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Exchange of momentum between moving matter induced by the zero-point fluctuations
of the electromagnetic field
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We propose a quantum theory for the characterization of the momentum of moving media at zero temperature.
It is demonstrated that the zero-point quantum fluctuations of the electromagnetic field may cause a net transfer
of momentum between polarizable bodies moving at different velocities in Casimir-type geometries. However,
the total net momentum induced by the quantum fluctuations, i.e., the total additional momentum imparted to
all the matter in the system, vanishes. It is proven that the exchanged momentum can be calculated from the
zero-point interaction energy of the system.
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I. INTRODUCTION

The Casimir phenomenon is one of the most impressive
macroscopic manifestations of quantum effects: Due to the
quantum fluctuations of the electromagnetic field, two macro-
scopic dielectric bodies standing in a vacuum experience an
attractive long-range measurable force [1]. The Casimir effect
is a consequence of the zero-point energy of the vacuum, which
does not vanish even when the system is in the ground state at
zero temperature.

In 2004, Feigel predicted a Casimir-like quantum effect,
such that the vacuum fluctuations in crossed electric and
magnetic static fields would result in the motion of dielectric
liquids [2]. Feigel’s prediction raised some criticism and
is not consensual [3], but the possibility of a momentum
transfer from the quantum vacuum to magnetoelectric matter
is generally supported by several studies, at least for the case of
Casimir-type geometries, e.g., Refs. [4–6]. One of the unsatis-
factory aspects of Feigel’s theory is that it is semiclassical, and
requires the introduction of a high-frequency cutoff to yield a
finite value for the momentum imparted to matter. It has been
shown that this problem can be solved with field regularization
techniques [4]. A recent paper reported that the estimates of
the momentum obtained with Feigel’s theory are inconsistent
with experimental data [7], but was unable to rule out Feigel’s
effect based on other alternative theories [4]. A correction to
Feigel’s theory was also proposed [8].

The objective of this paper is to investigate the possible
exchange of momentum between moving matter mediated
by the quantum vacuum in Casimir-type geometries. Such
possibility was discussed in some works [9,10] but to our best
knowledge a complete theory or detailed study of this effect
is still needed. Here we develop a fully quantum-mechanical
theory of the zero-point momentum in a system with moving
components in thermodynamical equilibrium at zero tempera-
ture. Our theory is based on a macroscopic quantization of the
electromagnetic field, such that the moving matter is modeled
as continuous nondispersive lossless medium. We obtain an
explicit formula for the regularized additional momentum

*Author to whom correspondence should be addressed:
mario.silveirinha@co.it.pt
†stas@co.it.pt

imparted to the moving matter by the quantum fluctuations
of the electromagnetic field, which enables us to numerically
quantify the momentum transfer.

II. QUANTIZATION OF THE ELECTROMAGNETIC FIELD
AND POLARIZATION WAVES IN MOVING MEDIA

In this paper, we are interested in the characterization
of the momentum induced by quantum fluctuations in a
scenario wherein a collection of polarizable moving particles
interacts with the electromagnetic vacuum. Even though our
theory is based on a continuous medium approximation, for
convenience, whenever pertinent, we will picture the moving
matter as moving electric dipoles formed by two charges with
opposite signs. To begin with, we identify the degrees of
freedom and the Hamiltonian of the system (a representative
geometry is shown in Fig. 1).

As is well known, the total energy of two charges with
opposite signs (an electric dipole) can be decomposed into
two components: one which determines the oscillations of
the charges with respect to the center of mass (manifested
macroscopically in the form of “polarization waves”), and
another which is associated with the dynamics of the center
of mass. In macroscopic nondispersive media, the energy
associated with the “polarization waves” (kinetic and potential
energy associated with vibrations of the dipoles) and with
the electromagnetic field is described by the energy density
WEM,P = 1

2 (B · H + D · E), where (E,H) and (B,D) are the
usual macroscopic fields that appear in the context of macro-
scopic electrodynamics [11]. On the other hand, it is possible
to show that the component of the energy associated with
the center of mass of a single dipole is given by P 2

can/(2M),
where Pcan is the total canonical momentum of the two charges,
and M is the total mass. Notice that for charged particles the
canonical momentum may differ from the kinetic momentum
[11]. The momentum vector Pcan is the canonical conjugate of
the center-of-mass coordinates (r0). Thus, the total energy of
the system may be written as

εtot =
∑

all dipoles
(l)

P 2
can,l

2Ml

+
∫

d3r WEM,P . (1)
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FIG. 1. (Color online) Sketch of a representative geometry of the
system under study. In our model, the cavity may contain nondisper-
sive moving dielectric bodies with a nonuniform permittivity and
permeability along the y and z directions. All the bodies within
the cavity should be invariant to translations along the direction of
movement (in the figure, the moving components are the slabs with
velocities v1 and v2). The cavity is electromagnetically closed and is
terminated with periodic boundary conditions.

