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Abstract

An anisotropic homogenization theory for spatially dispersive periodic arrays is developed, based on the microscopic Maxwell

equations, that yields causal, macroscopic permittivities, and inverse permeabilities for the fundamental Floquet modes of the

arrays. (Macroscopic magnetoelectric coefficients are not required.) Reality conditions, reciprocity relations, passivity conditions,

and causality relations are derived for these spatially dispersive macroscopic constitutive parameters. A significant feature of the

formulation is that the macroscopic permittivities and permeabilities reduce to their anisotropic-continuum definitions in terms of

ordinary macroscopic averages at the low spatial and temporal frequencies. In addition, diamagnetic metamaterial arrays require no

special considerations or modifications to accommodate their unusual characteristics. A numerical example of a 2D array comprised

of circular–cylinder inclusions is given that confirms the theoretical results for the computed electric and magnetic or diamagnetic

macroscopic polarizations.

# 2013 Elsevier B.V. All rights reserved.
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1. Introduction

As motivation for this work, consider the difficulties

encountered in dealing with a diamagnetic array, in

particular, a 3D cubic periodic array of perfectly

electrically conducting (PEC) spheres in free space.

When this array is described by a spatially nondisper-

sive dipolar continuum, it has a macroscopic permit-

tivity e(v) and a macroscopic permeability m(v), which

are functions of frequency v. Assume that a dipolar

homogenization procedure exists for determining a

causal e(v) and m(v) for this PEC-sphere array. Since

both the electric and magnetic dipole moments of PEC

spheres in a source-free incident field approach zero as

v! 1, we also have that e(v) ! e0 and m(v) ! m0 as

v! 1 where e0 and m0 are the permittivity and

permeability of free space. Consequently, the causal

functions [e(v) � e0] and [m(v) � m0] should obey the

Kramers–Kronig relations written in compact form as

[1, p. 98]

eðvÞ � e0 ¼
i

p
B
þ1
�1

eðnÞ � e0

v � n
dn (1a)

mðvÞ � m0 ¼
i

p
B
þ1
�1

mðnÞ � m0

v � n
dn : (1b)
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Passivity in a spatially nondispersive dipolar continuum

also demands that [1, p. 96]

v Im½eðvÞ� � 0 (2a)

v Im½mðvÞ� � 0 : (2b)

The expressions in (1a) and (2a), and in (1b) and

(2b), can be combined to prove that

eð0Þ � e0 (3a)

mð0Þ � m0 (3b)

under the assumptions that the imaginary parts of e(v)

and m(v) are negligible in the neighborhood of v = 0

and that vde(v)/dv and vdm(v)/dv both !0 as v ! 0

[2, sec. 84], [3]—assumptions satisfied by the e(v) and

m(v) of the PEC-sphere array. The inequality for per-

mittivity in (3a) is certainly obeyed by the 3D array of

PEC spheres. However, the inequality for permeability

in (3b) is clearly violated by the PEC sphere array,

which is strongly diamagnetic [4, sec. 9.5], [5, fig. 8] at

low frequencies and thus has m(0) < m0.

This apparent paradox can be explained by noting

that we are assuming that the array behaves as a

spatially nondispersive dipolar continuum for all

frequencies v. In fact, as the frequency increases, the

electromagnetic properties of the array can no longer be

described by macroscopic Maxwellian equations for a

spatially nondispersive continuum characterized by

dipolar e(v) and m(v) that necessarily satisfy the

causality relations in (1) or the passivity conditions in

(2) [6]. In the case of the PEC spheres, this inadequacy

of a spatially nondispersive continuum description of

the array at higher frequencies is manifested in part by

the paradoxical conclusion that m(0) � m0. In parti-

cular, it is impossible for a function m(v) or m�1(v) to

satisfy the Kramers–Kronig causality relations (given in

(1b) for m(v)) and the passivity condition in (2b) if m(v)

or m�1(v) is real and continuously differentiable near

v = 0 and m(0) < m0. Moreover, using a bianisotropic

description of the PEC-sphere array and expanding the

induced fields of the array with higher-order multipole

moments, while maintaining a spatially nondispersive

continuum description of the array, allow additional

constitutive parameters but still require a diamagnetic

m(v) with m(0) < m0 that violates the Kramers–Kronig

causality relations for m(v) or m�1(v).

Consequently, to adequately describe a 3D array in a

way that reduces at lower spatial and temporal

frequencies to a continuum description in terms of

permittivity and permeability, we proceed to formulate

an anisotropic representation for 3D periodic arrays that

rigorously takes into account spatial as well as temporal

dispersion. We show that such a formulation auto-

matically produces a macroscopic permittivity and

inverse permeability that satisfy causality and are free

of inconsistencies even if the array exhibits diamagnet-

ism.

Most homogenization theories in the past have been

formulated for source-free arrays in which the propaga-

tion vectors b are functions of the frequency v [7–10],

and we refer to these papers and their references for an

overview of the subject. However, to fully characterize

the effects of spatial dispersion in plasmas and crystals,

Landau and Lifshitz [2, ch. 12], Silin and Rukhadze [11],

and Agranovich and Ginzburg [12] decompose the fields

and sources of a spatially dispersive, homogeneous

continuum into a spectrum of ei(b�r�vt) plane waves,

where b is a real propagation vector and v is a real

angular frequency. These authors combine all electric

and magnetic polarization effects (including all multi-

poles) into a single electric-magnetic polarization density

PL(b, v) (based on a single microscopic electric current

density induced by an applied electric current density).

They then assign a single permittivity dyadic eLðb; vÞ to

the single polarization vector such that PLðb; vÞ ¼
½eLðb; vÞ � e0I� � Eðb; vÞ, where E(b, v) is the electric

field and I is the unit dyadic. Agranovich and Ginzburg

[12, ch. 3] discuss the conditions under which this

continuum formulation applies to the fundamental

Floquet mode of a natural crystal lattice. More recently,

Silveirinha [13–15] has extended and applied the single-

polarization formulation to 2D and 3D periodic

metamaterial arrays.

Although the single-polarization formulation for a

continuum [2,11,12] and periodic metamaterials  [13–

15] is both accurate and elegant, and has the advantage

of an appealing simplicity for many applications, it has

some disadvantages as well. For instance, practical

solutions to the Maxwellian microscopic equations for

metamaterial arrays are commonly developed by

separately determining electric and magnetic polariza-

tions, whether or not the two polarizations are

eventually combined. Moreover, the eLðb; vÞ dyadic

for the single polarization does not reduce to a scalar

even if the medium is an isotropic continuum and, thus,

in reality it requires no fewer unknowns than the

conventional formulation that uses both electric and

magnetic polarizations. The single-polarization for-

mulation is especially awkward for dealing with

inclusions that produce significant macroscopic

magnetization effects in periodic arrays, and it does

not provide a definitive prescription for determining

causal permittivity and permeability dyadics from the
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single-polarization dyadic eLðb; vÞ, although recipes

for determining approximate permittivities and perme-

abilities from the single polarization have been given in

[13].

To help alleviate the drawbacks of the single-

polarization approach, Fietz and Shvets [16] introduce

applied magnetic current density in addition to applied

electric current density and approximate macroscopic

averages in such a way that certain boundary integrals

of the microscopic and macroscopic fields over the unit

cells are equal in order to formulate a spatially

dispersive macroscopic bianisotropic representation

of metamaterials. In this bianisotropic formulation,

they find that, even with nonbianisotropic, centro-

symmetric inclusions, a lattice bianisotropy [17] can be

induced for b 6¼ 0. Alù [18] has developed a straight-

forward spatially dispersive bianisotropic representa-

tion for periodic metamaterials with applied electric and

magnetic current densities by expanding the induced

electric and magnetic polarization densities with a

multipole power series in the propagation vector b. In

Alù’s formulation, weak spatial dispersion effects may

be properly assigned to local bianisotropic parameters

that allow a physically meaningful homogenized

description of the array in the limit of low spatial

and temporal frequencies. Also, this description does

not depend on whether the driving currents are electric,

magnetic, or both.

General reciprocity relations, passivity conditions,

and causality relations have not been determined for

spatially dispersive bianisotropic constitutive para-

meters in either [16] or [18], and these relationships

are not necessarily the same as those in a spatially

nondispersive continuum.

1.1. Outline of the paper

In the present work, we excite 3D periodic arrays

with an applied plane-wave ei(b�r�vt) electric current

density only, and decompose the induced electric

current density into generalized electric and magnetic

polarization densities that maintain the Maxwellian

representation for the fundamental Floquet modes of the

3D periodic, spatially dispersive metamaterial arrays

comprised of general lossy or lossless polarizable

inclusions electrically separated in free space. We show

that, within this decomposition, anisotropic permittivity

and permeability [19, ch. 1] are sufficient to character-

ize the electric and magnetic macroscopic properties of

the fundamental Floquet modes of the arrays; that is, the

macroscopic magnetoelectric dyadics of a bianisotropic

formulation are not required, even though the arrays

may be characterized by strong spatial dispersion in the

long wavelength limit in the case of bianisotropic

inclusion material. The constitutive parameters (per-

mittivity, inverse permeability, and their associated

susceptibilities) of this anisotropic representation have

the further advantage of satisfying causality (at each

fixed b) and well-defined (though coupled) reciprocity

relations and passivity conditions, while maintaining a

convenient decomposition into separate electric and

magnetic polarizations.

Interestingly, the generalized electric and magnetic

polarization densities do not involve generalized

multipole moments of higher order than generalized

electric quadrupole moments. As both b and v become

sufficiently small, the enforced and free-space wave-

lengths become much larger than the separation

distance d between the unit cells of the inclusions

and the periodic-array formulation approaches that of

an anisotropic continuum fully described by the

permittivity and permeability of the fundamental

Floquet mode of the array. Moreover, for array

inclusions having nonzero electric and/or magnetic

dipole moments as |bd| and |k0d| both become

sufficiently small (where k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m0e0
p ¼ v=c), the

arrays can be represented by an anisotropic dipolar

continuum with negligible higher-order multipole

densities. In this anisotropic dipolar continuum, the

electric and magnetic fields as well as the polarization

densities are defined in terms of the same macroscopic

averages used for conventional dipolar continua and

thus, for example, in the absence of delta-function

surface polarizations, the tangential components of the

macroscopic E-electric and H-magnetic fields across

interfaces (thin transition layers) between free space

and the array or between two arrays become approxi-

mately continuous as |bd| and |k0d| both become

sufficiently small.

Within the framework of this macroscopic, spatially

dispersive anisotropic formulation, it is significant that

diamagnetism presents no unusual causality problems,

in that the resulting inverse diamagnetic permeability

is shown to exhibit a zero time-domain response for

time t < 0 and to satisfy the Kramers–Kronig disper-

sion relations at each fixed b. That is, the theory

requires no special considerations or modifications

to achieve a causal response [20] for arrays with

inclusions that produce macroscopic diamagnetic

permeability.

One of the unusual features of this anisotropic

formulation is that the passivity conditions for the

macroscopic permittivity and permeability dyadics are

coupled at the higher values of b or v such that the
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imaginary parts of the diagonal elements of either the

permittivity or permeability dyadic can be negative as

well as positive (or zero) while power dissipation within

the inclusions remains greater than or equal to zero.

This departure from spatially nondispersive dipolar

continuum behavior of the imaginary parts of the

constitutive parameters of the fundamental Floquet

modes of the arrays is caused by the strong spatial or

temporal dispersion at the higher values of b or v.

