε

ε ε ε β

−
 −

= + − 
−  

, being h h 0β ω ε μ=  the wave number in the dielectric 

host, 2 2/V wf r aπ=  is the volume fraction of the metal, a is the lattice constant, mε  is the 

complex permittivity of the metallic wires, and pβ  is a structural parameter with the physical 

meaning of plasma wave number such that ( )
1

2
2 0.5275 ln

2p
w

a
a

r
β π

π

−
  

≈ +  
   

. In this 
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work, we are interested in the case where the metallic wires are densely packed (limit 
/ 0wa L →  with /wr a  fixed, being a  the lattice constant and wL  the length of the wires), 

such that the relevant physics in the Casimir problem is determined by the frequency range 

h / 1pβ β << , i.e. by frequencies much smaller than the effective plasma frequency of the 

composite medium. In such a scenario, ααε  reduces to the simple formula 

 h(1 ) ,m V Vf fααε ε ε= + −  (1) 

and the effective electromagnetic response is local [28,29], such that the wave propagation in 
the uniaxial wire medium can be described solely in terms of a transverse electric (TE) mode 
(ordinary wave) and of a q-TEM mode (extraordinary wave). Note that for noble metals ααε  

is approximately real (in case of low loss) and negative, because mε  has the same property. 
Hence, since the transverse permittivity (along directions perpendicular to the wires direction) 
is h 0tε ε= > , the uniaxial wire medium behaves as an hyperbolic medium. 

It can be proven (e.g. using the argument principle [22,30,31]) that, at zero absolute 
temperature, the regular part of the zero-point interaction energy per unity of the cross-
sectional area of the system under study (Fig. 1) can be written as 

 
//

C
3

0 / 0

log ( , , , , ) ,
4

y

y

aa

x y y x
x y a

D i k k d d dk dk
L L

ππ

π

δε ξ α ξ
π

+∞

−

=   


 (2) 

where / (2 )h π= , h  is the Planck constant, ξ  is the imaginary frequency ( iω ξ= ), 

secya a α= , and ( , , , , )x yD i k k dξ α  is a function such that 0D =  represents the 

characteristic equation of the photonic modes supported by the pertinent cavity. Note that in 
the integral we only consider values of ( , )x yk k  in the semi-space 0xk > , because due to 

symmetry the contribution from the semi-space 0xk <  is equal. Moreover, to take into 
account the granularity of the composite material the integration region is restricted to the 

first Brillouin zone , ,
y ya a a a

π π π π  − × −      
, which effectively determines a high-frequency 

cut-off in the wave vector space [22]. 

 

Fig. 2. A sandwich of three layers of nonmagnetic uniaxial materials with the same optical 

axis. The Casimir-Lifshitz energy is calculated from the reflection 
,A B

R  and transfer 
,AB BA

M  

matrices. 

The characteristic function ( , , , , )x yD i k k dξ α  can be readily obtained as 
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(2)( , , , , ) det[

( , , , ) ( , , , , ) ( , , , ) ( , , , , )]

x y

A AB B BAx y x y x y x y

D i k k d I

R i k k M i k k d R i k k M i k k d

ξ α

ξ α ξ α ξ α ξ α

≡ −

⋅ ⋅ ⋅
 (3) 

where (2)I  is the planar unity dyadic, ,A BR  are the 2 2×  reflection matrices of the two 

interfaces (see Fig. 2), and ,AB BAM  are the propagation matrices for the forward (waves 
travelling along the z+  direction) and backward (waves travelling along the z−  direction) 
waves, respectively, which propagate in medium 2 (see Fig. 2). The reflection matrices are 
defined as 

 
ord ord

co || cr ||
, ext ext

cr || co ||

( , ) ( , )

( , ) ( , )
A B

r i k r i k
R

r i k r i k

ξ ξ
ξ ξ

 
=   
 

 (4) 

where (ord,ext)
cor  is the reflection coefficient for the co-polarized wave for an incoming wave 

with ordinary or extraordinary polarization, respectively, and (ord,ext)
crr  is defined similarly but 

refers to the cross-polarized wave. These reflection matrices can be calculated by applying the 
usual boundary conditions (continuity of the tangential components of the electromagnetic 
fields) at both interfaces. In this calculation, the three pertinent regions of space are modeled 
as uniaxial dielectric media with permittivity components htε ε=  and ααε , being ααε  

defined as in Eq. (1) and { }h h,1 h,2 h,3, ,ε ε ε ε=  depending on the region. Note that the optical 

axis of the effective media is tilted with the respect to the direction normal to the interfaces 
(z-direction). In this work, it is assumed that the metal is the same in the three regions, such 
that mε  follows the Drude dispersion model ( ) 2 / ( ( ))m piε ξ ε ω ξ ξ∞= + + Γ , where ε∞  is the 

high-frequency permittivity, pω  is the metal plasma oscillation frequency, and Γ  is the 

collision frequency. 
On the other hand, the propagation matrices are as follows 

 

ord

ext
,

0
,

0

d

AB BA
d

e
M

e

γ

γ ±

−

−

 
 =
 
 