In the continuous medium approximation, each individual
body may be assumed rigid, so that the relative distance
between the microscopic dipoles that form the material is
fixed. In such a case, the dynamics of the centers of mass of the
dipoles associated with the ith body can be simply described
by the canonical conjugate coordinates r0,i and Pcan,i (2 ×
3 degrees of freedom per macroscopic body), where r0,i and
Pcan,i is the center of mass and total canonical momentum
of the ith body, respectively. Within that approximation, the
Hamiltonian of the system may be rewritten as

Htot =
∑

all bodies
(i)

P 2
can,i

2Mi

+ HEM,P , (2)

where Mi is the total mass of the ith body and HEM,P =∫
d3r WEM,P . This discussion shows that the degrees of

freedom of the system are those of the centers of mass of the
moving bodies (r0,i and Pcan,i), and those of the polarization
waves and the electromagnetic field (associated with HEM,P ).
In our formalism, the coordinates associated with the center
of mass are not quantized. This means that the coordinates r0,i

and Pcan,i are treated semiclassically, and only the coordinates
associated with the electromagnetic field and the oscillations
of the dipoles are quantized. Hence, HEM,P is promoted to a
quantum operator ĤEM,P .

Within a semiclassical description the dynamics of the
coordinates (r0,i ,Pcan,i) associated with the centers of mass

is thus determined by dr0,i

dt
= Pcan,i

M
+ 〈 ∂ĤEM,P

∂Pcan,i
〉 and dPcan,i

dt
=

−〈 ∂ĤEM,P

∂r0,i
〉 + Fext, where Fext represents the action of possible

(classical) external forces acting on the bodies, 〈 ∂ĤEM,P

∂Pcan,i
〉 =

〈ψ | ∂ĤEM,P

∂Pcan,i
|ψ〉 is the quantum expectation of ∂ĤEM,P

∂Pcan,i
, and |ψ(t)〉

represents the state of the electromagnetic field and polariza-
tion waves. In the framework of macroscopic electrodynamics
of moving media, HEM,P is expressed in terms of (r0,i ,vi)
rather than as a function of (r0,i ,Pcan,i), where vi = dr0,i/dt is

the velocity of the bodies. This follows from the fact that the
effective parameters (permittivity, etc.) of a moving body are
written in terms of the velocity and of its electric susceptibility
in the comoving frame (see below). However, it can be checked
that within the same degree of approximation used to derive

Eq. (2), the operator ∂ĤEM,P

∂Pcan,i
can be replaced by 1

M

∂ĤEM,P

∂vi
. Thus,

we can write the following equations that characterize the
dynamics of the centers of mass of the moving bodies:

M
dr0,i

dt
= Pcan,i +

〈
∂ĤEM,P

∂vi

〉
, (3a)

dPcan,i

dt
= −

〈
∂ĤEM,P

∂r0,i

〉
+ Fext. (3b)

In the rest of this section, we discuss the quantization of
HEM,P , i.e., of the electromagnetic field and the polarization
waves, in an electromagnetically closed cavity (e.g., a box)
filled with dielectric bodies. The dielectric bodies are allowed
to move with a constant velocity along the x direction (Fig. 1).
In general, HEM,P depends explicitly on (r0,i ,vi), and hence,
as usual, the quantization is parametric so that (r0,i ,vi) are
treated as constant parameters in the quantization process.