Although this macroscopic, spatially dispersive

anisotropic representation implies that a macroscopic,

spatially dispersive bianisotropic representation of

metamaterials is not required, a macroscopic bianiso-

tropic formulation [16,18] may for some applications be

more suitable and useful, especially for arrays with

magnetoelectric coupling in the material of the

inclusions. For example, if magnetoelectric coupling

at the inclusion level remains significant as the

propagation vector b and the frequency v approach

zero, the macroscopic permittivity or permeability in

the anisotropic formulation (unlike the macroscopic

bianisotropic constitutive parameters) can retain a

strong dispersion [21].

The development of the anisotropic representation

proceeds from Section 1 to Section 2 in which the basic

macroscopic equations for the fundamental Floquet

modes of 3D periodic arrays are derived from the

microscopic equations for the general lossy or lossless

polarizable material of the inclusions of the arrays.

Sufficient conditions are given for the array to

approximate an electromagnetic continuum, and

boundary conditions are determined for an electric

quadrupolar continuum.

Section 3 develops the anisotropic constitutive

relations for the fundamental Floquet modes of 3D

arrays and determines expressions for the full permit-

tivity and permeability dyadics in terms of their

components transverse to the propagation vector b.

In Section 4, the reality conditions, reciprocity

relations, passivity conditions, and causality relations

are determined for the spatially dispersive anisotropic

macroscopic permittivity and permeability.

Lastly, in Section 5 we compute the fundamental

Floquet-mode macroscopic permittivity and perme-

ability as b approaches zero for a 2D array of circular

cylinders comprised of material that satisfies a Drude

dielectric model. In accordance with the predictions of

the theory, the fundamental Floquet-mode macroscopic

permittivity and inverse permeability of the 2D array

satisfy causality and the coupled passivity conditions,

whereas the fundamental Floquet-mode macroscopic

permeability does not satisfy causality.

2. Derivation of Maxwellian macroscopic

equations for the fundamental Floquet modes on

periodic arrays of lossy or lossless polarizable

inclusions

We assume that the inclusions (artificial molecules)

of a 3D periodic array can support electric current

density J vðrÞ (with associated charge density rv(r)),

dipolar electric polarization density PvðrÞ, and dipolar

magnetic polarization density (microscopic Amperian

magnetization) MvðrÞ, where the subscripts ‘‘v’’

indicate that e�ivt time dependence has been sup-

pressed, and the coordinate system in which r is

measured is fixed with respect to the inclusions. The

inclusions are assumed to be electrically separated in

free space and comprised of lossy or lossless polarizable

material. Thus, the array can be described electro-

magnetically by the following microscopic (inclusion-

level) Maxwell differential equations in the space–

frequency (r, v) domain [22, ch. 1]

r � EvðrÞ � ivBvðrÞ ¼ 0 (4a)

1

m0

r � Bv þ ive0Ev � J p
v � r � Mv ¼ J av

(4b)

r � BvðrÞ ¼ 0 (4c)

e0r � EvðrÞ ¼ r p
vðrÞ þ ravðrÞ (4d)

where the equivalent electric current and charge densi-

ties are

J p
v ¼ J v � ivPv (5a)

r p
v ¼ rv � r � Pv : (5b)

The Ev and Bv vectors are taken as the primary electric

and magnetic fields, J avðrÞ is the applied electric

current density, and m0 and e0 are the free-space per-

meability and permittivity, respectively. Hypothetical

induced and applied magnetic current and charge den-

sities have been taken as zero in (4a) and (4c), respec-

tively, to keep the equations as simple as possible while

still allowing the applied electric current density to vary

arbitrarily. Also, of course, magnetic currents and

charges have never been observed experimentally.

The induced and applied electric charge densities, r p
v

and rav, are related to the induced and applied electric

current densities, J p
v and J av, through the continuity

equations

r � J p
vðrÞ � ivr p

vðrÞ ¼ 0 (6a)
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r � J avðrÞ � ivravðrÞ ¼ 0 : (6b)

Assume that the applied electric current density has

the general plane-wave dependence

J avðrÞ ¼ Jaðb; vÞei b�r (7)

with the rectangular components of the propagation

vector b and the angular frequency v having indepen-

dent real values ranging from �1 to +1. Then, the

periodicity of the array requires that the fields and

induced source densities satisfy the Floquet modal

equations; for example, the electric field can be

expressed as

EvðrÞ ¼ ei b�r
Xþð1;1;1Þ

ðl;m;nÞ¼�ð1;1;1Þ
Elmnðb; vÞeiblmn�r

(8)

and similarly for the magnetic field and source densi-

ties. For simplicity, we shall assume a cubic array with

lattice spacing d such that

blmn ¼
2pl

d
x̂ þ 2pm

d
ŷ þ 2pn

d
ẑ (9)

where ðx̂; ŷ; ẑÞ are the unit vectors in the (x, y, z)

principal directions of a 3D cubic array. Since

b000 = 0, the (l, m, n) = (0, 0, 0) term in (8) with spatial

propagation vector b is called the fundamental Floquet

mode.

The applied plane-wave current spectrum Ja(b, v) in

(7) for all real b can be used to represent an arbitrary

localized applied current density J a
vðrÞ through the

Fourier transform

J a
vðrÞ ¼

Z þ1
�1

Z þ1
�1

Z þ1
�1

Jaðb; vÞei b�rd3b (10a)

with Ja(b, v) given by the inverse Fourier transform

Jaðb; vÞ ¼ 1

ð2pÞ3
Z þ1
�1

Z þ1
�1

Z þ1
�1

J a
vðrÞ

�ib�rd3r

(10b)

and similarly for the accompanying spectra of the

fields.

For any fixed value of real b, arrays of lossless

inclusions can have homogeneous (source-free: Ja = 0)

‘‘eigenmode’’ (sometimes called ‘‘normal-mode’’)

solutions to (4) and (11) at discrete real frequencies

v = veig(b). At these discrete frequencies, the inhomo-

geneous solution for the fields with applied current

density in (7) generally diverges (whereas the macro-

scopic permittivity and permeability defined in Section 3

remain finite and continuous as v ! veig(b)). For both

theoretical analyses and numerical solvers, the solution

to the lossless array can often be investigated more easily

near the eigenmodes at real (b, v) by inserting a small

loss into the material of the inclusions to eliminate the

singularities from the solution at real (b, v). Also, the

applied fields will diverge if v ¼ �jbj= ffiffiffiffiffiffiffiffiffiffi
m0e0
p

and thus

these two values of v should be avoided. (As an aside, we

mention that source-free eigenmodes with complex

propagation constants can exist even on lossless arrays

[23]. These complex waves can, nonetheless, be

represented by an integration of the plane-wave spectra

over real b—as can be demonstrated by closing the

contours of the real b integrations in the complex b
planes.)

Inserting the electric field from (8), and the similar

Floquet modal expressions for the magnetic field and

source densities, into the Maxwell equations in (4), then

multiplying the resulting equations by e�i b�r and

integrating over the volume of any one unit cell, we

obtain the spectral domain Maxwellian equations for

the fundamental Floquet mode of the array

ib � Eðb; vÞ � ivBðb; vÞ ¼ 0 (11a)

1

m0

ib � B þ ive0E � J p � ib � M ¼ Ja (11b)

in which we have defined E(b, v) � E000(b, v) and

similarly omitted the ‘‘000’’ subscripts on the other

fundamental Floquet modal spectra. Likewise, the con-

tinuity equations in (6) transform to

ib � J pðb; vÞ � ivr pðb; vÞ ¼ 0 (12a)

ib � Jaðb; vÞ � ivraðb; vÞ ¼ 0 (12b)

with rp = r � ib � P. The form of these spectral Max-

wellian equations for the fundamental Floquet mode is

identical to the corresponding continuum spectral equa-

tions for applied sources with ei(b�r�vt) plane-wave

dependence. The divergence equations corresponding

to (4c) and (4d) need not be included separately in (11)

because they can be obtained (for b 6¼ 0 or v 6¼ 0) by

taking the scalar product of b with (11a) and (11b) and

using the continuity equations in (12).

Multiplying (8) by e�i b�r and integrating over the

volume Vc of a unit cell, we find that

Eðb; vÞ ¼ 1

d3

Z
Vc

EvðrÞe�i b�rd3r (13)

with similar integral expressions holding for the other

fundamental Floquet modal spectra. In particular, the

fundamental Floquet-mode induced electric current
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spectrum can be expressed as

J pðb; vÞ ¼ 1

d3

Z
Vc

J p
vðrÞe�i b�rd3r : (14)

To decompose Jp(b, v) into generalized electric and

magnetic polarization densities, begin with the micro-

scopic equivalent electric current density J p
vðrÞ and the

vector-dyadic identity

J p
v ¼ r � J p

vr
� �

� ðr � J p
vÞr : (15)

Re-expressing J p
vr as

J p
vr ¼ 1

2
ðJ p

vr � rJ p
vÞ þ 1

2
ðJ p

vr þ rJ p
vÞ (16a)

and using the identity

r � ðJ p
vr � rJ p

vÞ ¼ r � ðr � J p
vÞ (16b)

allows the electric current in (15) to be rewritten as [9]

J p
v ¼ �ivr p

vr þ 1

2
r � ðJ p

vr þ rJ p
vÞ þ 1

2
r

� ðr � J p
vÞ (17)

with the help of the continuity equation in (6a), where,

as in (13) and (14)

r p
vðrÞ ¼ ei b�r

Xþð1;1;1Þ
ðl;m;nÞ¼�ð1;1;1Þ

r
p
lmnðb; vÞeiblmn�r :

(18)

Substitution of J p
v from (17) into (14) gives

J pðb; vÞ ¼ �ivPe
r þ

v

2
b � Q

e þ ib � Me (19)

with the generalized macroscopic electric charge polar-

ization density Pe
rðb; vÞ, electric current magnetic po-

larization density Me(b, v), and dyadic electric

quadrupolar polarization density Q
eðb; vÞ defined as

Pe
rðb; vÞ ¼ 1

d3

Z
Vc

r p
vðrÞrce�i b�rd3r (20a)

Meðb; vÞ ¼ 1

2d3

Z
Vc

rc � J p
vðrÞe�i b�rd3r (20b)

Q
eðb; vÞ ¼ i

vd3

Z
Vc

½J p
vðrÞrc þ rcJ

p
vðrÞ�e�i b�rd3r

(20c)

where rc is the position vector measured from a fixed

point within the unit cell of integration (so that for the

same fixed point with respect to each of the unit cells,

the polarization densities in (20) are independent of

which unit cell is chosen for the integration). It should

be noted that this replacement of the factors r by rc in

(20) is valid because (17) holds with the factors r

replaced by rc. Moreover, it is assumed that the surface

Sc of the volume Vc of the unit cell lies in free space, that

is, Sc does not intersect the induced sources of the

inclusions, so that the volume integral of the first

divergence term on the right-hand side of (15), for

example, converts to a surface integral over Sc that is

zero. (Thus, the theory is not directly applicable to

electrically connected inclusions such as those that form

some wire media.) The superscripts ‘‘e’’ in (20) denote

generalized polarization densities produced by the in-

duced equivalent electric charge-current. The effective

microscopic electric charge-current polarization densi-

ties are found from (20) as

Pe
rvðrÞ ¼ r p

vðrÞrc (21a)

Me
vðrÞ ¼ 1

2
rc � J p

vðrÞ (21b)

Q
e

vðrÞ ¼ � 1

iv
½J p

vðrÞrc þ rcJ
p
vðrÞ� : (21c)

These effective source densities have the same funda-

mental ei b�r variation as r p
vðrÞ and J p

vðrÞ. Observe that

Q
e

vðrÞ and Q
eðb; vÞ are symmetric dyadics. Eqs. (20)

are generalizations of similar equations in the ‘‘scaling

homogenization theory’’ of [9].