 (5) 

where the propagation constant of the ordinary wave ord ord
zikγ = −  is given by 

 ord 2 2 2
h,2 0 ,x yk kγ ε μ ξ= + +  (6) 

and the propagation constants for the forward (wave propagating along the z+  direction) and 
backward (wave propagating along the z−  direction) extraordinary waves extγ ±  are obtained 
from the dispersion characteristic 

 
2 2 2

2
0

h,2

,x pk k k α

αα

ξ μ
ε ε
+

+ = −  (7) 

where ˆ
p pk = ⋅k u , ˆk α α= ⋅k u  and ααε  is defined as in Eq. (1) with h h,2ε ε= . In the 

particular case where the plasma oscillation frequency tends to infinity, pω → ∞ , the metal 

behaves as a perfect electric conductor (PEC) and ααε = −∞ , so that the effective medium is 
characterized by “extreme anisotropy”. In such a scenario, the propagation constants for the 
extraordinary waves are simply given by 
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 ext
h,2 0 sec tan .yikγ ε μ ξ α α± = ±  (8) 

2.2 On the validity of the effective medium model 

To assess the validity of the effective medium model in the calculation of the Casimir-Lifshitz 
forces – particularly the fact that spatial dispersion is neglected - next we compare the results 
obtained based on the hyperbolic medium approximation [Eq. (1)] with the more general 
theory of Ref [24] that takes into account the nonlocal dispersive behavior of the nanowire 
materials [26,27]. In these calculations, we only consider the case 0α =   so that the wires are 
perpendicular to the interfaces. 

In Ref [24], it was shown that the Casimir force in nanowire environments is an ultralong-
range force that decays as 21/ d , which contrasts markedly with the characteristic decay of 

41/ d  in usual systems with isotropic backgrounds. This anomalously high Casimir 
interaction stems from the fact that arrays of nanowires support q-TEM waves that allow 
channeling the quantum oscillations of the electromagnetic field, boosting in this way the 
intensity of the Casimir force at large distances. It was demonstrated in [24] that the 
contribution to the Casimir force of the other electromagnetic modes (TM and TE modes) that 
propagate in the wire medium may be negligible (especially for large distances), since these 
modes contribute only to short-range forces that decay quickly with the distance. Hence, 
based on Ref [24], the Casimir force (or more rigorously, the contribution of the q-TEM 
modes to the Casimir force) per unit of area in systems formed by arbitrary nondispersive 
magnetodielectrics embedded in nanowire materials is given by: 

 TEM 2 1 2
2 2

Li ( )
,

4x y

F c r r

L L a dπ
=


 (9) 

where 2
2 1

Li ( ) /n

n
z z n

∞

=
=  is the polylogarithm function of order two, and 1,2r  are the 

reflection coefficients at the boundaries for normal incidence. In the particular case of a 
system comprising two PEC plates ( 1 2 1r r = ) with an array of metallic nanorods between 
them [top inset of Fig. 3], the Casimir force is simply 

 TEM
2 2

.
24x y

F c

L L a d

π= 
 (10) 

In this work, we follow the same convention as in Refs [1,24]: a positive force 
corresponds to attraction, whereas a negative force corresponds to repulsion. 