The quantization of the electromagnetic field in moving
media has been discussed previously in the literature (e.g.,
Refs. [12–15]), but here, unlike previous works, we admit
a general scenario wherein the bodies in the cavity may
be nonuniform, particularly the geometry along both the y

and z directions can be completely arbitrary. To quantize
the macroscopic fields it is assumed that the cavity is
terminated with periodic boundary conditions, consistent with
the hypothesis that, even if there is a flow of matter, ĤEM,P

can have stationary states.
We are particularly interested in the scenario where all

the bodies in the cavity are invariant to translations along the
direction of movement (Fig. 1). Evidently, in a realistic system
the moving slabs must have a finite width along the x direction.
Our theory ignores any effects due to the finite width of the
slabs.

All the materials are isotropic nondispersive dielectrics
in their own comoving frames. It is also supposed that the
velocity of all the moving components of the system is below
the Cherenkov threshold |v| < c/n, where n is the index of
refraction of the pertinent moving body in the respective
comoving frame. As discussed in Appendix A and also in
Ref. [14], only in such conditions the Hamiltonian of the
system is positive definite. Above the Cherenkov threshold the
system becomes potentially unstable due to the appearance of
“negative quanta” and cannot be quantized within the approach
of Appendix A. It is clear that in a system above the Cherenkov
threshold the state with no photons is no longer the state of
minimal energy, and, thus, such a system has no ground state
that could be the equilibrium state at zero temperature. In
dispersive media, it is likely that this property is related to the
phenomenon of quantum friction whose existence recently
raised a heated debate [13,16,17]. We do not expect this
controversy to affect the findings of this paper, because here
we consider nondispersive lossless dielectrics, whereas the
friction theory developed in Refs. [16,17] predicts friction
in the case of dispersive (and hence, because of Kramers-
Kronig’s formulas, necessarily lossy) media.
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Consistent with the relativistic constitutive relations in
moving media [18], we assume that in the lab frame the
classical D and B fields are linked to the classical E and H
fields as follows:(

D
B

)
=

(
ε0ε

1
c
ϑ

1
c
ζ μ0μ

) (
E
H

)
≡ M ·

(
E
H

)
. (4)

For a moving body (invariant to translations along the direction
of movement), with velocity v = vx̂ with respect to the lab

frame, the dimensionless parameters ε, μ, ϑ , and ζ are such
that

ε = εt (I − x̂x̂) + εx̂x̂, εt = ε
1 − β2

1 − n2β2
, (5a)

μ = μt (I − x̂x̂) + μx̂x̂, μt = μ
1 − β2

1 − n2β2
, (5b)

ζ = −ϑ = −ax̂ × I, a = β
n2 − 1

1 − n2β2
, (5c)

where β = v/c, n2 = εμ, ε, and μ are the material param-
eters in the respective comoving frame. Since the bodies
are assumed invariant to translations along the direction of
movement, ε and μ can only depend on y and z. The cavity can
have several moving parts with possibly different velocities.
For simplicity, in all the examples considered in this work
it is assumed that μ = 1, so that in the comoving frame the
pertinent materials can be pictured as a collection of electric
dipoles with no magnetic response. Note that even though the
discussion of the first part of this section—and in particular
the derivation of Eq. (3)—is based on a nonrelativistic
approximation, there is no particular difficulty in taking into
account the relativistic effects in the quantization of ĤEM,P ,
and hence this is done here.

The electromagnetic field satisfies the Maxwell’s equations,(
0 i∇×

−i∇× 0

)(
E
H

)
= i

∂

∂t

(
D
B

)
, (6)

which, denoting F = ( E
H

)
, can be written in a compact form

as

N̂F = iM · ∂F
∂t

, (7)

where N̂ = ( 0 i∇×
−i∇× 0

)
and M = M(r) characterizes the

material parameters of the system. From Eq. (5) it is evident
that ε and μ are symmetric and real valued tensors, whereas

ϑ is real valued and satisfies ϑ = ζ
T

(the superscript T

represents the transpose matrix). This implies that the material
matrix is Hermitian (and real valued), M = M†.

