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Effective medium response of metallic nanowire arrays with a Kerr-type dielectric host
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We derive an effective medium model to characterize the macroscopic electromagnetic response of metallic
nanowire arrays embedded in a host dielectric with a Kerr-type nonlinear permittivity function. It is shown that the
macroscopic electromagnetic fields are coupled to the conduction current in the nanowires and to an additional
quasistatic potential through a system of nonlinear equations. We prove that a weak nonlinearity leads to an
electromagnetic response closer to that of an indefinite medium, and to isofrequency contours with increased
hyperbolicity. For high field intensities the negative refraction of electromagnetic waves at an air-nanowire
material interface is enhanced when the nanowires are embedded in a self-focusing Kerr medium.
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I. INTRODUCTION

Arrays of metallic nanowires stand as one of the most
important structures in the metamaterial realm due to their
applications in electromagnetic field manipulation and imag-
ing in the nanoscale domain,1–3 negative refraction in the
optical domain,4–7 in controlling the spontaneous emission
of light by quantum emitters,8–10 in enhancing the Cherenkov
radiation by moving charges with no velocity threshold,11,12 in
providing a giant radiative heat transfer,13 and even in quantum
electrodynamics in the framework of the Casimir effect, such
that the Casimir interaction in a nanowire background can lead
to ultralong range forces.14,15

Nanowire materials can also lead to interesting physics
in the context of nonlinear optics, and in particular it was
predicted in Ref. 16 that subwavelength solitons can be
formed in arrays of metallic nanowires embedded in a Kerr
medium, both in the case of self-focusing (staggered solitons)
and self-defocusing media (unstaggered solitons). Earlier, it
had been shown that analogous discrete solitons can be as
well formed in layered metal-dielectric structures,17 and in
general the formation of discrete solitons in arrays of coupled
waveguides has also been the topic of intense research.18,19

Several interesting features of discrete subwavelength lattice
solitons in metallic nanowire arrays (e.g., the possibility of
stable vortex and multipole solitons) have been investigated
in recent works.20–22 Such nonlinear modes can have an
important impact in nanophotonics and in the realization of
ultracompact devices. Thus, it would be highly interesting
to characterize them using an effective medium approach
since this can greatly simplify the numerical modeling and
highlight the relevant physics. As a step in this direction,
here, by extending the analytical model for the wire medium
developed in previous works,23–25 we derive an effective
medium theory that describes the dynamics of the macroscopic
electromagnetic fields in a nanowire array embedded in
a Kerr-type dielectric. Nonlinear effects in electromagnetic
metamaterials have been investigated in many previous works,
both the effective medium properties26–28 as well as the general
implications on the wave phenomena.29–31

It is well known that at optical frequencies arrays of metallic
nanowires behave as indefinite media, and that such property
may lead to the negative refraction of waves at an interface
with air.4–7 The negative refraction is a consequence of the

exotic hyperbolic-type dispersion of the photonic states in
the metamaterial.4,5 Here, we apply the proposed effective
medium model to characterize the impact of the nonlinear
effects on the negative refraction, showing that in the case of
a Kerr self-focusing medium the nonlinear response results in
an enhancement of the negative refraction.

This paper is organized as follows. In Sec. II we generalize
the theory of Ref. 25 to the case of a nonlinear host,
showing that the dynamics of the macroscopic fields can
be described with the help of two additional variables with
known physical meaning. In Sec. III, we obtain the formulas
for the (nonlinear) parameters of the effective medium model
in terms of the macroscopic fields. Then, in Sec. IV we apply
the developed theory to characterize the plane-wave natural
modes and investigate how the nonlinear response changes
the isofrequency contours. In Sec. V, we study the negative
refraction problem and compute the variation of the angle
of transmission with the intensity of the transmitted energy
density flux. Finally, in Sec. VI a conclusion is drawn.

II. GEOMETRY AND QUASISTATIC MODEL

We consider an array of metallic nanowires embedded in
a nonlinear host material with a Kerr-type nonlinearity such
that for a fixed frequency the dielectric function may be
modeled as

εh = ε0
h (1 + δε) , (1)

where δε is some nonlinear function of the complex electric
field e = e (ω,r). In this work, we focus our attention in the
case wherein the nonlinear response is the form δε = αe∗ ·
e, but the analysis can be readily extended to accommodate
other more general microscopic responses. The parameter α

may be estimated as α = 3χ (3)/ε0
h,r where ε0

h,r = ε0
h/ε0.32 The

nanowires are made of a metal with electrical permittivity εm,
have radius rw, and are arranged in a square lattice with lattice
constant a (Fig. 1). The nanowires are oriented along the z

direction, and the metal electrical response is assumed linear.
The “microscopic” Maxwell’s equations (i.e., before any

averaging on the scale of the structure period) are written in
the frequency domain in the usual manner:

∇ × e = +iωμ0h, (2a)

∇ × h = jext − iωεe. (2b)
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FIG. 1. (Color online) Geometry of the nanowire array. The
lattice constant is a and the radius of the metallic wires is rw . The
nanowires are embedded in a Kerr-type nonlinear host material with
εh = ε0

h(1 + δε), where δε is a function of the microscopic electric
field.

Our objective is to obtain an effective medium description of
the interaction of electromagnetic waves with the nanowires
and the host material. This problem has been addressed
previously in the literature for the case of linear materials.23–25

The ideas described below are a generalization of the results
of Ref. 25 to the case of a nonlinear host.

To begin with, we introduce an averaging operator 〈〉 so
that the macroscopic electric field is related to the microscopic
electric field by E = 〈e〉. Other macroscopic quantities are
defined similarly. Note that the microscopic fields (e, h, etc.)
are denoted with lower-case letters, whereas the macroscopic
fields (E, H, etc.) are denoted with upper-case letters. The
fluctuating part of the microscopic electric field is given by

e� = e − E. (3)

From this definition it follows that 〈e�〉 = 0, i.e., the result of
averaging the fluctuating part of the electric field yields the
null function.

It is supposed that 〈〉 represents a spatial convolution with
some suitable test function, so that the form of Maxwell’s
equations is preserved after spatial averaging.33,34 In particular,
the result of filtering a complex exponential of the form eik·r
is always an exponential of the same type: 〈eik·r〉 = F (k) eik·r
where F (k) is some characteristic function. In this work, 〈〉 is
taken as an ideal low-pass spatial filter, so that F (k) = 1 when
the wave vector k is within the first Brillouin zone of the meta-
material, and F (k) = 0 otherwise. Finally, it is supposed that
the external excitation, represented in (2) by the current density
jext, is inherently macroscopic. In other words, jext should stay
invariant after spatial averaging: jext = 〈jext〉. This restriction
implies that the external excitation cannot be more localized
in space than the characteristic period of the metamaterial.