In Fig. 3, we compare the normalized Casimir force CF  as a function of the distance d  

calculated using the hyperbolic medium model [ C C /F dδε= −∂ ∂ , where Cδε  is the zero-
point energy obtained from Eq. (2)] (discrete symbols) with the results based on the nonlocal 
model of Ref [24] (solid lines). There is an excellent agreement between the two theories, 
even when the effect of loss and dispersion in the metal nanowires is considered, supporting 
in this manner the validity of the simplified effective medium model in the context of the 
Casimir problem. Note, however, that such an agreement can be obtained only by restricting 
the ( , )x yk k  integration in Eq. (2) to the first Brillouin zone, which in effect takes into 

account the wire medium granularity and recovers the 21/ d dependence of the Casimir force 
with distance in such systems. It is also clear that the effect of metallic loss and dispersion is 
quite mild, since the magnitude of the Casimir force for Ag nanowires is only slightly lower 
than that for PEC nanowires. 
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Fig. 3. Normalized Casimir forces as functions of the normalized distance for two different 
system configurations shown in the insets. (i) Configuration I: PEC – nanowires embedded in 
air – PEC; (ii) Configuration II: nanowires embedded in three nonmagnetic materials (PEC – 

bromobenzene – air). In both cases, 100 nma =  and 20 nm
w

r = . Solid lines: Contribution of 

the q-TEM modes to the Casimir force calculated with the nonlocal model of Ref [24]; 
Discrete symbols: Casimir forces calculated using the hyperbolic medium model described in 
Subsection 2.1. Blue lines and symbols: PEC nanowires; Green lines and symbols: lossy and 
dispersive Ag nanowires modeled by a Drude-type dielectric function with parameters taken 
from the literature [32]. 

The results of Fig. 3 confirm that the contribution of the TE mode to the Casimir force is 
indeed residual. Indeed, in our calculation (discrete symbols of Fig. 3), both the contributions 
of the q-TEM modes (extraordinary wave) and TE modes (ordinary wave) are taken into 
account. Finally, it is important to point out that the Casimir force is attractive for the 
configuration I (Fig. 3(i)), whereas in the other scenario the Casimir force is repulsive (Fig. 
3(ii)). 

3. Casimir torque in nanowire materials 

In this section, we calculate the Casimir interaction torque acting on the metallic nanowires in 
the system illustrated in Fig. 1 formed by two interacting interfaces separated by a distance 
d . One important point is that for this type of systems the Casimir torque may be nonzero 
even when the distance d  between the two interfaces approaches infinity. Indeed, it should 
be clear that even for a single interface the zero-point energy stored in the system may depend 
on the angle α  that defines the orientation of the nanowires, and therefore, one should expect 
a remnant Casimir torque when d → ∞ . This property is specific of our system, and is not 
found in other geometries studied hitherto [14,15,17]. For example, due to the isotropy of the 
vacuum the zero-point energy of a single birefringent plate standing alone in free-space is 
independent of its relative orientation, and thus the Casimir induced torque for a pair of 
birefringent plates vanishes when d → ∞ . 

Obviously, because of the electromagnetic coupling between the two interfaces, the torque 
will depend on d , such that the total torque can be written as C C,12 C,32 C,intM M M M= + + , 

being C,12M  the remnant torque associated with the first interface (between the dielectrics 

h,1ε  and h,2ε ), C,23M  the remnant torque associated with the second interface (between the 

dielectrics h,2ε  and h,3ε ), and C,intM  the interaction torque resulting from the coupling 

between the two interfaces. In this work, we present a detailed analysis of the calculation of 
the interaction torque, and derive a rough analytical estimation for the single-interface 
Casimir torques ( C,12M  and C,23M ). 
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3.1 Theoretical analysis 

The Casimir torque CM  per unit of area can be expressed in terms of the zero-point energy of 
the system as [13] 

 C C .
x y x y

M

L L L L

ε
α
 ∂= −   ∂  

 (11) 

In typical systems, the Casimir energy Cε  can be simply replaced by the interaction energy 

Cδε  given by Eq. (2). However, because our background (region 2) is not isotropic, here we 
need to proceed carefully. Indeed, it should be noted that 

 ( ) ( ) ( )C C C, , , .d d dε α ε α δε α= → ∞ +  (12) 

The term ( )C ,dε α→ ∞  corresponds to the Casimir energy when the regions 1 and 3 are 

infinitely far apart. It does not contribute to the usual Casimir force (because it is independent 
of d) but it may contribute to the Casimir torque because it depends on α . This additional 
contribution to the torque is easy to understand from a physical point of view. Indeed, as 
discussed previously, even in the presence of a single material interface (let us say between 
medium 1 and medium 2) there may still exist a torque acting on the metallic wires because 
they are tilted with respect to the interface. Therefore, we can write: 

 

C,int C,12 C,32C

C,12 C,32C .

x y x y x y x y

x y x y x y

M M MM

L L L L L L L L

L L L L L L

ε εδε
α α α

= + +

     ∂ ∂ ∂= − − −          ∂ ∂ ∂     
       

 (13) 

being C,12M  and C,32M  the torques induced in case of single 1-2 (configuration of Fig. 4(a)) 

and 2-3 material interfaces, and C,12ε  and C,32ε  are the corresponding zero-point energies, 

which are independent of d. 