In Appendix A, we present the details of the quantization
of HEM,P . It is proven that the Hamiltonian can be written
in terms of the eigenfrequencies ωn of the transverse natural
modes of the cavity as follows [Eq. (A11)]:

ĤEM,P =
∑
ωn>0

h̄ωn

(
â†

nân + 1

2

)
. (8)

The quantized electromagnetic field is such that (in the
Schrödinger representation) [Eq. (A12)]

F̂ =
(

Ê
Ĥ

)
=

∑
ωn>0

√
h̄ωn

2
[ânFn(r) + â†

nF∗
n(r)], (9)

where Fn is the eigenmode associated with ωn, and hence
satisfies N̂Fn = ωnM · Fn. The modes Fn should be normal-
ized according to Eq. (A6), and the creation and annihi-
lation operators satisfy the standard commutation relations
[Eq. (A13)]. It can be proven that the quantized fields satisfy
the equal-time commutation relations [Ĝ(r),Ĝ(r′)] = h̄N̂ ·
{I6×6δ(r − r′)}, where [Ĝ(r),Ĝ(r′)] should be understood as
a tensor (with elements [Ĝm(r),Ĝn(r′)], m,n = 1, . . . 6), Ĝ =
M · F̂, and I6×6 represents the identity tensor. In particular,
one can write [D̂(r),B̂(r′)] = ih̄∇ × {I3×3δ(r − r′)}. These
commutation relations ensure that the time evolution of the
quantum operators in the Heisenberg picture is consistent
with the Maxwell’s equations, i∂tĜ = N̂ F̂. We would like to
note that the commutation relations for the macroscopic field
operators differ from the commutation relations in vacuum
written in terms of the microscopic field operators ê and b̂.
Indeed, in the presence of matter the microscopic electric
field can gain an extra longitudinal component (with nonzero
divergence) due to the quantum-induced fluctuations of the
polarization charges. The macroscopic electric field is the
result of spatial averaging the total microscopic electric field,
and thus cannot be simply identified with the spatial average of
the (transverse) microscopic electric field operator. Moreover,
it is known (see, for instance, Ref. [14]) that for plane waves in
nondispersive moving media the vectors D, B, and k (the wave
vector) always form a triplet of mutually orthogonal vectors,
and, thus, are analogous in this sense to the transverse fields e
and b in a vacuum.

From a mathematical point of view there is no difficulty
in extending this theory to a more general scenario wherein
the bodies at rest in the lab frame (i.e., the reference frame
where the walls of the cavity are at rest) have an arbitrary
geometry. However, the granularity of the structure along the
x direction may be incompatible with the hypothesis that the
electromagnetic field in the cavity is in equilibrium, because
the surface roughness assisted with the local charge density
fluctuations in the moving matter may induce some form
of friction related to the Smith-Purcell effect [19] or the
“washboard effect” [16].

We stress that ĤEM,P has both electromagnetic and matter
components, and describes the dynamics of the electro-
magnetic fields and polarization waves. This “blend” of
radiation and matter is well known in macroscopic quantum
electrodynamics [20,21]. In a quantum-mechanical model of
a dielectric medium the normal modes (i.e., the stationary
states) are neither eigenstates of the electromagnetic field
energy operator (the associated quanta are photons) nor of the
energy operator associated with the dipoles induced in matter
(the associated quanta are designated here by polaritons), but
rather clothed excitations or quasiparticles [20,21]. Clearly,
the quanta of the Hamiltonian ĤEM,P [Eq. (8)] are these
quasiparticles.

An important observation is that for systems invariant
to translations along the x direction ĤEM,P is completely
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independent of x0,i . Therefore, in a closed system (Fext = 0),
it follows that ∂Htot/∂x0,i = 0 = −x̂ · ∂tPcan,i [Eq. (3a)], and
hence the x component of the canonical momentum of each
individual slab is conserved.

III. DIFFERENT KINDS OF MOMENTUM

The characterization of the momentum of the electromag-
netic field in macroscopic media is surrounded by many
controversies, which date back to the beginning of the previous
century when Abraham and Minkowski proposed two different
formulas for the electromagnetic momentum density in a
dielectric [22–26] (for a recent review of the history of this
topic, see Ref. [27]). Here, we follow closely Refs. [26–28],
and assume that the total momentum density is

gtot = gkin + gEM, (10)

where gkin = ρ0γ
2v may be regarded as the density of kinetic

momentum (in the nonrelativistic limit this should be replaced
by gkin ≈ ρ0v), γ = 1/

√
1 − v2/c2, ρ0 is the matter density in

the local rest frame,v is the matter velocity, and gEM = 1
c2 S =

1
c2 E × H. As compared to Refs. [27,28], we have neglected
any contributions to the momentum which are neither of
an electromagnetic nor of a kinetic nature. The momentum
density gkin is the material part of the momentum density
in the Abraham framework, whereas gEM is regarded as the
momentum of the electromagnetic part [27].