Within these hypotheses, it is easily found from (2) that the
macroscopic fields satisfy

∇ × E = +iωμ0H, (4a)

∇ × H = jext − iω(Pc + PL,h + PNL,h), (4b)

where Pc + PL,h + PNL,h = 〈εe〉, where Pc = 〈(ε − εh)e〉 is
the contribution to the macroscopic polarization due to the con-
duction currents in the nanowires, and PL,h = 〈ε0

he〉 = ε0
hE and

PNL,h = 〈(εh − ε0
h)e〉 = ε0

h〈δεe〉 represent the contributions to
the macroscopic polarization from the linear and nonlinear
polarization currents in the host region, respectively. In the
previous formulas, it is implicit that ε − εh ≡ εm − ε0

h in the
metal region, and that δε is nonzero only in the dielectric
region. We assume that the radius of the wires is small
compared to the period, and in these conditions it is typically
possible to neglect the transverse part of the conduction
polarization current, so that Pc = Pc ẑ. The conduction density
of current in the metal may be written as I/Ac = −iωPc ,
where Ac = a2 is the area of the unit cell and I can be
identified with the microscopic current along the metallic wires
(interpolated in a such a manner that it is defined over all the
space).25 Therefore, Eq. (4b) may be rewritten as

∇ × H = jext − iωε0
hE + I

Ac

ẑ − iωPNL,h. (4b′)

Evidently, the conduction current satisfies a continuity
equation,

∂I

∂z
= iωσl, (5a)

where σl is the charge density per unit of length (p.u.l.) on a
nanowire.25 Similar to what was done in Ref. 25, in order to
describe the dynamics of I from a macroscopic point of view,
it is convenient to introduce a quasistatic potential ϕw. This
additional potential may be regarded as the average potential
drop from a given wire to the boundary of the respective unit
cell25 (see Appendix A), and is created by the electric charges
on the metallic nanowires. It was shown in Ref. 25 that for the
case of straight nanowires ϕw satisfies

∂ϕw

∂z
= − (Zw − iωL) I + Ez. (5b)

This result remains valid in the case of a nonlinear host. In the
above, L is a p.u.l. geometrical inductance given by

L = μ0

2π
log

[
a2

4rw (a − rw)

]
, (6)

and Zw = − 1
iωπr2

w(εm−ε0
h)

is the p.u.l. self-impedance of the

nanowires. In the usual case wherein the metal permittivity
follows a Drude dispersion model with plasma frequency ωm

and collision frequency �, to a good approximation we can

write εm − ε0
h ∼ ε0

−ω2
m

ω(ω+i�) , and hence Zw = Rkin − iωLkin

with Rkin = �
ε0ω2

m πr2
w

and Lkin = 1
ε0ω2

m πr2
w

. The parameter Lkin is
the so-called kinetic inductance of the electrons in the metal.
It is proven in Appendix A, that for the case of a (weakly)
nonlinear host the linear density of charge σl can be written in
terms of the additional potential ϕw as follows:

σl = C0ϕw + ε0
hAc

ϕw

〈δε e · e�〉 , (7)
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where C0 denotes the p.u.l. capacitance for straight nanowires
in the linear problem:25

C0 = ε0
h

{
1

2π
log

[
a2

4rw (a − rw)

]}−1

. (8)

The second term in Eq. (7) is evidently due to the nonlinear
effects, and depends on the fluctuating part of the electric field,
e� [see Eq. (3)].

Using Eq. (7), the system of Eqs. (5) can be rewritten as

∂I

∂z
= iωC0ϕw + iωε0

h

Ac

ϕw

〈δε e · e�〉, (9a)

∂ϕw

∂z
= iωL ζwI + Ez. (9b)

In the above, we defined the normalized impedance ζw =
1 + Zw

−iωL
. For lossless wires (Rkin = 0) we have ζw = 1 +

Lkin/L, and for perfectly conducting wires ζw = 1. Note that
the normalized impedance ζw depends exclusively on the
properties of the metal and on the geometry of the wire
medium.

The system formed by Eqs. (4a), (4b′) and (9a), (9b)
describes the effective response of the nanowire array in terms
of the macroscopic state variables, E, H, I , and ϕw. Evidently,
for a linear problem PNL,h = 0 and 〈δε e · e�〉 = 0, and in such
a case the system (4a), (4b′) and (9a), (9b) is equivalent to the
model of Ref. 25. Here, the main challenge is to write PNL,h

and 〈δε e · e�〉 in terms of the macroscopic state variables. This
will be done in the next section.

It is interesting to mention that in case of a linear host, one
can solve (9a), (9b) with respect to Pc = I/ (−iωAc) to find
that

Pc = −ε0
hβ

2
p

(
∂2

∂z2
+ k2

hζw

)−1

Ez. (10)

We defined k2
h = ω2μ0ε

0
h and β2

p = μ0/(LAc) = C0/(ε0
hAc)

so that

βp = 1

a

{
1

2π
log

[
a2

4rw (a − rw)

]}−1/2

. (11)

The parameter βp is the “geometrical component” of the
effective plasma-wave number of the metamaterial.23–25 Thus,
the polarization component (Pc ) associated with the drift of
electrons in the metal is related to the macroscopic electric
field through an integral equation. This is the reason for the
strongly spatially dispersive response35 of arrays of metallic
wires, which has been extensively discussed and highlighted
in the literature.23–25 Note that for plane-wave propagation,
one has the correspondence ∂

∂z
↔ ikz. As will be discussed

ahead, in the nonlinear problem it is not possible to eliminate
the additional variables I and ϕw, and thus the macroscopic
response of the system must be described by the eight-
component (E,H,I,ϕw) state vector, rather than by only (E,H)
as in conventional media.

III. EFFECTIVE MEDIUM MODEL

In order that Eqs. (4a), (4b′) and (9a), (9b) form a closed
effective medium model for the array of nanowires embedded
in a nonlinear host, it is necessary to express the terms PNL,h =

ε0
h〈δε e〉 and 〈δε e · e�〉 as a function of the state variables,

(E,ϕw). This is done in the following subsections.

A. The nonlinear component of the polarization
current in the host medium

To write PNL,h = ε0
h 〈δε e〉 in terms of the macroscopic

fields, first we note that in the dielectric region δεe = α |e|2 e
is proportional to α, and thus it is also proportional to the χ (3)

parameter. Let us suppose that somehow we are able to write
〈|e|2 e〉 as a function of the macroscopic fields for the case of a
linear problem (i.e., for α = 0). Then, for a weak nonlinearity
the following should be valid:

PNL,h ≈ ε0
hα〈|e|2e〉L, (12)

where the subscript L in 〈〉L indicates that the spatial averaging
of |e|2 e should be determined for the linear problem. Thus,
within this approximation, all that is required is to determine
〈|e|2 e〉L in terms of (E,ϕw) for a linear problem. It is implicit
in the previous formula and in other equations of this section
that the argument of the averaging operator (|e|2 e) should be
taken equal to zero in the metal region, because δεe = α |e|2 e
is nonzero only in the dielectric. In practice, it may not make
much difference to consider that δεe = α |e|2 e holds in the
entire unit cell, because for a good conductor the electric field
is very weak in the metal region.

To determine 〈|e|2 e〉L in terms of (E,ϕw), we use the
decomposition e = E + e� [Eq. (3)] to write

〈|e|2 e〉L = 〈|e|2〉LE + 〈|e|2 e�〉L. (13)

We used the fact that 〈f F〉 = 〈f 〉 F, which is valid for a
generic functions f and F when F is a “macroscopic” field
that varies slowly on the scale of the unit cell. It is proven in
Appendix B [Eqs. (B4) and (B10)] that

〈e · e∗〉L = E · E∗ + β2
p|ϕw|2, (14)

〈|e|2e�〉L = 1
2β2

pϕ2
wE∗

t + 1
2β2

p|ϕw|2Et , (15)

where Et = Ex x̂ + Ey ŷ is the transverse (to z) part of the
macroscopic electric field. Substituting these results into
Eq. (12), we obtain the desired formula for the nonlinear
component of the macroscopic polarization current:

PNL,h = ε0
hα

(
E · E∗ + β2

p|ϕw|2)E

+ ε0
h

α

2
β2

p

(
ϕ2

wE∗
t + |ϕw|2 Et

)
. (16)