 

Fig. 4. Nanowire material system configurations. (a) Single-interface configuration; (b) Twin-
interface configuration. 

The interaction torque C,int C

x y x y

M

L L L L

δε
α
 ∂= −   ∂  

 can be readily evaluated with the help of 

Eq. (2). In the next two subsections we derive an analytical estimation for C,intM  and discuss 

how the single-interface torques C,12M  and C,32M  can be determined. 
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3.2 Analytical expression for the interaction torque 

To obtain a closed analytical formula for the Casimir interaction torque induced in the 
nanowire material (see Fig. 1), next we generalize the theory of [24] and compute the 
contribution of the q-TEM photonic modes to the Casimir interaction energy when the angle 
α  is in the range 0 90α° < < ° . To do this, we consider the case wherein the nanowire 
materials are characterized by extreme anisotropy so that ααε = −∞  in the relevant frequency 
range. In such a situation the reflection coefficient for a q-TEM wave incident upon an 
interface of two nanowire materials (let us say, propagating from region 2 to region 1) with 
different dielectric hosts is nearly independent of ||k  ( ||

ˆ ˆα α= − ⋅k k k u u ), and is 

approximately equal to 1 2

1 2

r
η η
η η

−
=

+
, being 0 h/η μ ε=  the wave impedance in the pertinent 

dielectric host. Therefore the zero-point energy in the nanowire configuration sketched in Fig. 
1 can be written as follows: 

 
//

C
1 22

/ / 0

log(1 ) ,
2 (2 )

y

y

aa
y x d d

x y a a

dk dk
r r e e d

L L

ππ
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π π
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π π

+ −

+∞
− −

− −

= −  


 (14) 

where γ ±  are the propagation constants of the q-TEM mode [see Eq. (8)] and 1r  and 2r  are 
the reflection coefficients at the two interfaces. Making the change of variables 

h,2 02 sect d ε μ α ξ= , the Casimir interaction energy at zero temperature becomes 

 
2 2

C
1 2 2 1 22 2

00 h,2 0 h,2

cos cos
log(1 ) Li ( ).

4 4
t

x y

r r e dt r r
L L a d a d

δε α α
π πμ ε μ ε

+∞
−= − = −

 
 (15) 

Notice that we can write ( ) 2C C

0

cos
x y x yL L L L

α

δε δεα α
=

= . Thus, the contribution to the torque 

due to the interaction between medium 1 and 3 is given by 

 C,int C C

0

sin(2 ) .
x y x y x y

M

L L L L L L
α

δε δεα
α

=

 ∂= − =  ∂  
 (16) 

Interestingly, one can see that the interaction torque induced in metallic nanowires varies as 
sin(2 )α , similar to the behavior of the torque in the configuration discussed in [13–15]. 

3.3 Single-interface torque 

In order to determine C,12M  ( C,32M  is determined in the same manner), we consider the 

scenario of Fig. 4(b), which represents a twin-interface configuration wherein h,1 h,3ε ε=  and 

the distance between the two interfaces is d . The same analysis that led to Eq. (13) shows 
that for the scenario of Fig. 4(b) one can write: 

 C,12 C,12C.12 2 .
x y x y x y

M

L L L L L L

δε ε
α α
   ∂ ∂= − −      ∂ ∂   

 
 (17) 

being C,12M  and C,12δε  the torque and interaction energy for this scenario, which depend on 

α  and d . But on physical grounds it is clear that if the gap d  is closed the torque in the 
scenario of Fig. 4(b) must vanish, because in such a situation the nanowires are embedded in 
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a uniform background. Thus, we can write C,12 C,12

0

1
lim

2d
x y x yL L L L

ε δε
α α→

   ∂ ∂− =      ∂ ∂   



 or 

equivalently: 

 C,12 C,12

0

1
lim .

2d
x y x y

M

L L L L

δε
α→

 ∂=   ∂  



 (18) 

Therefore, we were able to express the single-interface torque in terms of the interaction 

energy associated with the scenario of Fig. 4(b). Notice that the limit 0d →  needs to be 
taken in the calculation. This is challenging for several reasons. 