With Jp in (19) inserted into (11b), we can define a

total generalized electric polarization density as

Peðb; vÞ � Pe
rðb; vÞ þ ib � Q

eðb; vÞ
2

(22)

as well as a generalized electric displacement vector D

and a magnetic field vector H as

Dðb; vÞ � e0Eðb; vÞ þ Peðb; vÞ (23a)

Hðb; vÞ � Bðb; vÞ=m0 � Meðb; vÞ � Mðb; vÞ: (23b)

Then the spectral Maxwellian equations in (11) for the

fundamental Floquet mode of the array become

ib � Eðb; vÞ � ivBðb; vÞ ¼ 0 (24a)

ib � Hðb; vÞ þ ivDðb; vÞ ¼ Jaðb; vÞ : (24b)

To obtain this traditional form of the macroscopic

Maxwell’s equations in (24) for these ‘‘electric current’’

polarizable inclusions satisfying the microscopic equa-

tions in (4) with ðEv; BvÞ as the primary fields, we have

had to choose (E, B) as the primary macroscopic fields

(obtained from the generalized average, as in (13), of

the corresponding microscopic fields) and (D, H) as the
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secondary fields defined in (23) in terms of the macro-

scopic primary fields and the macroscopic polarization

densities in (20). The fundamental definitions of the

generalized macroscopic polarization densities in (20)

in terms of integrals over the microscopic sources at a

fixed b is what ensures the causality of these polariza-

tions and that of their associated constitutive param-

eters. These causal integral definitions distinguish

themselves from the spherical multipole definitions

of polarization in terms of external fields (as in the

Mie series), which exhibit an inherent noncausality

generated by the finite size of the inclusions [20]. Only

as the size of the inclusions become infinitesimal do the

integral and spherical multipole definitions yield the

same macroscopic polarizations.

The total Floquet-mode equivalent electric current

Jtot ¼ �ivPe
r þ vb � Q

e
=2 þ ib � Me þ M½ � (25)

is equal to the Landau–Lifshitz single-polarization vec-

tor �ivPL(b, v) [2, ch. 12], [13] mentioned in

Section 1; that is

Jtotðb; vÞ ¼ �ivPLðb; vÞ : (26)

Eqs. (23) and (24) are noteworthy, not only because

they are Maxwellian equations for the fundamental

Floquet modes of 3D arrays of lossy or lossless

polarizable inclusions, but also because they involve no

generalized multipole moments of higher order than the

generalized electric quadrupole moment contained in

(22) as part of the total generalized electric polarization

density Pe(b, v). Moreover, the fields E and D involve

only electric type quantities and the fields B and H

involve only magnetic type quantities.

The generalized electric-quadrupole polarization in

(22) is grouped with the generalized electric-dipole

polarization rather than the generalized magnetic-

dipole polarization because an expansion of the

generalized electric-dipole polarization in (20a) as

b ! 0 produces a term equal to �ib � Q
e
; see (29).

Combining the electric dipole and quadrupole moments

into a single electric polarization allows a single bulk

permittivity dyadic e in Section 3 to characterize the

electric properties of the array. However, this bulk

permittivity dyadic does not reveal how much of the

macroscopic polarization is contributed individually by

the generalized electric-dipole polarization Pe
r and the

electric-quadrupole polarization Q
e
. If desirable, it is a

simple matter to separate the contributions from Pe
r and

ib � Q
e
=2 to the bulk permittivity dyadic e and thus to

determine separate generalized electric-dipole and

electric-quadrupole dyadic susceptibilities.

The value of the generalized macroscopic polariza-

tions in (20) and the constitutive parameters (defined in

Section 3) depend on the position of the inclusion within

the unit cell of integration, or, more precisely, on the

position of the origin of the vector rc with respect to the

inclusion [24]. However, the value of the total

macroscopic equivalent electric current Jtot(b, v) in

(25), obtained by adding the macroscopic polarizations,

is independent of the position of the inclusion within the

unit cell, and thus the primary macroscopic fields, E(b,

v) and B(b, v) are uniquely defined.

2.1. Definition of an electromagnetic continuum

The foregoing development of the macroscopic

equations for the fundamental Floquet modes on 3D

arrays provides a convenient set of equations for defining

an electromagnetic ‘‘continuum.’’ An array of electri-

cally isolated inclusions can be treated as an electro-

magnetic ‘‘continuum’’ if two conditions are satisfied:

(1) |bd| is small enough (generally |bd| 	 1)1 that the

ordinary averages (that is, averages without the

e�i b�r weighting factor) of the microscopic fields

and sources over the unit cell approximately equal

the fields and sources of the fundamental Floquet

mode; for example, for the electric field in (8)

1

d3

Z
Vc

EvðrÞd3r ¼ (27)

1

d3

Z
Vc

½ei b�r
Xþð1;1;1Þ

ðl;m;nÞ¼�ð1;1;1Þ

Elmneiblmn�r�d3r 
 Eðb; vÞei b�r0

where r0 is the center of the unit cell, and similarly

for the microscopic magnetic field, BvðrÞ, and the

microscopic sources, Pe
rvðrÞ, Me

vðrÞ, MvðrÞ, and

Q
e

vðrÞ.
(2) |k0d| = |vd/c| is small enough (generally |k0d| 	 1;

see Footnote 1) that the wave numbers beig(v) of the

‘‘propagating’’ source-free eigenmodes of the array
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1 This criterion of ‘‘	1’’ can sometimes be relaxed to ‘‘<1’’ [5],

and in the special case of homogeneous inclusion material that

occupies nearly the entire volume of the unit cell, the criterion can

be relaxed to values greater than 1. Although such a nominally

periodic array can be considered a continuum over spatial and

frequency bandwidths, |bd| and |k0d|, greater than 1, it is a relatively

uninteresting case that we shall ignore in the discussion of continua

and their boundary conditions in this section and the following

Subsection 2.1.1.
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(that would be excited by discontinuities or

terminations of the array) satisfy the requirement

of condition (1) of small enough |beigd| that the

fundamental Floquet modes dominate. This second

continuum condition implies that the quasi-static

fields of the electrically separated inclusions

dominate over the length of several or more unit

cells. On lossy arrays, the beig of the propagating

eigenmodes can be complex with small imaginary

parts for small values of |k0d|. In addition, even for

small values of |k0d|, there may be ‘‘evanescent’’

complex eigenmodes on lossy and lossless arrays

with |Im(beigd)| > 1 (see, for example, [23, part 2,

fig. 10c]). However, these evanescent waves are

irrelevant for defining a continuum because they

decay to a negligible value in ‘‘transition layers’’ a

small fraction of a wavelength from discontinuities

or termination surfaces of an array.

If the above conditions (1) and (2) are met, ordinary

averages over electrically small (quasi-static) macro-

scopic volumes DV within the array, but outside any

transition layers of discontinuities or terminations of the

array, and containing many inclusions (such that the

surfaces of the macroscopic volumes do not intersect

the inclusions) will produce physically meaningful

averages at each value of b and v satisfying the small

|bd| and small |k0d| criteria of conditions (1) and (2).

Specifically,

Eaveðr; tÞ 
 Eðb; vÞeið b�r�vtÞ (28)

and similarly for the other fields and source densities.

That is, the ordinary macroscopic-volume averages at

each b and v within the small spatial and temporal

bandwidths defining the continuum are given approxi-

mately by the fundamental Floquet mode. The consti-

tutive parameters of a continuum, in particular the

permittivity and permeability dyadics defined in

Section 3, can be spatially dispersive (as well as tem-

porally dispersive) and even strongly spatially disper-

sive near inclusion resonances [2, secs. 103–106].

Next, with the help of the polarizations defined in

(20), we will show that the continuum can be

characterized by ordinary multipole moments with

ordinary electric-dipole, magnetic-dipole, and electric-

quadrupole moments dominating at sufficiently small

values of |bd|. Consider the integrations in (20) over the

unit cell in which the coordinate-system origin of the

position vector r is located, and then let rc = r. With |bd|

sufficiently <1, the approximation e�i b�r 
 1 � ib � r

holds for this unit cell and, thus, to first order in |bd| (20)

yields

Pe
rðb; vÞ ¼ Pe

0 � ib � Q
e

0 þ Oðjbdj2Þ (29a)

Meðb; vÞ þ Mðb; vÞ ¼ Me
0 þ M0 þ OðjbdjÞ (29b)

where the ordinary (continuum) electric and magnetic

dipole-moment densities, and the ordinary electric

quadrupole-moment density in the unit cell containing

the origin of the position vector r are given by

Pe
0ðb; vÞ ¼ 1

d3

Z
Vc

rvðrÞr þ PvðrÞ½ �d3r (30a)

Me
0ðb; vÞ ¼ 1

2d3

Z
Vc

r � J p
vðrÞd3r (30b)

Q
e

0ðb; vÞ ¼ 1

d3

Z
Vc

r p
vðrÞrrd3r (30c)

with the equality in (30a) proven with the help of the

identity
R

Vc
ðr � PvÞrd3r ¼ �

R
Vc

Pvd3r, and the

equality in (30c) for the ordinary electric quadrupole-

moment density proven in several textbooks such as [25,

pp. 82–83]. Using the results in (29), the average

polarization densities can be expressed in terms of

the ordinary average electric, magnetic, and electric

quadrupolar moments of the continuum; specifically

Pe
aveðr; tÞ 
 Pe

0aveðr; tÞ � ib � Q
e

0aveðr; tÞ
2

(31a)

Me
ave þ Mave 
 Me

0aveðr; tÞ þ M0aveðr; tÞ (31b)

Multiplying Eqs. (23) and (24) by ei(b�r�vt), then

inserting the expressions in (28)–(31) for the fields and

polarization densities into these equations, and lastly

taking the four-fold (b, v) Fourier transform shows that

to first order in |bd| the macroscopic fields of the

continuum array satisfy the following Maxwell macro-

scopic space–time continuum equations

r � Eaveðr; tÞ þ @Baveðr; tÞ
@t

¼ 0 (32a)

r � Haveðr; tÞ � @Daveðr; tÞ
@t

¼ J aðr; tÞ (32b)

r � Baveðr; tÞ ¼ 0 (32c)

r � Daveðr; tÞ ¼ raðr; tÞ (32d)

with

Daveðr; tÞ 
 e0Eave þ Pe
0ave �

1

2
r � Q

e

0ave (33a)

Haveðr; tÞ 
 Bave=m0 � Me
0ave � M0ave (33b)
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for J aðr; tÞ [see (10a)] within the spatial and temporal

bandwidths (Db and Dv) of the largest sufficiently

small |bd| and |k0d| for the approximations in (27)

and (28) to hold and all multipole polarization densities

of higher order than Pe
0aveðr; tÞ, Me

0aveðr; tÞ þ M0ave

ðr; tÞ, and Q
e

0aveðr; tÞ (the ordinary electric-dipole, mag-

netic-dipole, and electric-quadrupole space–time polar-

ization densities) to be negligible, where from (28) we

have

Eaveðr; tÞ ¼
Z þDv

�Dv

Z þD b

�D b

Eðb; vÞeið b�r�vtÞd3bdv

(34)

and similarly for the other space–time averages. If the

multipole polarization densities of higher order than

Pe
0aveðr; tÞ, Me

0aveðr; tÞ þ M0aveðr; tÞ, and Q
e

0aveðr; tÞ
are not all negligible over the continuum bandwidths

(Db and Dv), then the integrals in (20) could be further

expanded as in (29) beyond the first-order |bd| terms,

similarly to what is done in [18], to obtain ordinary

multipole densities in (33) of higher order than the

dipolar and electric quadrupolar polarization densities.