B. The nonlinear component of the charge density

Next, we determine the nonlinear component of the charge
density in terms of the macroscopic fields [see Eq. (7)]. To
do this we note that δε e · e� = α |e|2 e · e� in the host region,
and hence using arguments analogous to those of Sec. III A it
is found that

〈δε e · e�〉 ≈ α〈|e|2 e · e�〉L. (17)

Using repeatedly e = E + e� and 〈f F〉 = 〈f 〉 F (see the
previous subsection), it is found that

1

α
〈δε e · e�〉
= 〈|e|2e�〉L · E + 〈e� · e�〉LE∗ · E + 〈|e�|2e� · e�〉L

+〈e� · e�e�〉L · E∗+〈e� · e�e∗
�〉L · E. (18)
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It is proven in Appendix B that 〈e� · e�e∗
�〉L ≈ 0 ≈

〈e� · e�e�〉L [Eq. (B9)] and that 〈e� · e�〉L = β2
pϕ2

w

[Eq. (B6)]. On the other hand, 〈|e�|2e� · e�〉 is given by
[Eq. (B12)]

〈|e�|2e� · e�〉L = B̃ β4
pϕ∗

wϕ3
w, (19)

where B̃ is a dimensionless parameter that only depends on
rw/a, and is given by Eq. (B14). Thus, substituting these results
and Eq. (15) into Eq. (18), we obtain the desired formula:

1

α
〈δε e · e�〉 = 1

2
β2

p

(
ϕ2

wE∗
t + |ϕw|2 Et

) · Et

+β2
pϕ2

wE∗ · E + B̃ β4
pϕ∗

wϕ3
w. (20)

C. Summary

Substituting Eqs. (16) and (20) into Eqs. (4a), (4b′) and (9a),
(9b), and using β2

p = C0/(ε0
hAc), it is found that the macro-

scopic electromagnetic fields in the nanowire metamaterial
satisfy the following nonlinear partial differential system:

∇ × E = +iωμ0H, (21a)

∇ × H = jext − iωεef,hE + I

Ac

ẑ + 1

Ac

Yϕw, (21b)

∂I

∂z
= iωCϕw − Y · Et , (21c)

∂ϕw

∂z
= iωL ζwI + Ez, (21d)

where ζw = 1 + Zw

−iωL
, and the parameters εef,h, C, and Y

are nonlinear functions of the macroscopic state variables
given by

εef,h = ε0
h

[
1 + α

(
E · E∗ + β2

pϕwϕ∗
w

)]
, (22a)

C = C0 [
1 + α

(
E∗ · E + B̃ β2

pϕwϕ∗
w

)]
, (22b)

Y = −iωC0 α

2
(ϕwE∗

t + ϕ∗
wEt ). (22c)

The parameter εef,h may be regarded as the effective nonlinear
permittivity of the host medium, C as the effective nonlinear
p.u.l. wire capacitance, and Y is a parameter with unities of
[�−1] that determines the contribution of the macroscopic field
to the induced charge density in the metal. The differential
system (21) provides a full description of the dynamics of
the macroscopic state variables (E,H,I,ϕw). It is interesting
to point out that with the exception of the parameter B̃

[Eq. (B14)], all the remaining parameters of the model are
the ones introduced in Ref. 25 for the linear case.

IV. PLANE-WAVE MODES

As a first application of the developed effective medium
model, next we study the impact of the nonlinear effects on
the isofrequency contours of the natural modes of the nanowire
material. In Sec. IV A, we determine the effective dielectric
function of the nonlinear structured material, and discuss in a
qualitative way how the nonlinear response tailors the shape of
the isofrequency contours. In Sec. IV B, we obtain a formula
for the Poynting vector in the nanowire material.

A. Nonlocal dielectric function

It is possible to partially eliminate the variables I and ϕw

and obtain in this manner the nonlocal dielectric function of the
nanowire material. To this end, we solve (21d) for the current
I to obtain I = ( ∂ϕw

∂z
− Ez)/(iωL ζw). Substituting this result

into (21b) it follows that

∇ × H = jext − iωεef,hE + 1

Ac

1

iωL ζw

(
∂ϕw

∂z
− Ez

)
ẑ

+ 1

Ac

Yϕw. (23)

Differentiating Eq. (21d) with respect to z and using Eq. (21c),
it is found that ϕw satisfies the second-order (nonlinear)
differential equation:

∂2ϕw

∂z2
+ ω2LCζwϕw = −iωL ζwY · Et + ∂Ez

∂z
. (24)

We define n2
w as

n2
w = C

C0
ζw = ζw

[
1 + α

(
E∗ · E + B̃ β2

pϕwϕ∗
w

)]
. (25)

Since LC0 = ε0
hμ0 it follows that putting ikz ↔ d/dz and

k2
h = ω2ε0

hμ0,

ϕw = (
k2
hn

2
w − k2

z

)−1
(−iωL ζwY · Et + ikzEz) . (26)

It is important to mention that the right-hand side depends on
ϕw, because n2

w and Y also do. Substituting the previous result
into Eq. (23), it is seen that the equation can be rewritten as
∇ × H = jext − iωε (ω,kz) · E where the nonlocal dielectric
function ε (ω,kz) is defined by

ε (ω,kz) = εef,hI − 1

ζw

ε0
hβ

2
p(

k2
h − k2

z

/
n2

w

) ẑẑ

+ kz

ω

1(
k2
hn

2
w − k2

z

) 1

Ac

(ẑY − Yẑ)

+ Lζw

Ac

1(
k2
hn

2
w − k2

z

)YY. (27)

To obtain the above formula the identity β2
p = μ0/ (LAc)

was used. The terms ẑẑ,ẑY,Yẑ,YY should be understood as
tensor products of two vectors. The derived expression for the
nonlocal dielectric function only applies to stationary solutions
of Eqs. (21) such that the dependence on z of the fields is of
the form eikzz. In the case of a linear host, the last two terms of
the dielectric function vanish and n2

w = ζw, so that the above
result reduces to the formulas of Refs. 23–25. It is interesting
to note that despite the fact the host may be nonlinear, the
nonlocal dielectric function satisfies ε (ω,kz) = ε (ω, − kz)T ,
consistent with the usual properties of the nonlocal dielectric
function in reciprocal media.35 The superscript “T ” refers to
the transpose dyadic.

Despite its elegance the formula (27) for the nonlocal
dielectric function is of limited applicability, because due to
the nonlinear effects the parameters εef,h, n2

w, and Y are all
functions of ϕw and E. In particular, one sees that it is not
possible to eliminate ϕw, so that ε (ω,kz) depends exclusively
on E.
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However, it is possible to considerably simplify Eq. (27) if
one is only interested in electromagnetic field distributions
such that ϕw is ±90◦ out of phase with respect to Et .
This situation is of particular relevance because in the linear
problem, all the plane-wave natural modes associated with a
real valued wave vector k have the enunciated property in
case of negligible absorption loss. Indeed, one can see from
Eq. (21c) that in the linear case and for a spatial variation of the
form eik·r, the current and the additional potential are in phase.
Thus, from Eq. (21d) it is evident that ϕw and Ez are 90◦ out of
phase in a lossless medium (ζw real valued). It is known that
for propagating plane waves in the nanowire material all the
components of the electric field are in phase,23–25 and hence
the enunciated result follows. We will show ahead that in the
nonlinear case, the medium also supports plane-wave solutions
such that ϕw and Et are 90◦ out of phase. For field distributions
with this property it turns out that the admittance Y vanishes,
and hence Eq. (27) reduces to the simple expression

1

ε0
h

ε (ω,kz) = n2
ef,hI − 1

ζw

β2
p(

k2
h − k2

z

/
n2

w

) ẑẑ. (28)

We defined n2
ef,h = εef,h/ε

0
h given by

n2
ef,h = 1 + α

(
E · E∗ + β2

pϕwϕ∗
w

)
. (29)

It is underlined that both n2
ef,h and n2

w are nonlinear functions
of the macroscopic fields. One can qualitatively understand
from Eq. (28) how the nonlinear response affects the wave
propagation. Indeed, for the case of a self-focusing host
(α > 0) the nonlinear effects necessarily result in an increase
of n2

w. This parameter can be identified with the slow wave
factor of Ref. 25. It was shown in that work that an increase
of n2

w reduces the effects of spatial dispersion. In short, the
reason is that the dependence on kz of the second term in the
right-hand side of Eq. (28) is of the form k2

z /n2
w and thus it

is less significant for larger values of the slow wave factor.
Based on this discussion, one can expect that if the host of the
nanowires is a self-focusing Kerr medium the effects of spatial
dispersion may be slightly tamed for high field intensities,
and the metamaterial may behave closer to a local hyperbolic
(indefinite) medium.