Indeed, this torque is determined by the near-field interactions (at the interface) of the 
metallic wires and the host materials, and thus the contribution of higher-order modes (not 
described by the effective medium model) is likely to be important. In the context of the 

Casimir problem the use of the effective medium model is accurate only when d a> . 
Nevertheless, one may estimate C,12M  based on the continuous medium approximation, 

but even in such a case things are not plain. In fact, unless one adopts a realistic dispersive 
model for the dielectrics and metal so that their electric response vanishes for ω → ∞ , the 

zero-point energy C,12δε  typically diverges in the limit 0d → . 

Considering these limitations, next we obtain an analytical formula for C,12M  based on 

the continuous material approximation, under the hypothesis that all the material responses 
cease at maxξ ξ= , beyond which the contribution of higher-order modes should be included 
and the effective medium theory breaks down. It is evident that in general this limit may 
depend on the wire tilting angle α . It is reasonable to assume on physical grounds that 

max ( ) cos
y

c c
a a

π πξ α α≈ = . Proceeding as in Subsection 3.2, we find that: 
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 (19) 

Taking the limit 0d →  and using Eq. (18) we obtain the desired result: 

 C,12

3 2
1

sin 2 1
log .

4 1x y

M c

L L a r

α  
=  − 


 (20) 

Notice that this remnant torque vanishes for 0ºα =  (wires perpendicular to the interface) and 
90ºα =  (wires parallel to the interface), being the latter situation the one corresponding to a 

stable equilibrium. This means that small angular deviations from 90α = °  result in torques 
rotating the nanorods back to this equilibrium position, whereas slight angular variations from 

0α = °  result in torques pushing the nanorods away from this position. 
It is interesting to look at the problem from a different perspective, and suppose that the 

nanowires are held fixed, whereas the dielectric hosts (e.g. two immiscible fluids such as 
water and olive oil) are free to be rotated. In this scenario, the Casimir torque induced in the 
system may force the dielectric fluids to move in such a manner that the interface moves 
toward the position of stable equilibrium where 90ºα = . Perturbations in the alignment of 
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the interfaces with respect to the orientation of the nanowires may provide a “signature” of 
the Casimir torque that may permit detecting it experimentally. 

3.4 Numerical results and discussion 

Next, we present a numerical study of the Casimir interaction torque ( C,intM ), i.e. of the 

perturbation of the total torque resulting from the electromagnetic coupling of the two 
interfaces, for several illustrative cases. 

We have calculated the Casimir interaction torque C,intM  induced in the nanowire system 

sketched in Fig. 1 for different angles α  and for a fixed distance 4 md μ= , using both the 

analytical model [Eq. (16)] and the hyperbolic medium model [ C,int C /M δε α= −∂ ∂ , where 

Cδε  is the zero-point energy obtained from Eq. (2)]. The results are depicted in Fig. 5(i). 

 

Fig. 5. Casimir interaction torque 
C,int

M  per unity of the cross-sectional area as a function of 

α  for a nanowire configuration as illustrated in Fig. 1 with 
h ,1 h ,3

80.4ε ε= =  (water) and 

h ,2
3.1ε =  (olive oil). Solid lines: Casimir interaction torques calculated using the hyperbolic 

medium model described in Subsection 2.1. Dashed line: Casimir interaction torque calculated 
using the analytical formula derived in Subsection 3.2. (i) PEC nanowires; (ii) Ag nanowires. 

In all these plots 100 nma = , 17.84 nm
w

r = , and 4 md μ= . 

First, it is important to highlight the very good agreement between the results obtained 
with the two different calculation methods. Similar to the analytical model (black dashed 
curve), the numerical results (green solid curve) also predict that the Casimir interaction 
torque varies as sin(2 )α . Moreover, the maximum magnitude of the Casimir interaction 

torque occurs at 45α = ° . On the other hand, the Casimir interaction torque is null when the 
nanowires are parallel ( 90α = ° ) or perpendicular ( 0α = ° ) to the interface planes, similar to 
the single-interface torques. For the case of twin-material interfaces ( h,1 h,3ε ε= ) the sign of 

the interaction torque is opposite to that of the single-interface torques, consistent with the 
fact that if the gap closes the total torque C C,12 C,int2M M M= +  should vanish. Therefore, in 

this case, the interaction of the two interfaces leads to a depression of the Casimir torque. 
The results of Fig. 5(i) also prove that the contribution of the TE mode to the Casimir 

interaction can be neglected, since the result predicted by our numerical calculation (which 
takes into account the contribution of the TE mode) is quantitatively very similar to the one 
obtained from the analytical model (which only takes into consideration the contribution of 
the q-TEM mode). 