In other words, one retains only the multipole moments

of the induced sources that contribute significantly to

the E-electric and B-magnetic primary fields within

their continuum bandwidths Db and Dv. Furthermore,

if desirable, the individual contributions from each of

these multipole polarizations to the macroscopic per-

mittivity eðb; vÞ and permeability mttðb; vÞ defined in

Section 3 can be used to determine separate multipole

susceptibilities for small |bd| and all temporal frequen-

cies v. These multipole susceptibilities at each fixed

value of b, unlike the conventional multipole suscepti-

bilities that are functions of v only, will be causal

functions of v by the same arguments used in

Section 4.4. Fortunately, as explained next, multipole

moments higher order than dipolar and sometimes

electric quadrupolar are seldom required within the

continuum bandwidths.

With the expressions in (29) and (30) substituted into

(25), the total current is given to first order in b as

Jtot ¼ �ivPe
0 �

v

2
b � Q

e

0 þ ib � Me
0 þ M0

� �
þ Oðjbdj2Þ: (35)

Because the microscopic current and charge densities,

J p
vðrÞ and r p

vðrÞ, induced on polarizable or perfectly

conducting inclusions are absolutely integrable (so that

all the multipole-moment densities are finite), we see

from (29a) that for |bd| small enough the electric

quadrupole-moment density contributes negligibly to

the electric polarization and both the electric and

magnetic polarizations in (23) become equal to the

ordinary electric and magnetic dipole moments per

unit-cell volume. Higher order multipole moments

do not have to be taken into account in order to

determine the macroscopic permittivity for |bd| suffi-

ciently small (unless the electric dipole polarization

Pe
0ðb; vÞ is negligible for |bd| less than some finite

value).

However, both the electric quadrupole-moment

density and magnetic dipole-moment density contri-

bute to order b in (35) as b ! 0 and thus generally both

have to be taken into account (at higher temporal

frequencies v) in determining the macroscopic

permeability as b ! 0 [26, p. 61], [24]. However, as

b ! 0, the permeability does not explicitly reveal the

contribution to the fields from the electric-quadrupole

polarization for an applied magnetic field [21, problem

2, sec. 5.1]. Nonetheless, for |k0d| sufficiently small, we

see from (35) that the contribution of the electric

quadrupole-moment density becomes negligible com-

pared to that of a nonzero magnetic dipole-moment

density.

In summary, as both |bd| and |k0d| become small, the

enforced and free-space wavelengths become much

larger than the separation distance d between the

inclusions, and the anisotropic formulation for the

fundamental Floquet mode approaches that of an

anisotropic continuum with ordinary electric-dipole,

magnetic-dipole, and electric quadrupole polarization

densities. In addition, we have shown that a metama-

terial array with inclusions having nonzero electric

and/or magnetic dipole moments at low spatial and

temporal frequencies (that is, for |bd| and |k0d|

sufficiently small) can be represented by an anisotropic

dipolar continuum with negligible higher-order multi-

pole-moment densities. Since most molecules can be

modeled by polarizable or perfectly conducting inclu-

sions, this result also holds for most natural materials

with electrically isolated molecules at sufficiently low

spatial and temporal frequencies [27, p. 111]. The fields

of the dipolar continuum satisfy the space–time

Maxwellian equations in (32) and (33) with the electric

quadrupole density Q
e

0aveðr; tÞ ¼ 0.

Before leaving this section, we note that the

continuum criterion for the average fields of the array

to be well approximated by the fundamental Floquet

mode does not imply that the power flow in the higher-

order modes of the array continuum must be negligible

compared to the power flow in the fundamental Floquet

mode (especially if there is strong spatial dispersion)

[28,29].
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2.1.1. Boundary conditions for electric

quadrupolar continua

The Maxwellian macroscopic space–time conti-

nuum equations in (32) and (33) hold for applied

current excitations with spatial and temporal band-

widths (Db and Dv) determined by small enough |bd|

and |k0d|, respectively, for the approximations in (27)–

(31) to be sufficiently accurate that ordinary macro-

scopic averaging applies over macroscopic volumes DV

containing many inclusions. These Eqs. (32) and (33)

were derived for infinite periodic arrays of separated

inclusions with small enough |bd| and |k0d| that all

multipole-moment polarization densities of higher

order than ordinary dipolar and electric quadrupolar

polarization densities are negligible. In this subsection,

we want to terminate the infinite array in a surface S that

is effectively planar in the sense that any subsurface Sp

of S extending a distance less than several lattice

distances d is approximately planar. The surface S is

assumed to be an interface between the array and free

space or another array and we want to determine the

boundary conditions across this interface.

The termination of the array(s) by the surface S

introduces strong spatial variations of the fields and

induced sources in the vicinity of S that invalidates the

approximations in (27) and (28). Although averages of

the microscopic fields and induced sources can still be

performed using macroscopic volumes DV throughout

all space, the resulting macroscopic fields will not

generally satisfy (32) and (33) in a transition layer [30,

p. 271] containing the interface surface S. For the

original infinite continuum arrays characterized by

|Dbd| 	 1 and |Dk0d| = Dvd/c 	 1, the thickness d of

the transition layer is much smaller than the free-space

and 2p/|b| wavelengths; see discussion of evanescent

eigenmodes in the previous section. The effect of this

transition layer can be represented in Eqs. (32) by

additional transition-layer electric and magnetic current

and charge densities on the right-hand sides of the

equations in (32). For example, (32a) and (32b) become

r � Eaveðr; tÞ þ @Baveðr; tÞ
@t

¼ �Kdðr; tÞ (36a)

r � Haveðr; tÞ � @Daveðr; tÞ
@t

¼ J aðr; tÞ þ J dðr; tÞ

(36b)

where J dðr; tÞ and Kdðr; tÞ are transition-layer macro-

scopic electric and magnetic current densities, respec-

tively, that are zero everywhere except within the

transition layer of thickness d. These equations in

(36), along with the constitutive equations in (33),

now hold throughout all space. The two divergence

equations associated with (36) can be obtained by

taking the divergence of the equations in (36). Note

from (33a) that Pe
aveðr; tÞ effectively contains a delta

function across the thin transition layer if the electric

quadrupole density is not negligible and differs in value

on either side of the transition layer; specifically

Pe
aveðr; tÞ ¼ Pe

0aveðr; tÞ � 1

2
r � Q

e

0aveðr; tÞ

¼ Pe
0aveðr; tÞ � 1

2
½r � Q

e

0aveðr; tÞ�dfr

� 1

2
n̂ � ðQe2

0ave � Q
e1

0aveÞdðnÞ

(37)

in which n̂ is the unit normal to the surface S pointing

from the side ‘‘1’’ to side ‘‘2’’ of the transition layer, and

d(n) is the delta function in the normal coordinate n. The

subscript ‘‘dfr’’ means ‘‘delta function removed’’ from the

divergence of the electric quadrupole dyadic, so that

½r � Q
e

0aveðr; tÞ�dfr can be discontinuous but otherwise

nonsingular across the thin transition layer. We are

assuming that there are no effective delta functions in

the macroscopic dipolar and electric quadrupolar polari-

zation densities, Pe
0aveðr; tÞ, Me

0aveðr; tÞ þ M0aveðr; tÞ,
and Q

e

0aveðr; tÞ, represented by J dðr; tÞ and Kdðr; tÞ
within the thin transition layer.2

Boundary conditions on the tangential components

of the macroscopic Eave and Have fields and on the

normal components of the macroscopic Dave and Bave

fields across the transition layer can be determined by

applying the integral forms of (36) and the corre-

sponding divergence equations to thin rectangular

closed curves and closed surfaces (pillboxes) with

their long dimensions of length ‘ on either side of the

transition layer so that their short sides are of width

d	 ‘ (taking into account the effective delta functions

in r � Q
e

0ave across the transition layer). Although

‘ � d, it is assumed that ‘ is short enough that the

macroscopic fields and sources along the length of ‘ do
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2 Delta functions d(n) and their derivatives in the polarizations as

represented by J dðr; tÞ and Kdðr; tÞ may exist if these polarizations

are proportional to unusually high spatial derivatives of the fields, that

is, if they display strong enough spatial dispersion. In that case, the

boundary conditions in (38) may have to be modified. However,

significant polarization proportional to unusually high spatial deriva-

tives of the fields generally indicates the presence of higher-order

multipoles. For example, Pe
0ave proportional to the second spatial

derivative of Eave would indicate the presence of magnetic dipoles or

electric quadrupoles. Similarly, Me
0ave or Q

e

0ave proportional to the

second or third spatial derivatives of Bave or Eave, respectively, would

indicate the presence of octopoles.
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not change appreciably. This determination of

boundary conditions for the equations in (36) with

the constitutive relations in (33) and (37) has been

done in [31] but without the transition current

densities, J dðr; tÞ and Kdðr; tÞ. However, the addi-

tional integrals over J dðr; tÞ and Kdðr; tÞ become

insignificant for d sufficiently small, or equivalently,

for |Dbd| and |Dk0d| sufficiently small, provided, as

discussed in Footnote (2), that J dðr; tÞ and Kdðr; tÞ
do not contain delta functions. Thus, we can apply

the boundary conditions derived in [31]3 with

the surface polarization Pd in [31] replaced by

�n̂ � ðQe2

0ave � Q
e1

0aveÞ=2 given in (37), to get

E2s
ave � E1s

ave 

1

2e0

rs n̂ � ðQe2

0ave � Q
e1

0aveÞ � n̂
h i

(38a)

H2s
ave � H1s

ave 

1

2
n̂ � @

@t
ðn̂ � Q

e2

0aveÞ
s
� ðn̂ � Q

e1

0aveÞ
sh i
(38b)

D2n
ave � D1n

ave 

1

2
rs � ðn̂ � Q

e2

0aveÞ
s
� ðn̂ � Q

e1

0aveÞ
sh i

(38c)

B2n
ave � B1n

ave 
 0 (38d)

where the superscripts ‘‘s’’ and ‘‘n’’ refer to vector

components tangential and normal to the surface S,

respectively, and we note that Q
e

0aveðr; tÞ is a sym-

metric dyadic because Q
e

0ðb; vÞ is a symmetric dyad-

ic. These boundary conditions show that the change in

electric quadrupole density across the thin transition

layer produces discontinuities in the tangential com-

ponents of Eave and Have and in the normal compo-

nent of Dave. They agree with the boundary

conditions of Raab and De Lange [24, eqs. (6.69)–

(6.74)] if a term e�1
0 @Qzz=@z=2 is added to the right-

hand side of [24, eq. (6.71)]. In a private communi-

cation, Raab and De Lange have confirmed the ne-

cessity of this added term. Our expressions in (38)

have also been confirmed in an unpublished indepen-

dent derivation by M.G. Silveirinha using transverse

averaging and assuming no delta-function contribu-

tions, as discussed in Footnote (2), from the effective

polarizations in the transition layer [32]. In [31] we

also prove that En
ave has a delta function in the

transition layer equal to n̂ � ðQ2

0ave � Q
1

0aveÞ�
n̂dðnÞ=ð2e0Þ.

The results of several analyses and simulations of

periodic arrays, for example those in [32–34], indicate

that the effect of the boundary layer becomes negligible

for spatial and temporal bandwidths, |Dbd| and |Dk0d|,

less than about 0.1. Thus, one would also expect that the

boundary conditions in (38) are reliable approximations

for |Dbd| and |Dk0d| less than about 0.1. If, as discussed

in the previous section, these spatial and temporal

bandwidths are small enough for the electric quadrupole

density to be negligible compared to the dipolar

polarization densities, then the electric quadrupole

terms in (38) can be neglected and (38) predicts the

usual continuity of the tangential Eave and Have fields

and the normal Dave field (as well as the normal Bave

field) across the thin transition layer. Lastly, we mention

the need for more analysis and simulations to

investigate the possibility of additional delta functions,

as discussed in Footnote (2), in the polarizations of

more strongly spatially dispersive arrays and to

determine additional boundary conditions (ABCs) for

these arrays [8,13].