To illustrate this, next we study the isofrequency contours
for the plane-wave modes with transverse magnetic (TM)
polarization (extraordinary wave in the uniaxial medium).
The isofrequency contours are the solutions of the charac-
teristic equation k2

t
1

εzz
+ k2

z
1
εt

= (ω
c

)2 with εt ≡ εxx = εyy and

k2
t = k2

x + k2
y . From Eq. (28), after some simplifications, the

characteristic equation can be written as

k2
t + k2

z − n2
ef,hk

2
h + β2

p

ζw

k2
h − k2

z /n2
ef,h

k2
h − k2

z /n2
w

= 0. (30)

As discussed previously, n2
ef,h and n2

w depend on the macro-
scopic fields, but in the following discussion they will
be treated as constant parameters. The characteristic equa-
tion can be reduced to a polynomial equation quadratic
in k2

z , and hence there are two relevant electromagnetic
modes, usually designated by quasitransverse electromagnetic
(q-TEM) and TM modes.24,25 Here, we are only interested in
the isofrequency contours of the q-TEM mode, which has no

lower frequency cutoff and is the only propagating mode for
frequencies f < fp,ef , where fp,ef is the effective plasma
frequency defined so that εzz(2πfp,ef ,0) = 0 in the linear

case. It satisfies 2πfp,ef

√
μ0ε

0
h = βp/

√
ζw. Figure 2 shows

the computed isofrequency contours for different nanowire
arrays considering both the linear case (solid lines, obtained
with n2

ef,h = 1.0 and n2
w = ζw) and the nonlinear case (dashed

lines) for a self-focusing host medium. The nonlinear case
is modeled by assuming n2

ef,h = 1.01 and n2
w = ζw (1 + 0.2).

We take n2
w/ζw > n2

ef,h [see Eqs. (25) and (29)] because the
parameter B̃ is typically significantly larger than unity (e.g., for
rw/a = 0.05 we have B̃ = 7.7). The value n2

w/ζw considered
here is probably too high to be achieved in practice, but here
we just want to discuss qualitatively the effect of the Kerr-type
nonlinearity, and the difference between the linear and the
nonlinear cases is clearer with a larger value of n2

w/ζw. It
is assumed that the nanowires are made of silver, which is
modeled by ωm/2π = 2175 THz.36 For simplicity, we neglect
the effect of metal loss, which is typically negligible provided
the radius of the nanowires is much larger than the metal skin
depth (δm). This condition is met to a reasonable approximation
in common designs in the terahertz regime and at lower
frequencies.

The results of Fig. 2 demonstrate that in all the examples
the nonlinear effects enhance the hyperbolic shape of the
isofrequency contours. This is especially evident for frequen-
cies comparable with fp,ef (black lines), and for the case of
thin wires and dense arrays [example (d)]. Notice that the
isofrequency contours become nearly flat when the radius of
the wires is much larger than the skin depth of the metal
[example (a)], or equivalently if Lkin � L. In such a case, the
effective medium is characterized by a very strong anisotropy
and the negative refraction effect is quite weak. When the
nanowire radius becomes comparable or smaller than δm a
strong indefinite response is obtained. This property has been
discussed in previous works.37,38

B. The Poynting vector

In Ref. 39 it was shown that the Poynting vector in a
nanowire material with a linear dielectric host can be expressed
in terms of the macroscopic variables as follows (the result
below assumes a time harmonic excitation):

S = 1

2
Re

{
E × H∗ + 1

Ac

ϕwI ∗ẑ
}

. (31)

In this subsection, we argue that this formula for the time-
averaged Poynting vector also holds in the nonlinear case. For
simplicity in what follows the nanowire material is assumed
lossless. This implies that εef,h, C, and ζw are real valued.
Straightforward calculations based on Eqs. (21) show that

∇ · S = 1

2
Re

{
−E∗ · jext − 1

Ac

E∗ · Yϕw − 1

Ac

Y · Etϕ
∗
w

}
.

(32)

From Eq. (22c) it should be clear that for a lossless sys-
tem Y is imaginary pure. Hence, E∗ · Yϕw + Y · Etϕ

∗
w =

−(Y · Et )∗ϕw + Y · Etϕ
∗
w = 2iIm{Y · Etϕ

∗
w}. Thus, it follows
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FIG. 2. (Color online) Isofrequency contours for the extraordinary (q-TEM) wave in a nanowire material formed by silver wires in
a dielectric background with ε0

h = 1.0ε0. (a) rw = 200 nm, rw/a = 0.05; (b) rw = 20 nm, rw/a = 0.05; (c) rw = 20 nm, rw/a = 0.1; (d)
rw = 10 nm, rw/a = 0.1. The insets in the plots indicate the value of the frequency of operation. The effective plasma frequency (fp,ef ) is
equal to 23, 148, 323, and 367 THz for the plots (a)–(d), respectively. The solid lines are computed for n2

ef,h = 1.0 and n2
w = ζw and the dashed

lines for n2
ef,h = 1.01 and n2

w = ζw(1 + 0.2).

that

∇ · S = 1
2 Re{−E∗ · jext}. (33)

The right-hand side of the above equation corresponds to the
average power density extracted from the external sources,
and hence S defined by Eq. (31) is indeed consistent with the
formula for the macroscopic Poynting vector in the steady-
state regime. Obviously, in case of a lossy system the right-
hand side of Eq. (33) must be modified to include the terms
related to the absorption loss in the materials.

The Poynting vector can be written in terms of (E,ϕw). To
this end, we use (21a) and (21d) to eliminate (H,I ) and obtain

S = 1

2ωμ0
Re

{
E ×

(
1

i
∇ × E

)∗
+ β2

p

ζw

ϕw

(
1

i

∂ϕw

∂z

)∗
ẑ

− β2
p

ζw

iϕwE∗
z ẑ

}
. (34)

In case the electromagnetic fields have a spatial dependence
of the form eik·r the Poynting vector becomes

S = 1

2k0η0
Re

{
E × (k × E)∗ + β2

p

ζw

k∗
z |ϕw|2 ẑ − β2

p

ζw

iϕwE∗
z ẑ

}
,

(35)

where k0 = ω/c = ω
√

μ0ε0 is the free-space wave number
and η0 = √

μ0/ε0 is the intrinsic impedance of vacuum.