In the previous example, it was assumed that the nanowires are PECs. To assess the effect 
of metallic loss and dispersion, we have also calculated the Casimir interaction torque in the 
nanowire system of Fig. 1 for Ag nanorods (Fig. 5(ii)) [Ag is described by a Drude dispersion 

#185968 - $15.00 USD Received 27 Feb 2013; revised 17 Apr 2013; accepted 17 Apr 2013; published 17 Jun 2013
(C) 2013 OSA 17 June 2013 | Vol. 21,  No. 12 | DOI:10.1364/OE.21.014943 | OPTICS EXPRESS  14953



model [32]]. As can be seen, the behavior of the Casimir interaction torque with the angle α  
for Ag nanowires is qualitatively similar to that of PEC nanowires, but the system with Ag 
nanowires generates a slightly weaker Casimir interaction torque. 
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Fig. 6. Casimir interaction torque 
C,int

M  per unity of the cross-sectional area as a function of 

the distance d  for 45α °= . (i) Nanowire configuration illustrated in Fig. 1 with 

h ,1 h ,3
80.4ε ε= = , 

h ,2
3.1ε = , 100 nma = , and 17.84 nm

w
r = ; Dashed line: PEC nanowires; 

Solid line: Ag nanowires. (ii) Casimir torque in a system formed by two 20 mμ  thick calcite 

and barium titanate (BaTiO3) plates in vacuum as considered in Ref [14]. 

We have also calculated the magnitude of the Casimir interaction torque at 45α = °  as a 
function of the distance d  (Fig. 6). We show the results of the Casimir torque for both PEC 
nanowires [black dashed curve] and Ag nanowires [blue solid curve]. Again, the dependence 
of the Casimir interaction torque on metallic loss and dispersion is relatively weak, since the 
difference between the PEC and Ag nanowires results is modest. 

In addition, we also show in Fig. 6 the magnitude of the Casimir torque in the system 
discussed in Ref [14] formed by a two parallel birefringent plates (calcite and barium titanate) 
separated by a vacuum. It is seen from Fig. 6 that the Casimir interaction torque induced in 
the nanowire configuration illustrated in Fig. 1 is several orders of magnitude larger than the 
torque generated in the birefringent plates system [14]. In particular, the difference between 
the magnitudes of the torques is increasingly pronounced as the distance d  is increased. In 
fact, this result was expected because for the configuration of Ref [14] the Casimir torque 
decays approximately as 31 / d , whereas it was found in Subsection 3.2 that in the proposed 
nanowire system the Casimir interaction torque decays as 1/ d  (see Eqs. (15-16)). It is 
important not to forget that the total torque also depends on C,12M  and C,23M  which typically 

are nonzero in case of the nanowire system, but vanish in the system of Ref [14]. 

4. Conclusion 

In this work, we have studied analytically and numerically the Casimir interaction torque 
induced in a system formed by a dense array of metallic nanowires embedded in three 
dielectric fluids (modeled as hyperbolic media). It was demonstrated that the perturbations in 
the torque resulting from the interaction of the two interfaces is several orders of magnitude 
larger than the torque generated in other structures reported in the literature (e.g., birefringent 
parallel plates, or even corrugated metallic parallel plates). In particular, it was found that in 
the nanowire structures the Casimir interaction torque decays as 1/ d , in contrast to the decay 

31/ d  that characterizes the usual setups comprising two parallel plates. The reason is that 
nanowire hyperbolic materials have a large density of photonic modes in the low-frequency 
limit, which promotes the quantum induced interactions. We have also estimated a 
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contribution to the Casimir torque resulting from the near-field interactions of the nanowires 
passing through a single dielectric interface. Generally, this contribution to the torque cannot 
be obtained within the framework of a continuous medium model, as it depends on the 
microstructure of the metamaterial in the vicinity of the interface. 

Acknowledgments 

This work is supported in part by Fundação para Ciência e a Tecnologia under project 
PTDC/EEATEL/100245/2008. 

 

#185968 - $15.00 USD Received 27 Feb 2013; revised 17 Apr 2013; accepted 17 Apr 2013; published 17 Jun 2013
(C) 2013 OSA 17 June 2013 | Vol. 21,  No. 12 | DOI:10.1364/OE.21.014943 | OPTICS EXPRESS  14955