3. Anisotropic constitutive relations

To formulate an anisotropic description of the

fundamental Floquet modes on 3D periodic arrays,

we note that for linear inclusion material all the field

vectors in (24) are linearly related to the applied electric

current vector Ja and thus we can express D in terms of

E as

Dðb; vÞ ¼ eeðb; vÞ � Eðb; vÞ (39)

with the permittivity dyadic eeðb; vÞ.
It is somewhat more involved to obtain a viable

constitutive relation between the secondary magnetic

field H and the primary magnetic field B because (24a)

shows that the longitudinal (parallel to the propagation

vector b) component of B is zero (b � B = 0); that is,

denoting longitudinal components by the subscript ‘‘l’’,

we have Bl ¼ m0ðHl þ Me
l þ MlÞ ¼ 0, and H cannot be

expressed in terms of only the two independent

components of B = Bt where the subscript ‘‘t’’ denotes

components transverse to the propagation vector b.

Nonetheless, it is permissible to linearly relate H to any

three independent components of the primary fields. In

particular, choosing (B, El) as these three primary

components, the H = Ht + Hl field can be expressed as

Hlðb; vÞ ¼ �Me
l ðb; vÞ � Mlðb; vÞ (40)

Htðb; vÞ ¼ m�1
tt ðb; vÞ � Bðb; vÞ þ ntlðb; vÞ � Elðb; vÞ

(41)
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3 The field symbols on the left-hand sides of Eqs. (13), (15), and

(16) in [31] should be boldface, and the r symbol one line below

Eq. (12) of [31] should be rs.
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where mttðb; vÞ is a transverse permeability dyadic and

ntlðb; vÞ is a magnetoelectric dyadic. In a rectangular (x,

y, z) coordinate system with b aligned with one of the

axes, mttðb; vÞ and its inverse m�1
tt ðb; vÞ are 2 � 2

dyadics and ntlðb; vÞ is a 2 � 1 dyadic. (For b in direc-

tions other than either the x, y, or z direction, the dyadic

mttðb; vÞ has nine elements but only four are independent

because b � mttðb; vÞ ¼ mttðb; vÞ � b ¼ 0, which gives

six homogeneous equations from which five of the ele-

ments can be written in terms of the other four elements.)

The magnetic constitutive parameters (m�1
tt ; ntl) have a

total of six independent elements, the same number of

independent elements as a 2�3 permeability dyadic. In

(42)–(44a), the magnetoelectric dyadic in (41) is assimi-

lated into the permittivity dyadic to maintain a purely

anisotropic (as opposed to bianisotropic) representation

of the array.

With the constitutive relations inserted from (39) and

(41) into (24), the fundamental Floquet-mode equations

in (24) can be recast in the form of the traditional

Maxwellian macroscopic equations in an anisotropic

medium with primary fields E and B, namely

ib � Eðb; vÞ � ivBðb; vÞ ¼ 0 (42a)

ib � m�1
tt � B þ ive � E ¼ Ja (42b)

where

e � ee þ
b � ntl

v
(43)

defines an effective displacement vector

Deff ¼ e � E ¼ e0E þ Pe þ b � ntl � El

v

¼ D þ b � ntl � E

v
(44a)

and we can define and effective transverse H-field as

Heff
t ¼ m�1

tt � B ¼ B

m0

� Me
t � Mt � ntl � El

¼ Ht � ntl � El (44b)

with Heff ¼ Heff
t � Me

l � Ml. Note that, as b/v ! 0,

the values of the effective displacement vector Deff and

permittivity dyadic e become equal to their traditional

values (that is, Deff = D and e ¼ ee). Also, for nonbia-

nisotropic inclusions, ntl becomes negligible at low

spatial or temporal frequencies (approaching zero as

b ! 0 or v ! 0 [21]) and Heff = H.

As b ! 0, it is emphasized that the elements of a

transverse dyadic, in particular, the transverse perme-

ability dyadic mtt (or m�1
tt ), in an (x, y, z) coordinate

system fixed in the array, unlike the elements of a

complete dyadic such as the permittivity dyadic e (or

ee) as b ! 0, are functions of the direction of b.

Nonetheless, as we explain next, for b ! 0 the

transverse dyadic mtt can be used to determine a

complete permeability dyadic mb that relates a Bb field

with three linearly independent components to a

corresponding Hb field.

Consider for the moment the array excited by both

applied plane-wave magnetic and electric current

densities such that three linearly independent compo-

nents of the primary fields Eb and Bb are generated. The

three components of Hb can be bianisotropically related

to the three components of the Eb and Bb fields by a

complete permeability dyadic m�1
b and a complete

magnetoelectric dyadic nb; that is

Hbðb; vÞ ¼ m�1
b ðb; vÞ � Bbðb; vÞ þ nbðb; vÞ

� Ebðb; vÞ: (45)

The nine-element permeability dyadic mb can be written

in an (x, y, z) coordinate system fixed in the 3D periodic

array as

mb ¼
mbxx mbxy mbxz

mbyx mbyy mbyz

mbzx mbzy mbzz

2
4

3
5 : (46)

Setting the applied magnetic current equal to zero,

leaving just the applied electric current Jae
i b�r, we have

Eb = E, Bb = B = Bt and Hb = H so that the transverse

part of (45) becomes

Ht ¼ m�1
btt � B þ nb � Eð Þt (47a)

or because Et ¼ �vb � B=jbj2 ¼ �vb � B=jbj2, where

b is the antisymmetric dyadic corresponding to b�

Ht ¼ m�1
btt � vnbtt � b=jbj2

h i
� B þ nbtl � El : (47b)

Comparing (47b) with (41), we see that

m�1
btt � vnbtt � b=jbj2 ¼ m�1

tt (48a)

nbtl ¼ ntl : (48b)

The bianisotropic term vnbtt=jbj in (48a) is negligible at

the lower frequencies v as b/v ! 0 if the inclusion

material does not exhibit bianisotropy [21]. At higher

frequencies v, the lattice bianisotropy, which is O(b) as

b ! 0 can give a finite value to vnbtt=jbj as b ! 0 [21].

This finite value can be incorporated into

mbttðb ! 0; wÞ in (48a) and is of little consequence

because it approaches zero at the lower frequencies

v where the array behaves as a continuum. Thus, for
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nonbianisotropic inclusions at low values of v and

b ! 0, (48a) reduces to

m�1
btt ðb ! 0; vÞ ¼ m�1

tt ðb ! 0; vÞ (49a)

or

mbttðb ! 0; vÞ ¼ mttðb ! 0; vÞ : (49b)

If we choose the propagation vector b in the ẑ

direction, the transverse permeability dyadic mtt can be

written as a 2 � 2 matrix

mttðbz; vÞ ¼ mxxðbz; vÞ mxyðbz; vÞ
myxðbz; vÞ myyðbz; vÞ

� �
(50)

and similarly for the x̂ and ŷ directions. Thus, in view of

(49), we have

mbxxð0; vÞ ¼ mxxðbz; vÞ ¼ mxxðby; vÞ
mbxyð0; vÞ ¼ mxyðbz; vÞ (51a)

mbyyð0; vÞ ¼ myyðbz; vÞ ¼ myyðbx; vÞ
mbyxð0; vÞ ¼ myxðbz; vÞ (51b)

mbyzð0; vÞ ¼ myzðbx; vÞ; mbzyð0; vÞ ¼ mzyðbx; vÞ
(51c)

mbzzð0; vÞ ¼ mzzðbx; vÞ ¼ mzzðby; vÞ (51d)

mbzxð0; vÞ ¼ mzxðby; vÞ; mbxzð0; vÞ ¼ mxzðby; vÞ
(51e)

in which bx! 0, by! 0, and bz! 0. The results in

(51) reveal that, for nonbianisotropic inclusions at low

values of v, the complete permeability dyadic mbð0; vÞ
of the array, which is independent of the propagation

vector b (that is, the nine elements of mbð0; vÞ do not

change with the direction of b in an (x, y, z) coordinate

system fixed in the array), can be expressed in terms of

the transverse propagation-direction dependent perme-

ability dyadic mttðb ! 0; vÞ in three orthogonal direc-

tions (for example, the three principal directions),

where mttðb ! 0; vÞ is determined by solving the mi-

croscopic equations for the macroscopic fields of the

fundamental Floquet-mode of the 3D array. If |k0d| is

sufficiently small (and b ! 0), the array behaves as a

continuum and the complete dyadic mbð0; vÞ is the

b = 0 continuum permeability dyadic which gives

the three-component continuum Hb field in terms of

the three components of the continuum Bb field by

means of the constitutive relationship in (45), provided

the inclusion material is not bianisotropic for small |k0d|

as b ! 0 [21]. Also, the permeability often varies by a

small amount with b for |bd| 	 1 and then the relation-

ships in (51) hold approximately over the bandwidths of

|bd| 	 1 and |k0d| 	 1.

For the permittivity dyadics, the equations analogous

to (51) can be used to determine ebð0; vÞ exactly for

all v, even for bianisotropic inclusions, from

ettðb ! 0; vÞ ¼ eettðb ! 0; vÞ (and approximately for

|bd| 	 1).

4. Reality and passivity conditions, reciprocity

and causality relations for the spatially

dispersive constitutive parameters

The definitions of the spatially dispersive macro-

scopic fields and constitutive parameters for the

fundamental Floquet modes are similar, though not

identical, to those in a spatially nondispersive continuum.

Consequently, we find in this section that the reality

conditions, reciprocity relations, passivity conditions,

and causality relations for the fundamental Floquet

modes also differ from their corresponding spatially

nondispersive continuum relationships. Nevertheless, as

the spatial and temporal frequencies, b and v, become

sufficiently small for the arrays to approximate continua,

then the reality conditions, reciprocity relations, and

passivity conditions become essentially the same as those

of a spatially nondispersive dipolar continuum.

4.1. Reality conditions

The reality conditions for the fundamental Floquet

modes of an array can be derived by returning to the

applied current density in (7). Although the space–time

fields and sources associated with (4)–(6) are real, we

have assumed a complex plane-wave source in (7).

Thus, an unstated assumption in (7) is that correspond-

ing to each plane wave there is another plane wave

Ja(� b, � v)e�i(b�r�vt) such that

Jaðb; vÞeið b�r�vtÞ þ Jað�b; �vÞe�ið b�r�vtÞ (52)

is a real valued current-density function of r and t. Since

this space–time vector is real valued, taking the com-

plex conjugate of (52) does not change its value. It

follows that

Jað�b; �vÞ ¼ J�aðb; vÞ (53)

and similarly for the other fundamental Floquet-mode

source and field vectors in (42) and (44). Also, it follows

from the constitutive relations in (39), (41), and (44a)

that

eeð�b; �vÞ ¼ e�eðb; vÞ (54a)
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eð�b; �vÞ ¼ e�ðb; vÞ (54b)

mttð�b; �vÞ ¼ m�ttðb; vÞ : (54c)

The anisotropic constitutive parameters satisfy the same

kind of reality relation as the fields.

4.2. Reciprocity relations

To derive general reciprocity relations for the

spatially dispersive constitutive parameters of the

fundamental Floquet modes, begin with the Maxwell

space–frequency domain equations in (4a) and (4b) for

an array of lossy or lossless polarizable inclusions with

applied electric current density given in (7) and the

same equations but with �b replacing b. Taking the dot

product of B�v ðrÞ=m0, E�v ðrÞ, BvðrÞ=m0, and EvðrÞ
with these equations, then integrating over a unit cell

and applying the divergence theorem gives [21]

0 ¼ Jaðb; vÞ � Eð�b; vÞ � Jað�b; vÞ � Eðb; vÞ½ �þ
1

d3

Z
Vc

J p
vðrÞ � E�v ðrÞ � J p�

v ðrÞ � EvðrÞ
� �	

(55)

þiv MvðrÞ � B�v ðrÞ � M�
v ðrÞ � BvðrÞ

� �

d3r

where the superscripts ‘‘�’’ denotes the �b fields.