V. REFRACTION BY THE NANOWIRE MATERIAL

Next, we study the refraction of an incoming plane wave
propagating in free space by a semi-infinite nanowire array
embedded in a nonlinear Kerr-type medium (Fig. 3). The
objective is to characterize the angle of transmission θt at
an air-nanowire array interface as a function of the intensity
of the transmitted Poynting vector. It is assumed that the plane
of incidence is the yoz plane and that the incoming electric
field has TM polarization (the only nonzero components of
the electric field are Ey and Ez, and the fields are independent

165127-6



EFFECTIVE MEDIUM RESPONSE OF METALLIC . . . PHYSICAL REVIEW B 87, 165127 (2013)

FIG. 3. (Color online) Refraction of a TM-polarized plane wave
propagating in free space by a semi-infinite nanowire material with a
Kerr-type (self-focusing) nonlinear host. The nanowires are oriented
along the z direction. Sufficiently deep inside the nanowire material
and in the case of negligible absorption loss, the transmitted wave
is expected to be a propagating plane wave characterized by the
Poynting vector Stx . As illustrated in the figure, due to the hyperbolic
nature of the isofrequency contours, the incoming wave is negatively
refracted at the interface.

of the x coordinate so that ∂x = 0). The incident wave varies
with y (direction parallel to the interface) as eikyy , where
ky = (ω/c) sin θi is determined by the angle of incidence θi .
Thus, it should be clear that within the continuous medium
approximation [Eqs. (21)], the state variables (E,H,ϕw,I ) also
depend on y as eikyy in all space.

The exact solution of Eqs. (21) in the described scenario
of refraction can only be obtained by a numerical approach,
because in principle, due to the nonlinear effects, εef,h,
n2

w, and Y can be complicated (continuous) functions of z

near the interface. However, sufficiently far away from the
interface it seems reasonable to suppose that if the loss in
the material is negligible, the transmitted field may reduce
to a propagating plane-wave mode with constant amplitude.
In particular, sufficiently deep inside the nanowire material
(after some transition layer) the parameters εef,h, n2

w, and Y
are expected to become constants, whose values depend on the
amplitude of the incident field. The analysis of this section is
based on this hypothesis. In the following we determine the
angle of transmission θt (Fig. 3; the angle is calculated after the
mentioned transition layer) as a function of the energy density
flux in the nanowire material. The angle θt is determined by the
direction of the Poynting vector S in the nanowire array, and
the energy density flux is |S|. Notice that the actual value of S
depends on the Poynting vector Sinc of the incoming wave. The
exact relation between the amplitude of the Poynting vector
of the transmitted wave (Stx) and that of the incident wave
(Sinc), determined by a reflectivity R, is out of the scope of
the present work. To a first approximation R can be computed
assuming a linear response, but this will not be discussed here.

A. Formulation

Next, we explain how the relation θt vs Stx can be found. To
begin with, the first-order differential system (21) is reduced
to a second-order nonlinear differential system in (E,ϕw). To
do this we use Eqs. (21a), (23), and (24) and β2

p = μ0/(LAc)

to obtain

∇ × ∇ × E − k2
hn

2
ef,hE = iωμ0jext + β2

p

ζw

(
∂ϕw

∂z
− Ez

)
ẑ

+β2
pk2

hỸϕw, (36a)

∂2ϕw

∂z2
+ k2

hn
2
wϕw = −ζwk2

hỸ · Et + ∂Ez

∂z
. (36b)

We defined k2
hỸ = iωLY so that, taking into account that

LC0 = ε0
hμ0, we have Ỹ = α

2 (ϕwE∗
t + ϕ∗

wEt ). In the same
manner as in Sec. IV A, we look for natural modes (jext = 0)
such that ϕw is ±90◦ out of phase with respect to Et

so that Ỹ = 0. Moreover, based on the geometry of the
scattering problem (Fig. 3), we suppose that E = (0,Ey,Ez)
and ∇ = ik = i(0,ky,kz). In these conditions, straightforward
simplifications show that Eqs. (36) can be rewritten in a matrix
form:⎡

⎢⎢⎣
k2
z − k2

hn
2
ef,h −kykz 0

−kzky k2
y − k2

hn
2
ef,h + β2

p

ζw
− β2

p

ζw
kza

0 −kz

(
k2
z − k2

hn
2
w

)
a

⎤
⎥⎥⎦

×
⎛
⎝ Ey

Ez

iϕw/a

⎞
⎠ = 0. (37)

Evidently, the above system is still nonlinear because n2
w and

n2
ef,h are functions of (E,ϕw). Since by hypothesis ϕw is ±90◦

out of phase with respect to Et , the vector (EyEziϕw/a)T can
always be assumed real valued. Thus, for convenience we write⎛

⎜⎝
Ey

Ez

iϕw/a

⎞
⎟⎠ = A

⎛
⎜⎝

cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞
⎟⎠ , (38)

where A, θ , and ϕ are unknown and real valued. The
parameters n2

w and n2
ef,h [see Eqs. (25) and (29)] can be written

in terms of θ and α̃ = αA2 as follows:

n2
ef,h = 1 + α̃

(
sin2 θ + β2

pa2 cos2 θ
)
, (39a)

n2
w = ζw

[
1 + α̃

(
sin2 θ + B̃β2

pa2 cos2 θ
)]

. (39b)

Substituting Eqs. (38), (39) into the system (37), we obtain a
nonlinear system of three equations of the form F(θ,ϕ,kz,α̃) =
0. The parameters a,βp,ζw,B̃ only depend on the geometry of
the nanowire array and can be regarded as constants. On the
other hand, kh is determined by the frequency of operation and
ky = (ω/c) sin θi by the angle of incidence.

To determine the relation θt vs Stx we do the following. We
arbitrarily fix the value of the small parameter α̃ = αA2 (which
determines the strength of the weak nonlinear effects), and
solve the nonlinear system of three equations F(θ,ϕ,kz,α̃) = 0
with respect to (θ,ϕ,kz). After (θ,ϕ,kz) is known, we use
Eqs. (35) and (38) to calculate the Poynting vector Stx .
Finally, we compute Stx = |Stx | and θt = arctan−1(Stx

y /Stx
z ).

Repeating this procedure for a large number of values of α̃ one
obtains a table with the values of (θt ,S

tx), which can be used
to make the plots reported in the next subsection.

It should be noted that because F(θ,ϕ,kz,α̃) = 0 is a
nonlinear system, in principle multiple solutions may exist
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for a fixed α̃. For simplicity, in this work we only consider
the solution which is obtained from the perturbation of the
linear case (α̃ = 0). Thus, in practice we start by solving
F(θ,ϕ,kz,α̃) = 0 for the case α̃ = 0. For α̃ = 0 the problem
can be reduced to a standard eigensystem. We use this solution
(obtained for α̃ = 0) as the initial guess in the root search of
the nonlinear case.

B. Impact of the nonlinear response on the negative refraction

Using the algorithm delineated in the previous subsection,
we have determined the characteristic θt vs Stx for different
representative nanowire materials (Fig. 4). It is simple to check
that θt only depends on the value of αStx , where α is the
parameter that determines χ (3). Hence, the horizontal axis
of all the plots in Fig. 4 is taken equal to 2η0αStx so that
the Poynting vector is normalized to α. Note that 2η0αStx is
roughly proportional to α|Etx |2 ∼ 〈δε〉, i.e., it is of the order of
the relative (spatially averaged) variation of the permittivity of
the Kerr host dielectric. In the numerical calculations, similar

to Sec. IV, it was assumed that the metallic wires are made
of silver. The nanowires are embedded in a Kerr medium with
ε0
h = ε0 (a larger, and thus more realistic, value of ε0

h does
not change appreciably the numerical results). The effects of
absorption loss are not considered in our calculations. The
typical values for the χ (3) parameter of different crystals,
glasses, polymers, and liquids can be found in Ref. 32, p. 212.
For example, for Si χ (3) = 2.8 × 10−18 m2/V2 and ε0

h,r = 3.42

so that α = 3χ (3)/ε0
h,r = 7.2 × 10−19 m2/V2.32,40 Hence to

have 2η0αStx ∼ 0.05 one may estimate that the corresponding
electric field amplitude is of the order of 2.6 × 108 V/m which
is achievable with a high-intensity laser.

The plots of Fig. 4 predict an enhancement of the strength
of negative refraction for high field intensities, particular for
larger values of the incident angle θi (blue dot-dashed lines for
θi = 40◦). This is consistent with the results of Fig. 2, because
the nonlinear effects lead to a reduction of spatial dispersion
and to isofrequency contours with greater hyperbolicity. The
sensitivity to the nonlinearities is particularly strong for a
frequency of operation closer to the effective plasma frequency
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FIG. 4. (Color online) Transmission angle θt as a function of the normalized transmitted Poynting vector intensity (Stx) in a nanowire
material formed by silver wires embedded in a Kerr-type dielectric host with ε0

h = 1.0ε0. (a) rw = 20 nm, rw/a = 0.05; (b) rw = 20 nm,
rw/a = 0.1; (c) rw = 10 nm, rw/a = 0.1. The cases (i)–(iii) are associated with the frequencies of operation 0.3fp,ef , 0.6fp,ef , and 0.9fp,ef ,
where the effective plasma frequency is equal to 148, 323, and 367 THz for the plots (a)–(c), respectively. Solid black lines: θi = 5◦; green
dashed lines: θi = 15◦; blue dot-dashed lines: θi = 40◦.
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[panels (aiii)–(ciii) for f = 0.9fp,ef ] and for the thinnest and
denser nanowire arrays [panels (ci)–(ciii)].

VI. CONCLUSION

We extended the effective medium model of a nanowire
array developed in previous works23–25 to the case wherein the
host dielectric has a nonlinear Kerr-type response. The main
result of this work is summarized by Eqs. (21) and (22). The
macroscopic response of the structured material is described
by the macroscopic state variables (E,H,I,ϕw) that are coupled
through a nonlinear differential system [Eqs. (21)]. With the
exception of the parameter B̃, all the parameters of the model
were already known in the framework of the model developed
in Ref. 25. The proposed effective medium model applies in the
case of a weak nonlinear response [Eq. (12)], and is expected
to be useful in the study of the modulation of the linear
properties of the main harmonic due to nonlinear perturbations.
Nonlinear processes involving very strong fields or two or more
harmonics cannot be studied with the present theory. It should
be emphasized that our derivations are based on the assumption
of relatively thin wires, and that the electric field is typically
stronger around the wire surface comparatively with the rest
of the unit cell. Thus, the nonlinear response should be weak
enough so that the nonlinear perturbations of the fields around
the wire surface are tiny.

To illustrate the application of the theory, we characterized
the low-frequency natural plane modes in the nanowire array,
showing that the nonlinear effects lead to a reduction of spatial
dispersion effects, and hyperboliclike isofrequency contours.
Our theory predicts an enhancement of the negative refraction
at an air-nanowire array interface, when the nanowires are
embedded in a self-focusing Kerr-type medium. The developed
effective medium theory can be instrumental in the character-
ization of spatial solitons and other nonlinear effects.
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APPENDIX A: THE FLUCTUATING PART OF THE
ELECTRIC FIELD AND THE ADDITIONAL POTENTIAL

In this Appendix, we obtain explicit formulas for the
fluctuating part of the microscopic electric field (e�), for the
additional potential (ϕw), and derive the relation between σl

and ϕw [Eq. (7)] in the case of a nonlinear host.

1. The fluctuating part of the microscopic electric field

We assume that the microscopic electric field is a quasistatic
field, and hence to a first approximation it can written in terms
of a scalar potential φ = φ(x,y,z):

e = −∇φ. (A1)

Evidently, the potential φ satisfies the equation ∇ · (ε∇φ) =
−ρext, which can be written as

∇2φ = −ρext

ε0
h

− ρNL,h

ε0
h

− ρc

ε0
h

, (A2)

where ρext is an external density of charge (due to an external
macroscopic source, which can be trivial), ρNL,h = ε0

h∇ ·
(δε∇φ) is the additional density of charge in the dielectric
due to the nonlinear effects, and ρc = ∇ · [(εm − ε0

h)∇φ] is the
density of charge in the metal (relative to the dielectric host). It
is evident that the electrical potential has the following integral
representation:

φ(r) = 1

4πε0
h

∫
[ρext(r′) + ρNL,h(r′) + ρc(r′)]

1

|r − r′|d
3r′,

(A3)

where the integration is over all space.
Let us consider first that the field distribution corresponds to

a Bloch wave associated with the wave vector k = (kx,ky,kz).
Note that the field is not necessarily a natural mode, because in
general ρext �= 0. In such a case, using the Bloch wave property,
it is possible to reduce the region of integration to the unit cell
(�) of the periodic structure. Indeed, we have

φ(r) = 1

ε0
h

∫
�

[ρext(r′) + ρNL,h(r′) + ρc(r′)]�(r − r′)d3r′,

(A4)

where �(r) = ∑
I,n eik·rI,n 1

4π |r−rI,n| , rI,n = (a i1,a i2,azn) is a
generic lattice point, I = (i1,i2) is a generic pair of integers,
and n is a generic integer. The period of the crystal along z

(az) can be chosen arbitrarily because the nanowire array is
invariant to translations along z. The function �(r) satisfies
∇2� = −∑

I,n eik·rI,n δ(r − rI,n), and thus can be regarded
as a Green’s function. It has the following plane-wave
representation:41

�(r) = 1

Acaz

∑
J,n

1

kJ · kJ + (
kz + 2π

az
n
)2 eikJ.re

i(kz+ 2π
az

n)z
,

(A5)

where Ac = a2, kJ = kt + k0
J, kt = (kx,ky,0),

k0
J = (j1

2π
a

,j2
2π
a

,0) and J = (j1,j2) is a generic pair of
integers. Since the nanowire crystal is invariant to translations
along z it is clear that for a Bloch wave ρext, ρNL,h, and ρc

depend on z as eikzz. Thus, substituting the above formula into
Eq. (A4), it is easily found that

φ(r) = 1

ε0
h

eikzz

∫
�t

[ρext(r′) + ρNL,h(r′) + ρc(r′)]e−ikzz
′

×�2D(r − r′)dx ′dy ′, (A6)

where �t is the intersection of the unit cell with the xoy plane,
and we introduced �2D given by

�2D(x,y) = 1

Ac

∑
J

1

kJ · kJ + k2
z

eikJ.r. (A7)

Next, we decompose the electrostatic potential into its spatial
average and a fluctuating part: φ = 〈φ〉 + φ�. From the
definition of the averaging operator (see Sec. II), it is easily
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seen that

〈φ〉(r) = 1

ε0
h

1

Ac

1

k · k
eik.r

∫
�t

[ρext(r′) + ρNL,h(r′)

+ ρc(r′)]e−ik.r′
dx ′dy ′, (A8)

φ�(r) = 1

ε0
h

∫
�t

[ρNL,h(x ′,y ′,z) + ρc(x ′,y ′,z)]

×�reg(x − x ′,y − y ′)dx ′dy ′, (A9)

where

�reg(x,y) = 1

Ac

∑
J�=(0,0)

1

kJ · kJ + k2
z

eikJ.r. (A10)