The next step in determining the reciprocity

relations for the constitutive parameters is to prove

that the integral in (55) is zero for arrays with lossy or

lossless polarizable inclusions made of linear reci-

procal material. Assuming a general linear bianiso-

tropic relationship between [J p
vðrÞ; MvðrÞ] and

[EvðrÞ; BvðrÞ] for the inclusions of the array, one

can write

J p
vðrÞ ¼

Z
Vc

½se
vðr; r0Þ � Evðr0Þ þ sem

v ðr; r0Þ

� Bvðr0Þ�d3r0 (56a)

MvðrÞ ¼
Z

Vc

½sm
vðr; r0Þ � Bvðr0Þ þ sme

v ðr; r0Þ

� Evðr0Þ�d3r0 (56b)

and similarly for the �b fields where the spatially

dispersive microscopic ‘‘conductivity’’ dyadics,

se
vðr; r0Þ, sm

vðr; r0Þ, sem
v ðr; r0Þ, and sme

v ðr; r0Þ, are zero

for r or r0 outside the material of the inclusion. For

simply ‘‘conducting’’ inclusions, sv ¼ seI, sm
v ¼ smI,

and sem
v ¼ sme

v ¼ 0, where se and sm are scalar con-

stants.

Insertion of the fields from (56) and the similar fields

for �b into the integral of (55) yields

Jaðb; vÞ � Eð�b; vÞ � Jað�b; vÞ � Eðb; vÞ ¼ 0 (57)

after assuming that the inclusion material is reciprocal,

that is

svðr0; rÞ ¼ seT
v ðr0; rÞ (58a)

sm
vðr; r0Þ ¼ smT

v ðr0; rÞ (58b)

sem
v ðr; r0Þ ¼ smeT

v ðr0; rÞ : (58c)

Substitute Ja(b, v) and Ja(� b, v) from (42b) into (57),

and B(b, v) and B(� b, v) from (42a) to obtain

Eð�b; vÞ � eðb; vÞ þ b

v2
� m�1

tt ðb; vÞ � b

� ��
(59)

� eð�b; vÞ þ b

v2
� m�1

tt ð�b; vÞ � b

�T�
� Eðb; vÞ ¼ 0:

"

The antisymmetric dyadic b is used to replace b�; that

is, b � V ¼ �V � b ¼ b � V ¼ �V � b for any vector

V, and the superscript ‘‘T’’ denotes the transpose. The

bilinear form in (59) has to be zero for all values of E(b,

v) and E(� b, v). Thus, we find the following recipro-

city relation for the anisotropic constitutive dyadics of

3D arrays of linear, reciprocal bianisotropic lossy or

lossless polarizable inclusions at all real values of (b, v)

eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � b

� �

¼ eð�b; vÞ þ 1

v2
b � m�1

tt ð�b; vÞ � b

� �T

: (60)

If we had applied the Landau–Lifshitz single

polarization formulation [2,11,14] discussed in

Section 1 to the fundamental Floquet modes, ivD in

(24b) would include �ib � (Me + M) so that H = B/m0

and D ¼ eL � E, where

eLðb; vÞ ¼ eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � m�1
0 I

� �
� b:

(61)

Then we see that (60) expresses the single-polarization

reciprocity relation [2,11,14]

eLðb; vÞ ¼ eT
Lð�b; vÞ (62)

which, except for the �b, has the form of the conven-

tional permittivity reciprocity relation in spatially non-

dispersive continuous media [19, p. 403]. Note,
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however, that for the fundamental Floquet modal equa-

tions, the proof of the reciprocity relations in (60) and

(62) has required returning to the basic definition of

reciprocity in the microscopic Maxwellian equations

describing the material of the inclusions of the array.

Although the Landau–Lifshitz single constitutive dyad-

ic eLðb; vÞ for a continuum can be formally expressed

as in (61) in terms of effective multipole-moment

permittivity and permeability dyadics for the continuum

[35], the continuum formulation does not provide mi-

croscopic expressions as in (20) needed to determine

eðb; vÞ and mttðb; vÞ.
Letting b ! 0 in (60) reveals that

eð0; vÞ ¼ eTð0; vÞ (63a)

or more generally

eðb; vÞ 
 eTð�b; vÞ; jbdj 	 1 : (63b)

It does not necessarily follow from (60) that the per-

meability mttðb ! 0; vÞ satisfies the same reciprocity

relation as eð0; vÞ in (63). However, for both |bd| 	 1

and |k0d| 	 1, the permittivity and inverse permeability

dyadics are finite continuous functions of b and v for

nonbianisotropic inclusions, and the inverse permeabil-

ity varies as v/|b| for bianisotropic inclusions [21]. Thus

by varying the ratio of b/v in (59), the e and m�1
tt terms

have to obey (59) separately to give from the m�1
tt term

m�1
tt ðb; vÞ 
 m�1T

tt ð�b; vÞ; ðjbdj 	 1; jk0dj 	 1Þ
(64a)

or

mttðb; vÞ 
 mT
ttð�b; vÞ; ðjbdj 	 1; jk0dj 	 1Þ

(64b)

for reciprocal arrays and b/v 6¼ 0 in (64a) if the inclu-

sions are bianisotropic at the low spatial and temporal

frequencies. Unlike the complete dyadics, eð0; vÞ and

mbð0; vÞ, the elements of the transverse dyadic

mttðb ! 0; vÞ can depend on the direction of b as

b ! 0. The complete permeability dyadic mbð0; vÞ is

given in terms of the transverse dyadic mttðb ! 0; vÞ in

(51) except possibly for bianisotropic inclusions, which

yield a singular m�1
tt ðb; vÞ as b/v ! 0 [21]. Thus, as

explained in Section 1, a bianisotropic formulation

[16,18] of metamaterials comprised of bianisotropic

inclusions may be more suitable than an anisotropic

formulation especially for small values of b and v.

4.3. Passivity conditions

Passivity conditions obeyed by the permittivity and

permeability constitutive dyadics of the fundamental

Floquet modes of passive (no internal sources of power

within the material of the inclusions) arrays can be

found from the expression for the time-average power

supplied by the microscopic electric field EvðrÞ to the

applied electric current density of (7) in each unit cell.

This time-average power has to be equal to or less than

zero or else average power could be extracted from the

passive array; specifically
1

2
Re

Z
Vc

Jaðb; vÞ � E�vðrÞei b�rd3r  0 (65)

where, as usual, the superscript ‘‘*’’ denotes the complex

conjugate. The inequality in (65) holds for lossy inclusion

material, while the equality holds for lossless inclusion

material. Insertion of E�vðrÞ from (8) re-expresses (65) in

terms of the fundamental Floquet modal spectra as

Re Jaðb; vÞ � E�ðb; vÞ½ �  0 (66)

in which the superfluous factor d3/2 has been omitted.

(This equation shows that all the power supplied by the

applied electric current density can be expressed in terms

of the fundamental Floquet modal spectra Ja and E.

Higher order Floquet modal spectra are not required.)

With Ja substituted from (42b) into (66), then B
substituted from (42a), we find

vIm E� � e þ 1

v2
b � m�1

tt � b

� �
� E

� �
� 0: (67)

Since (67) has to hold for all values of E, the array is

passive and lossy, or passive and lossless, if and only if

its associated Hermitian ‘‘loss’’ matrix is positive defi-

nite (PD) or zero [36], respectively; that is

� iv

�
eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � b

 �

� eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � b

 ��T
� ¼ PD (68a)

for lossy material, and4

eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � b

� �
(68b)
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¼ eðb; vÞ þ 1

v2
b � m�1

tt ðb; vÞ � b

� ��T
; v 6¼ vuc

for lossless material. For scalar permittivity and perme-

ability transverse to b (that is, e ¼ eItt and mtt ¼ mItt),

(68) reduce to

vIm eðb; vÞ � jbj2

v2mðb; vÞ

" #
> 0 (69a)

Im eðb; vÞ � jbj2

v2mðb; vÞ

" #
¼ 0; v 6¼ vuc (69b)

in lossy and lossless inclusion material, respectively.

These conditions do not necessarily imply that the

imaginary parts of e and m are equal to or greater than

zero, or even that the imaginary parts of e and m are zero

in lossless arrays. In general, (69b) shows only that the

imaginary parts of e and m have opposite signs in

lossless arrays such that the total power dissipated by

the array is zero. From (61) it is seen that in terms of the

Landau–Lifshitz single polarization formulation

[2,11,14], the lossy and lossless conditions in (68)

reduce, respectively, to

�iv eLðb; vÞ � e�TL ðb; vÞ
� �

¼ PD ðlossyÞ (70a)

eLðb; vÞ ¼ e�TL ðb; vÞ; v 6¼ vuc ðlosslessÞ: (70b)

As with the reciprocity relations for the fundamental

Floquet modal equations, the proof of these lossy–

lossless conditions has required returning to the basic

definition of loss and losslessness in the microscopic

Maxwellian equations describing the material of the

inclusions of the array. Also, as mentioned in

Section 4.2, although the Landau–Lifshitz single con-

stitutive dyadic eLðb; vÞ for a continuum can be for-

mally expressed as in (61) in terms of effective

multipole-moment permittivity and permeability dya-

dics for the continuum [35], the continuum formulation

does not provide microscopic expressions as in (20)

needed to determine eðb; vÞ and mttðb; vÞ.
Letting b ! 0 in (68) reveals that

�iv eð0; vÞ � e�Tð0; vÞ
� �

¼ PD ðlossyÞ (71a)

eð0; vÞ ¼ e�Tð0; vÞ; v 6¼ vuc ðlosslessÞ (71b)

for lossy and lossless arrays, respectively. These equa-

tions imply

vIm½ejjð0; vÞ� > 0 ðlossyÞ (71c)

ejkð0; vÞ ¼ e�kjð0; vÞ; v 6¼ vuc ðlosslessÞ (71d)

for lossy and lossless arrays, respectively. The lossy–

lossless passivity conditions in (71) have the same form

as the lossy–lossless passivity conditions on permittivi-

ty in a spatially nondispersive dipolar continuum. They

also hold approximately for |bd| 	 1.

It does not necessarily follow from (68) that

mttðb ! 0; vÞ satisfies the same passivity conditions

as eð0; vÞ in (71). However, for both |bd| 	 1 and

|k0d| 	 1, the permittivity and inverse permeability

dyadics are finite continuous functions of b and v for

nonbianisotropic inclusions, and the inverse perme-

ability varies as b/v for bianisotropic inclusions [21].

Thus, by varying the ratio of b/v in (67), the e and m�1
tt

terms have to obey (67) independently to give for the

m�1
tt term

iv½E � b�� � ½m�1
tt � m�1�T

tt � � ½E � b� � 0 (72)

which implies

iv½m�1
tt � m�1�T

tt � ¼ PD; ðjbdj; jk0djÞ 	 1 ðlossyÞ
(73a)

mtt 
 m�Ttt ; ðjbdj; jk0djÞ 	 1 ðlosslessÞ (73b)

vIm½mttjj� > 0; ðjbdj; jk0djÞ 	 1 ðlossyÞ (73c)

mttjk ¼ m�ttkj; ðjbdj; jk0djÞ 	 1 ðlosslessÞ (73d)

for passive inclusions and b/v 6¼ 0 in (73a) if the

inclusions are bianisotropic at the low spatial and

temporal frequencies. Unlike eð0; vÞ, the permeability

dyadic mttðb ! 0; vÞ does not necessarily satisfy these

passivity conditions for lossy or lossless arrays if .