Notice that because ρext = 〈ρext〉, the fluctuating potential
φ� does not depend explicitly on ρext. It should be clear
that Eq. (A9) is only valid for Bloch waves. To make
further progress and obtain a formula for φ� that is valid
for an arbitrary field distribution, we make one additional
simplification: We neglect the dependence on k in Eq. (A10).
Moreover, since the fluctuating part of the electric field is
given by e� = −∇{φ�} it is seen that e�,z ≡ e� · ẑ depends
on ∂zρc and ∂zρNL,h and thus in principle should be small
as compared to the transverse components. Hence, we also
neglect e�,z. Based on these considerations, we obtain the
following explicit formula for e�:

e�(r) = −∇t

∫
�t

1

ε0
h

[ρNL,h(x ′,y ′,z) + ρc(x ′,y ′,z)]

�reg,0(x − x ′,y − y ′)dx ′dy ′, (A11)

where ∇t = (∂x,∂y,0), and

�reg,0(x,y) = 1

Ac

∑
J�=(0,0)

1

k0
J · k0

J

eik0
J.r. (A12)

Note that within the considered approximations e� only has x

and y components, and is written in terms of the polarization
charges induced in the metal and in the dielectric, relative to
the uniform host background.

2. The additional potential

We can generalize the theory of Ref. 25, and define the
additional potential as the average potential drop from the
nanowire in a given cell to the respective cell boundary, so that

ϕw = 1

2π

∫ 2π

0

∫ a/2

rw

e · ρ̂ dρdθ ≈ 1

2π

∫ 2π

0

∫ a/2

rw

e� · ρ̂ dρdθ,

(A13)

where (ρ,θ,z) represent a system of cylindrical coordinates
centered at the pertinent nanowire. The second identity follows
from the fact that the macroscopic field E varies slowly in
the unit cell, and thus does not contribute to the additional
potential. Notice that for the purpose of calculating the
additional potential the unit cell is modeled as a circular
region with radius a/2 (another possibility is to consider a
radius R = a/

√
π = 0.56a, so that Ac = a2 = πR2). Let us

put e� = −∇tϕ, where ϕ is the electric potential implicitly
defined by Eq. (A11). Then, it is easy to check that ϕw can be

written as a surface integral over the dielectric region of the
transverse unit cell:

ϕw = −1

2π

∫
∇t ·

(
ϕ

ρ̂

ρ

)
ds. (A14)

We used the fact that ∇ · ( ρ̂

ρ
) = 0 in the dielectric region of

the unit cell. Next, we apply Gauss’s theorem to transform the
surface integral into two line integrals:

ϕw = 1

2πrw

∫
∂D

ϕdl + −1

2π

∫
∂�t

ϕ
1

ρ
ρ̂·n̂dl. (A15)

The first line integral is over the circumference of the nanowire
(∂D), and the second line integral is over the boundary of
the unit cell (∂�t ); n̂ is the outward unit vector normal to
∂�t . Because ϕ/ρ is expected to be much larger near ∂D

than near ∂�t , the contribution from the second line integral
can be neglected. Hence, substituting the formula for ϕ [see
Eq. (A11)] into the previous equation, we obtain the final result
for the value of ϕw in the pertinent unit cell (�t ):

ϕw =
∫

�t

1

ε0
h

[ρNL,h(x ′,y ′,z) + ρc(x ′,y ′,z)] �w0(x ′,y ′)dx ′dy ′,

(A16)

where

�w0(x,y) = 1

2πrw

∫
∂D

�reg,0(x − x ′,y − y ′)dl

= 1

Ac

∑
J�=(0,0)

1

k0
J · k0

J

eik0
J.rJ0

(∣∣k0
J

∣∣rw

)
, (A17)

where J0 is the zeroth-order Bessel function of the first kind.
For thin nanowires the volumetric charge density ρc in the
metal can be replaced by an equivalent surface charge density
σl located at the nanowire surface (∂D), so that ρcdx ′dy ′ =

σl

2πrw
dl′. Supposing also that σl is approximately constant over

∂D, we find that

ϕw = σl(z)

ε0
h

1

2πrw

∫
∂D

�w0(x ′,y ′) dl′

+
∫

�t

1

ε0
h

ρNL,h(x ′,y ′,z) �w0(x ′,y ′)dx ′dy ′. (A18)

For future reference, we note that for a dielectric with a
linear response ρNL,h = 0. Thus, using ρcdx ′dy ′ = σl

2πrw
dl′

and Eq. (A17), it is seen that the fluctuating part of the electric
field [Eq. (A11)] can be written as

e�(r)
∣∣ linear

host
= −σl

ε0
h

∇t�w0. (A19)

Hence, the �w0(x,y) can be regarded as the potential that
determines the fluctuating part of the electric potential for an
array of identical point charges (more correctly, identical linear
distributions of charge) placed at the lattice points. The self-
field created by the charges in the unit cell gives the dominant
contribution to e� (notice that the charge in the unit cell does
not contribute to E, because the corresponding electric field is
radial). Thus, we can estimate that −∇t�w0 ≈ 1

2πρ
. In Ref. 25

the contribution from the nearest nanowire neighbor was also
included in the calculation of e�. One can infer from the theory
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of Ref. 25, that to a first approximation,

−∇t�w0 ≈
[

1

2πρ
− 1

2π (a − ρ)

]
ρ̂, (A20)

where the second term of the formula is the correction that
includes the effect of the nearest neighbor.

3. The relation between σl and ϕw

Next, we determine the relation between σl and ϕw under
the approximation of a weak nonlinearity in the dielectric
response. It is evident from the definition and Eq. (A18) that

σl = C0ϕw − C0

ε0
h

∫
�t

ρNL,h(x ′,y ′,z)�w0(x ′,y ′)dx ′dy ′,

(A21)

with C0 the p.u.l. capacitance for the linear case, defined so
that

1

C0
= 1

ε0
h

1

2πrw

∫
∂D

�w0(x ′,y ′)dl′

= 1

ε0
h

1

Ac

∑
J�=(0,0)

[
J0

(∣∣k0
J

∣∣rw

)]2

k0
J · k0

J

. (A22)

The above formula for C0 is different from that derived in
Ref. 25 [see Eq. (8)], but for thin wires the two formulas yield
very similar numerical results. For example, for rw/a = 0.01,
Eqs. (8) and (A22) [summing 500 × 500 terms] predict that
C0/ε0

h is 1.95 and 1.91, respectively. Thus, for simplicity and
to be consistent with Ref. 25, in this work we adopt Eq. (8) as
the definition of C0.

Using ρNL,h = ε0
h∇ · (δε∇φ) = −ε0

h∇ · (δεe) in Eq. (A21)
it is possible to write after integration by parts

σl = C0ϕw − C0
∫

�t

δε e · ∇t�w0(x ′,y ′)dx ′dy ′

= C0ϕw − C0Ac〈δε e · ∇t�w0〉. (A23)

In the second identity, we approximated the surface integral
in one cell by the operation of spatial averaging. To make
further progress, we consider a weak-nonlinear response so
that δε � 1. When δε = 0 from Eqs. (A19) and (A23) we

know that −∇t�w0 = ε0
h

C0ϕw
e�. Thus, neglecting corrections

of the second order in δε in Eq. (A23) we obtain Eq. (7).

APPENDIX B: THE SPATIAL AVERAGE OF RELEVANT
PRODUCTS OF THE MICROSCOPIC FIELDS

In this Appendix, we calculate the spatial average of
several expressions that involve products of the microscopic
fields, assuming always that the host dielectric has a linear
response. We start with the calculation of 〈e∗ · e 〉. Using the
decomposition e = E + e� [Eq. (3)], and noting that because
of Eq. (A11) the fluctuating part of the microscopic electric
field e� does not have a z component, it is evident that
e = E − ∇tϕ, where ϕ is the potential defined implicitly in
Eq. (A11) with ρNL,h = 0. Using the identity 〈f F〉 = 〈f 〉F,
which is valid for generic functions f and F when F is a
“macroscopic” field that varies slowly on the scale of the unit

cell, we find that

〈e∗ · e〉 = E∗ · E + 〈|∇tϕ|2〉 ≈ E∗ · E + 1

Ac

∫
|∇tϕ|2ds.

(B1)

In the second identity, we identify the averaging operator
with the spatial averaging in one cell, which is valid for
Bloch waves. The integration is taken over the dielectric
region because e∗ · e must be taken equal to zero in the metal
region. In case the dielectric has a linear response, we have
∇2φ = −ρext/ε

0
h in the dielectric region [Eq. (A2)], and hence

∇2ϕ = 0. As discussed in Appendix A, the dependence on z

of ϕ can be neglected and thus we can assume that ∇2
t ϕ = 0 in

the dielectric region, so that |∇tϕ|2 = ∇t · (ϕ∗∇tϕ). We use
this result to integrate Eq. (B1) by parts, and transform the
surface integral into a line integral over the boundary of the
cell and a line integral over the boundary of the nanowire (∂D).
The former line integral vanishes for Bloch waves. Thus, we
obtain

〈e∗ · e〉 ≈ E∗ · E + 1

Ac

∫
∂D

ϕ∗
(

−∂ϕ

∂n

)
dl, (B2)

where ∂ϕ

∂n
stands for the normal derivative. Noting that the

equivalent surface charge density in the nanowire satisfies in
the vicinity of ∂D σl

2πrwε0
h

= − ∂φ

∂n
≈ − ∂ϕ

∂n
, we can write

〈e∗ · e〉 ≈ E∗ · E + 1

Ac

ϕ∗
w

σl

ε0
h

. (B3)

We used the property ϕw ≈ 1
2πrw

∫
∂D

ϕdl [see Eq. (A15)].

Finally, we use Eq. (A23) with δε = 0 and C0 = Acε
0
hβ

2
p to

obtain

〈e · e∗〉 ≈ E · E∗ + β2
p|ϕw|2. (B4)

Even though, strictly speaking, this derivation only holds in the
case of microscopic fields with a Bloch-type spatial variation,
it will be assumed that it remains valid in the case of arbitrary
fields. It should be clear that the derived result also implies
that

〈e� · e∗
�〉 = β2

p|ϕw|2, (B5)

where e� is the fluctuating part of the microscopic electric
field. From Eq. (A19) and the fact that �w0 is real valued,
we can also conclude that 〈e� · e�〉 = 〈e� · e∗

�〉ϕw/ϕ∗
w, or

equivalently,

〈e� · e�〉 = β2
pϕ2

w. (B6)

It is interesting to mention that Eq. (B4) can also be derived
based on the formula for the electromagnetic energy density.
Specifically, it was shown in Ref. 39 [see Eq. (62) of Ref. 39
generalized to the case of time-harmonic fields] that the
electromagnetic energy density can be written in terms of the
macroscopic fields as follows: Wmac = 1

4ε0
hE · E∗ + 1

4μ0H ·
H∗ + 1

4Ac
(Ltot|I |2 + C0|ϕw|2), where Ltot = L + Lkin and the

current I are defined as in Sec. II. Because the additional
potential is created by the charges in the metal, it is possible
to identify WE,mac = 1

4ε0
hE · E∗ + 1

4Ac
C0|ϕw|2 as the electric

energy density. On the other hand, from a microscopic point of
view, the electric energy density is WE,mic = 1

4
∂

∂ω
(ε′ω)e · e∗.

Thus, it is reasonable to expect that WE,mac = 〈WE,mic〉. Since
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for good conductors the energy stored inside the metal is in
principle negligible, one can write 〈WE,mic〉 ≈ 1

4ε0
h〈e · e∗〉 and

hence the relation WE,mac = 〈WE,mic〉 is equivalent to Eq. (B4).
Next, we compute 〈e∗ · e e�〉 in terms of the macroscopic

fields. Using the decomposition e = E + e� [Eq. (3)], the
result 〈e�〉 = 0, and the fact that E can be brought out of the
averaging operator because it is a slowly varying macroscopic
function, it is easily found that

〈e∗ · e e�〉 = 〈e�e�〉 · E∗ + 〈e�e∗
�〉 · E + 〈e� · e∗

� e�〉. (B7)

In the case of a dielectric host with a linear response the
fluctuating part of the electric field satisfies Eq. (A19). The
function �w0(x,y) is given by Eq. (A17), and has the following
symmetries in the case of a square lattice:

�w0(x,y) = �w0(±x,y) = �w0(x, ± y) = �w0(y,x). (B8)

This shows that e� · e∗
� is an even function of both x and y,

whereas e�,x ≡ e� · x̂ (e�,y ≡ e� · ŷ) is an odd function of x

(y). Therefore, if one identifies the averaging operator with the
surface integral in one cell, it is readily seen that

〈e� · e∗
� e�〉 = 0 = 〈e� · e�e�〉. (B9)

Using similar arguments, one can see that 〈e�e�〉 =
〈e�,xe�,x〉x̂x̂ + 〈e�,ye�,y〉ŷŷ and, analogously, that 〈e�e∗

�〉 =
〈e�,xe∗

�,x〉x̂x̂ + 〈e�,ye∗
�,y〉ŷŷ. Obviously, for a square lattice

〈e�,xe�,x〉 = 〈e�,ye�,y〉. On the other hand, because �w0 is
real valued and from Eq. (A19) and σl = C0ϕw, we can write
〈e�,xe�,x〉 = 〈e�,xe∗

�,x〉 ϕw

ϕ∗
w

= 1
2 〈e� · e∗

�〉 ϕw

ϕ∗
w

. Substituting the
previous results into Eq. (B7), and using Eq. (B5), we finally
obtain that

〈e∗ · e e�〉 = 1
2β2

pϕ2
wE∗

t + 1
2β2

p|ϕw|2Et , (B10)

where Et = It · E is the transverse part of the electric field,

with It = x̂x̂ + ŷŷ.
To conclude this Appendix, we determine 〈|e�|2e� · e�〉.

To this end, we identify again the averaging operator with the
integral in the dielectric region. Using Eq. (A19) and σl =
C0ϕw, it is found that

〈|e�|2e� · e�〉 = ϕ∗
wϕ3

w

(
C0

ε0
h

)4
1

Ac

×
∫

dielectric
|∇t�w0|2∇t�w0 · ∇t�w0 dxdy.

(B11)

Because �w0 is real valued and using β2
p = C0/(ε0

hAc), the
previous formula can be rewritten as

〈|e�|2e� · e�〉 = B̃ β4
pϕ∗

wϕ3
w, (B12)

with the dimensionless parameter B̃ defined by

B̃ = β4
pA3

c

∫ 2π

0
dθ

∫ a/2

rw

dρ ρ|∇t�w0|4. (B13)

The unit cell was approximated by a circular region with
radius a/2. The parameter B̃ can be numerically evaluated by
substituting Eq. (A17) into the previous formula. Alternatively,
we can use the approximation (A20) to write

B̃ = 2πβ4
pA3

c

∫ a/2

rw

[
1

2πρ
− 1

2π (a − ρ)

]4

ρ dρ. (B14)

This integral can be calculated explicitly, but the final expres-
sion is too long to show here.
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