Also, unlike the complete dyadics, eð0; vÞ and

mbð0; vÞ, the elements of the transverse dyadic

mttðb ! 0; vÞ can depend on the direction of b as

b ! 0. The complete permeability dyadic mbð0; vÞ is

given in terms of the transverse dyadic mttðb ! 0; vÞ in

(51) except possibly for bianisotropic inclusions, which

yield a singular m�1
tt ðb; vÞ as b/v ! 0 [21]. Thus, as

explained in Section 1, a bianisotropic formulation

[16,18] of metamaterials comprised of bianisotropic

inclusions may be more suitable than an anisotropic

formulation especially for small values of b and v.

4.4. Causality relations

To discuss the causality of the macroscopic

permittivity and inverse-permeability dyadics, eðb; vÞ
and m�1

tt ðb; vÞ, begin by taking the four-fold (b, v)

Fourier transform of the fundamental Floquet-mode

constitutive relation in (39) and use the convolution
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theorem to obtain

D0ðr; tÞ ¼ 1

ð2pÞ4
Z Z Z Z þ1

�1
e0ðr0; t0Þ

�E0ðr � r0; t � t0Þd3r0dt0
(74)

in which the time-domain functions are the inverse

Fourier transforms of the corresponding frequency-do-

main functions; in particular

e0ðr; tÞ ¼
Z Z Z Z þ1

�1
eeðb; vÞeið b�r�vtÞd3bdv: (75)

The functions of (r, t) in (74)–(75) are real because of

the reality conditions satisfied by the spectra.

The function E0ðr; tÞ is the total time-domain

electric field of the fundamental Floquet mode, which

is excited by time-domain externally applied electric

current density J a0ðr; tÞ that we shall stipulate turns on

at t = 0. Assuming that the material of the inclusions is

causal or, more precisely, that the linear constitutive

parameters of the inclusion material are causal, the

induced fields in the inclusions cannot begin before the

applied current and thus the total electric field (induced

plus applied) begins at t = 0. Since the generalized time-

domain displacement vector D0ðr; tÞ is a linear

combination of the total electric field of the funda-

mental Floquet mode and the induced generalized

electric polarization as given in (23a), and this induced

polarization cannot begin before the applied electric

field begins at t = 0, it follows that D0ðr; tÞ must be zero

for t < 0. This implies from (74) that e0ðr; tÞ ¼ 0 for

t < 0, so that we have from (75)

e0ðr; tÞ ¼
Z Z Z Z þ1

�1
eeðb; vÞeið b�r�vtÞd3bdv ¼ 0;

t < 0: (76)

Taking the three b Fourier transforms of (76) yields

the following fundamental causality relation on

eeðb; vÞ for each real value of bZ þ1
�1

eeðb; vÞe�ivtdv ¼ 0; t < 0: (77a)

A similar argument beginning with (41) instead of

(39), and noting that B and El in (41) are primary fields

that can be chosen independently, yields the analogous

causality relation for the inverse permeabilityZ þ1
�1

m�1
tt ðb; vÞe�ivtdv ¼ 0; t < 0 (77b)

and the analogous causality relation for the magneto-

electric constitutive parameter ntlðb; vÞ in (41). Having

obtained the causality of ee and ntl, it follows from (43)

that eðb; vÞ is also a causal function satisfying

Z þ1
�1

eðb; vÞe�ivtdv ¼ 0; t < 0: (77c)

An especially attractive feature of the Floquet

modal representation developed here is that the

above argument for causality holds because none of

the integrally defined generalized electric and

magnetic polarization densities for the fundamental

Floquet mode are approximations. This stands in

contrast, for example, to conventional formulations

using electric and magnetic dipole approximations,

which have been shown to be inherently noncausal,

and thus do not satisfy either the basic causality

relations in (77) or the Kramers–Kronig relations in

(78); see [20].

Also, the causality relations for eðb; vÞ and

m�1
tt ðb; vÞ in (77) always hold as long as the integrals

in (77) exist (converge) since eðb; vÞ and m�1
tt ðb; vÞ are

well defined at each fixed b for all v; see Footnote (4).

(If eðb; vÞ and m�1
tt ðb; vÞ approach constants e1ðbÞ

and m�1
tt1ðbÞ as v! 1, then these constants can be

subtracted from eðb; vÞ and m�1
tt ðb; vÞ in (77c) and

(77b), respectively, as in (78), to ensure that the

causality integrals converge.)

This universal causality does not necessarily hold

for the constitutive parameters of the source-free (no

applied current density) fundamental eigenmodes of

arrays for which b is a function of v because, even for

a single eigenmode, b(v) may not be a single-valued

function of v for all v and there may be frequency

bands where the eigenmode ceases to exist. In

addition, b(v) for an eigenmode is not generally a

real function of v for all v even if the inclusions of the

array are lossless [23], and it becomes problematic to

define field and polarization integrals that produce

constitutive parameters consistent  with the complex

b(v). Also, for source-free eigenmodes, it often proves

advantageous to define anisotropic permittivity and

permeability in terms of their relationships to the

propagation constants and field impedances of each

eigenmode [5,23,37] rather than in terms of the field

and polarization integrals (weighted averages) as in

(13) and (20), and thus one array would have multiply

defined constitutive parameters, none of which would

necessarily be causal.

As a consequence of the causality relations in (77),

the permittivity and inverse permeability dyadics satisfy

the Kramers–Kronig causality equations for each fixed

b. The familiar Kramers–Kronig relations can be found
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by taking the real and imaginary parts of their compact

complex version given as [1, p. 98]

eðb; vÞ � e1ðbÞ ¼ i

p
B
þ1
�1

eðb; nÞ � e1ðbÞ
v � n

dn (78a)

m�1
tt ðb; vÞ � m�1

tt1ðbÞ ¼ i

p
B
þ1
�1

m�1
tt ðb; nÞ � m�1

tt1ðbÞ
v � n

dn

(78b)

where the lines through the integrals denote principal

value integrations. These Kramers–Kronig causality

relations assume that for a fixed value of b

lim
jvj ! 1

eðb; vÞ ¼ e1ðbÞ (79a)

lim
jvj ! 1

m�1
tt ðb; vÞ ¼ m�1

tt1ðbÞ (79b)

and that eðb; vÞ � e1ðbÞ and m�1
tt ðb; vÞ � m�1

tt1ðbÞ
approach zero fast enough as |v|! 1 for the integrals

in (78) to exist. A sufficient condition for the principal

value integrals to be well defined for all real v is that

eðb; vÞ � e1ðbÞ and m�1
tt ðb; vÞ � m�1

tt1ðbÞ be Hölder

continuous [38, ch. 1].

In Section 4.3 it was found that passivity of the

inclusion material did not necessarily imply that the

imaginary parts of the diagonal elements of the

macroscopic permittivity and permeability dyadics

are greater than zero at every (b, v). Moreover,

lossless inclusions do not necessarily imply that

the imaginary parts of the diagonal elements of the

macroscopic permittivity and permeability dyadics

are zero at every (b, v). However, it was proven, as

expressed in (71d), that as b ! 0 the imaginary parts

of the permittivity diagonal elements, Im[ejj(0, v)],

were equal to zero for lossless inclusions except at

the unit-cell resonant frequencies where insertion of

a small loss shows from (71c) that vIm[ejj(0, v)]

is greater than zero. Consequently, the Kramers–

Kronig relation in (78a) can be used to prove for

lossless arrays [2, sec. 84] and b ! 0 that except at

the unit-cell resonant frequencies, the diagonal

elements of the permittivity dyadic satisfy the

inequalities

@½vejjð0; vÞ�
@v

� ejj 1ð0Þ � v

2

@ejjð0; vÞ
@v

� 0; v 6¼ vuc:

(80)

These same inequalities for mttjj(b ! 0, v) do

not necessarily hold because, as explained in the

context of Eqs. (73), the vIm[uttjj(b ! 0, v)] may be

<0 for jk0dj |.

Lastly, we mention that the causality of an ejj(0,

v) � ejj 1(0) expressed in (78a), coupled with the

passivity condition in (71c), implies by means of the

theorem proven in the Appendix of [21] that

e�1
jj ð0; vÞ � e�1

jj 1ð0Þ is also a causal function. However,

the causality of a m�1
ttjj ðb ! 0; vÞ � m�1

ttjj1ðb ! 0Þ
expressed in (78b) does not imply, by means of the

theorem in this Appendix, the causality of mttjj(b ! 0,

v) � mttjj1(b ! 0) because m�1
ttjj ðb ! 0; vÞ does not

necessarily satisfy the passivity condition in (73c) (with

m�1
ttjj replacing mttjj and ‘‘>’’ replacing ‘‘<’’) for all k0d,

that is, for all v. In Section 5, we show a specific

numerical example of an array having m�1ð0; vÞ �
m�1
1 ð0Þ causal, whereas m(0, v) � m1(0) is not causal.

5. Numerical example

As a numerical example, we determine the macro-

scopic permittivity and permeability of a 2D metama-

terial array, consisting of uniformly spaced, infinitely

long dielectric circular cylinders, computed using a

finite-difference frequency-domain (FDFD) solution to

the rigorous equations derived in Sections 2–4. We limit

the computations to b ! 0 for the transverse solution

with b ¼ bẑ in a principal propagation direction z and

the applied transverse electric current density Jt ¼ Jtx̂

normal to the plane formed by the principal propagation

direction and the axial direction (ŷ) of the cylinders. We

choose a homogeneous, isotropic, causal, microscopic,

Drude-model [30, ch. V], relative complex dielectric

constant for each of the cylinders given by

eD ¼ 1 � ðk pdÞ2

k0dðk0d þ ikcdÞ (81)

where d is the separation distance between the center of

the circular cylinders located in free space on a square

lattice, k0 = v/c, kpd = 1.5, kc = .05kp, and the radius a

of each circular cylinder is chosen to be such that a/

d = 0.40. As |v|! 1, this relative complex dielectric

constant approaches 1, and as v ! 0, it approaches

1 þ ik2
p=ðk0kcÞ, the relative complex dielectric constant

of an electrical conductor.

Based on the numerical method reported in [39], we

numerically solve for the microscopic fields in ((4)) as

b ! 0, then integrate these microscopic fields over a

unit cell as shown in (13) and (20) to find D(0, k0d) and

H(0, k0d) from (23), and finally determine eð0; k0dÞ and

mttðb ! 0; k0dÞ from (39) and (41). For propagation in

the principal direction z of the array with the given

applied electric current density in the x̂ direction, the

vectors E(0, k0d) and D(0, k0d) are in the x̂ direction,
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and the vectors B(0, k0d) and H(0, k0d) are in the ŷ

direction (along the axis of the cylinders). Thus the

permittivity and permeability reduce to scalars, e(0, k0d)

and m(0, k0d), and the magnetoelectric dyadic ntl ¼ 0.

As b ! 0 the only required integrations in (20) for the

2D cylinders reduce to

Pe
rð0; vÞ ¼ � 1

d2

Z
Ac

r � PvðrÞrd2r

¼ 1

d2

Z
cylinder

PvðrÞd2r (82a)

for the electric polarization, and

Meðb ! 0; vÞ ¼ � iv

2d2
lim
b ! 0

Z
cylinder

r � PvðrÞe�ibzd2r

(82b)

for the magnetic polarization.

Fig. 1 shows the real and imaginary parts of the

computed fundamental Floquet-mode macroscopic

electric susceptibility xe(0, k0d) = [e(0, k0d)/e0 � 1]

versus the electrical separation distance k0d. An

enlargement of the second resonance region near

k0d = 6.35 is shown in Fig. 2. Each of the resonances

resembles a Lorentz resonance. As predicted in

Eq. (71c) the imaginary part of xe(0, k0d) is greater

than zero for v > 0 (that is, for k0d > 0). The imaginary

part remains quite small except near the resonances

where it increases in value dramatically.

The real part of the electric susceptibility con-

tinuously increases from a positive value of about 2.2 at

k0d = 0 until it reaches the first resonance where it

decreases rapidly to a negative value before increasing

toward a value of zero and higher near the second

resonance where the behavior is repeated. For k0d 	 1

the behavior of the real and imaginary parts of the

fundamental Floquet-mode macroscopic electric sus-

ceptibility shown in Fig. 1 for the 2D array of

conductive dielectric cylinders is similar to the

behavior of the Clausius–Mossotti electric suscept-

ibility shown in [5, fig. 8] for the 3D array of PEC

spheres.

As determined by (77c), the fundamental Floquet-

mode macroscopic permittivity and thus the macro-

scopic electric susceptibility of the 2D array of circular

cylinders is a causal function satisfying

X eðtÞ ¼ 2Re

Z þ1
0

xeð0; k0dÞe�ik0dtdðk0dÞ ¼ 0 (83)

for t = ct/d < 0. Fig. 3, which shows the plot of X eðtÞ
numerically computed from the integral in (83)

using the xe(0, k0d) data shown in Fig. 1, confirms

the causality of this numerically computed electric

susceptibility. (Using xe(0, k0d) data for a maximum

k0d lying about half way between two resonances

produces an effectively causal X eðtÞ.) Moreover, as

discussed at the end of Section 4.4, since the macro-

scopic permittivity e(0, k0d) approaches 1 as k0d! 1
and the imaginary part of e(0, k0d) is greater than zero

for k0d > 0, the theorem in the Appendix of [21]

predicts that the inverse electric susceptibility defined
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Fig. 1. Computed fundamental Floquet-mode macroscopic electric

susceptibility for 2D array of dielectric circular cylinders (a/d = 0.40).
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Fig. 2. Computed fundamental Floquet-mode macroscopic electric

susceptibility for 2D array of dielectric circular cylinders (a/d = 0.40):

enlargement of resonance near k0d = 6.35.
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Fig. 3. Causality of numerically computed time-domain fundamental

Floquet-mode electric susceptibility for 2D array of conductive

dielectric circular cylinders (a/d = 0.40).
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as xinv
e ð0; k0dÞ ¼ ½e0=eð0; k0dÞ � 1� is also a causal

function; specifically

X inv
e ðtÞ ¼ 2Re

Z þ1
0

xinv
e ð0; k0dÞe�ik0dtdðk0dÞ ¼ 0

(84)

for t = ct/d < 0. The causality of inverse electric sus-

ceptibility is confirmed numerically by computing the

integral in (84) and plotting the results in Fig. 4.

Next, we show in Fig. 5 the real and imaginary parts of

the computed fundamental Floquet-mode macroscopic

magnetic susceptibility xm(0, k0d) = [m(0, k0d)/m0 � 1]

versus the electrical separation distance k0d. This xm(0,

k0d) is computed from the magnetization in (82b) and the

average (macroscopic) magnetic field H in the unit cell.

As predicted by (73c), the imaginary part of the magnetic

susceptibility is greater than zero for k0d 	 1 and yet

becomes less than zero at larger values of k0d as a result of

the resonant response of the inclusions.

The real part of the fundamental Floquet-mode

macroscopic magnetic susceptibility is negative at the

lower frequencies because the conductivity of the

inclusion material produces a diamagnetic effect in this

frequency range. (For the loss constant kc = 0 in the

Drude-model relative dielectric constant (81), the

macroscopic magnetic susceptibility equals �0.0206

as k0d ! 0 and the macroscopic electric susceptibility

equals 2.1944 as k0d ! 0.) The diamagnetism increases

until the first resonance is reached where the real part

rapidly increases to a positive value and stays positive

until encountering the beginning of a second resonance

at which the real part of the magnetic susceptibility

becomes strongly diamagnetic again. The first reso-

nance in the magnetic susceptibility approximates the

negative of a Lorentz permittivity resonance. The

second resonance shows very unusual behavior in that it

somewhat imitates the negative of a Lorentz permittiv-

ity resonance but with the roles of the real and

imaginary parts of the susceptibility reversed. For

k0d 	 1 the negative real and positive imaginary parts

of the fundamental Floquet-mode macroscopic mag-

netic susceptibility shown in Fig. 5 for the 2D array of

conductive dielectric cylinders is consistent with the

negative real and positive imaginary parts of the

Clausius–Mossotti magnetic susceptibility shown in [5,

fig. 8] for the 3D array of PEC spheres. (Although not

obvious from Fig. 5, the imaginary part of the

susceptibility xm(0, k0d) ! 0 as k0d ! 0.)

The theory of causality in Section 4.4 predicts in

(77b) that the fundamental Floquet-mode macroscopic

inverse permeability and thus the macroscopic inverse

magnetic susceptibility defined as xinv
m ð0; k0dÞ ¼

½m0=mð0; k0dÞ � 1� for the 2D array of circular

cylinders is a causal function satisfying

X inv
m ðtÞ ¼ 2Re

Z þ1
0

xinv
m ð0; k0dÞe�ik0dtdðk0dÞ ¼ 0

(85)

for t = ct/d < 0. Fig. 6, which shows the plot of X inv
m ðtÞ

numerically computed from the integral in (85) using the

xm(0, k0d) data shown in Fig. 5, confirms the causality of

this numerically computed inverse magnetic susceptibil-

ity. (Using xm(0, k0d) data for a maximum k0d lying about

half way between two resonances produces an effectively

causal X inv
m ðtÞ.) However, as discussed at the end of

Section 4.4, since the imaginary part of m(0, k0d), and

thus 1/m(0, k0d), does not maintain the same sign for all

k0d > 0, the theorem in the Appendix cannot be used to

predict that the magnetic susceptibility xm(0, k0d) is a

causal function. Indeed, the computation of

XmðtÞ ¼ 2Re

Z þ1
0

xmð0; k0dÞe�ik0dtdðk0dÞ (86)

plotted in Fig. 7 using the xm(0, k0d) data shown in

Fig. 5 verifies that the fundamental Floquet-mode mac-

roscopic magnetic susceptibility is definitely not causal.
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6. Conclusion

At high enough frequencies v, every natural material

or artificial material (metamaterial) no longer behaves

as a continuum satisfying the traditional time-harmonic

dipolar macroscopic Maxwell equations with spatially

nondispersive constitutive parameters. Although this

departure from a continuum behavior at high frequen-

cies can often be ignored with impunity for the electric

and para/ferro(i)magnetic polarization of materials and

metamaterials, we show in Section 1 that it is

mathematically impossible to characterize a material

or metamaterial that is diamagnetic and lossless at low

frequencies v by a causal spatially nondispersive

permeability that satisfies continuum passivity condi-

tions and whose value approaches the permeability of

free space as the frequency v approaches infinity.

Moreover, this noncausality in the spatially nondisper-

sive dipolar continuum description of diamagnetism is

more fundamental than the noncausality, discussed in

[20], introduced by the point dipole approximation for

scattering from the inclusions (molecules) and is not

removed by including higher-order multipole moments

in the spatially nondispersive continuum formulation of

Maxwell’s equations.

In order to characterize metamaterials formed by

periodic arrays of polarizable inclusions (separated in

free space) in a way that includes diamagnetism and

reduces to a continuum description when the enforced

and free-space wavelengths in the arrays are large

compared to the distance separating the inclusions,

we formulate a rigorous spatially (b) and temporally

(v) dispersive anisotropic representation for these

periodic metamaterials. The spatially dispersive

anisotropic representation, like the single-polarization

description of materials introduced by Landau and

Lifshitz [2], is obtained by exciting the metamaterial

arrays with applied electric current densities having

ei(b�r�vt) plane-wave dependence. Beginning with the

microscopic Maxwell’s equations for the arrays, it is

shown that two constitutive parameters, a spatially

dispersive permittivity eðb; vÞ and a spatially dis-

persive inverse transverse permeability m�1
tt ðb; vÞ,

characterize the fundamental Floquet modes of the

arrays. These macroscopic permittivities and inverse

permeabilities are shown to be causal for each fixed

value of the plane-wave propagation vector b and to

reduce to continuum permittivities and permeabilities

at the low spatial and temporal frequencies (|bd| and

|k0d| sufficiently small). The general formulation for

spatially dispersive periodic arrays provides conve-

nient equations to express sufficient conditions for the

array to approximate a continuum, and to determine

boundary conditions for an electric quadrupolar

continuum.

The key to this rigorous spatially dispersive

anisotropic formulation is the vector decomposition

given in (17) for the microscopic equivalent electric

current density and the resulting generalized dipolar and

electric quadrupolar macroscopic polarization densities

in (20). For both |bd| and |k0d| sufficiently small, the

array behaves as an anisotropic dipolar continuum in

which the electric quadrupolar density, and all other

higher-order multipoles, are negligible compared with a

nonzero dipolar electric and/or magnetic polarization

density. This result for an anisotropic continuum is a

significant consequence of the rigorous anisotropic

representation for spatially dispersive media.

Detailed reality conditions, reciprocity relations,

passivity conditions, and causality relations are derived

for the macroscopic anisotropic permittivities and

permeabilities.  Some unusual results emerge from

these derivations. Except at the low spatial and

temporal frequencies where arrays generally behave

as dipolar continua, the reciprocity relations and
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passivity conditions satisfied by the permittivities and

permeabilities are coupled. In particular, the imaginary

parts of the diagonal elements of the macroscopic

permittivities and permeabilities need not be equal to or

greater than zero even though the power dissipated by

the passive inclusions is always equal to or greater than

zero. This curious result remains true for a diamagnetic

permeability even as the spatial propagation constant b
approaches zero. It is the main reason for the

nonexistence of a causal, spatially nondispersive,

inverse diamagnetic (at low frequencies) permeability

that satisfies the usual continuum passivity condition

(imaginary parts of the diagonal elements equal to or

less than zero), and approaches m�1
0 as |v|! 1.

We also find the rather unusual theoretical result that

the spatially dispersive permeability for the funda-

mental Floquet mode, unlike the inverse permeability

for the fundamental Floquet mode, need not satisfy

causality. This result stems from the necessity to use the

E and B vectors as the primary microscopic fields in the

formulation of Maxwell’s macroscopic equations for

electric charge-current definitions of electric and

magnetic polarization.

The anisotropic theory of spatially dispersive

periodic arrays is reinforced with a numerical

example. We solve the derived equations for a 2D

periodic array of circular cylinders with Drude-model

dielectric inclusions. For a fixed b ! 0, the computed

macroscopic permittivity and permeability confirms

the theoretical predictions that the imaginary part of

the fundamental Floquet-mode permittivity as b ! 0

satisfies the usual continuum passivity condition

of being equal to or greater than zero for all v,

whereas the imaginary part of the fundamental

Floquet-mode permeability as b ! 0 satisfies the

usual continuum passivity condition only at the lower

frequencies but becomes negative at the higher values

of v. Moreover, we confirm that the fundamental

Floquet-mode permittivity and fundamental Floquet-

mode inverse permittivity satisfy causality and the

Kramers–Kronig relations. In contrast, while the

fundamental Floquet-mode inverse permeability satis-

fies causality and the Kramers–Kronig relations, the

fundamental Floquet-mode permeability itself does

not satisfy causality—a result that further substanti-

ates the theory.
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