Our theory is developed under the hypothesis that Eq. (10)
represents the total momentum density of the system, and that
the Poynting vector S = E × H describes the energy density
flux of the quanta of the electromagnetic field, i.e., of photons.
Notice that if the Poynting vector describes the energy density
flux of photons then gEM = 1

c2 S must be the corresponding
electromagnetic momentum. This follows from the relativistic
relation between energy and momentum, p = 1

c2 vε (which is
valid for both massive and massless fundamental particles
if ε is understood as the total relativistic energy).1 In the
framework of a quantum description gEM is promoted to an
operator obtained by symmetrization of the classical formula.

1It is interesting to note that classically ∇ · S + ∂tWEM,P = 0, and
because WEM,P has both a matter and electromagnetic component
(see Sec. II), it may be tempting to think that S = E × H also
has a matter component, rather than being purely electromagnetic.
Is it possible to reconcile the law ∇ · S + ∂tWEM,P = 0 with the
assumption that S is the macroscopic energy density flux of the
quanta of the electromagnetic field? To do this let us denote WEM as
the “true” macroscopic energy density of the electromagnetic field,
i.e., the energy density associated exclusively with photons. Its exact
macroscopic formula is of no concern to us. Then, we may rewrite the
energy conservation law as ∇ · S + ∂tWEM = R, where we put R =
∂t (WEM − WEM,P ). This parameter may be regarded as a volumetric
power density due to the continuous creation and annihilation of
photons in the medium. This is an obvious consequence of the
matter-radiation interactions. In other words, the modified energy
conservation law is fully consistent with the understanding that in a
material the number of quanta of the field in a certain volume can
vary with time because of the continuous transfer of energy between
the fields and matter.

Similarly, the kinetic momentum density of the moving
matter gkin also depends on the quantum fluctuations, and thus
also needs to be promoted to a quantum operator. Indeed, as
discussed in Sec. II, a moving dipole may be characterized in
terms of the degrees of freedom of the center of mass and those
of the “polarization waves.” Thus, the kinetic momentum of a
slab is the sum of the canonical momentum of the center of
mass and the momentum of the polarization waves. Therefore,
classically we may write gkin = gcan + gps, where gcan is
the density of momentum associated with canonical (Pcan)
momentum of the slabs and gps is the density of momentum of
the “polarization waves.” We note that this decomposition is
formally the same as that shown in Eq. (3a), except that here
we consider a density of momentum. From the discussion of
Sec. II, gcan is not quantized in our formalism, whereas gps

must be promoted to an operator because the dynamics of the
polarization waves is related to ĤEM,P . Hence, we may write

ĝkin = gcan + ĝps. (11)

Based on the above equation, it is also useful to consider
the following decomposition of the total momentum density
[Eq. (10)],

ĝtot = gcan + ĝps + ĝEM = gcan + ĝwv, (12)

where we defined the wave momentum density as [24,25]

ĝwv = ĝps + ĝEM. (13)

Thus, in agreement with the decomposition (2) for the total
energy, the wave momentum can be regarded as the part of the
system momentum associated with ĤEM,P , i.e., the combined
momentum of the electromagnetic field and polarization
waves. To make further progress we need an explicit formula
for ĝwv. Following Ref. [26] (see also Refs. [24,25]), we
suppose that the x component of the wave momentum is
coincident with the Minkowski momentum. Thus, classically
we can write

x̂ · gwv = x̂ · (D × B), (14a)

x̂ · gps = x̂ ·
(

D × B − 1

c2
E × H

)
= x̂ · (Pe × B + ε0E × Pm), (14b)

with Pe = D − ε0E the electric polarization vector, and Pm =
B − μ0H a magnetic polarization vector. The density of
momentum gps is (in the nonrelativistic and nonmagnetic case)
the pseudomomentum density of Refs. [24,25], and will also be
designated here in the same manner even when Pm �= 0. The
quantum operators ĝwv and ĝps are defined by symmetrization
of the classical formulas. Ahead, we shall prove that formula
(14b) is consistent in the nonrelativistic limit with Eqs. (3a)
and (11).

IV. THE CASIMIR-MOMENTUM PROBLEM
IN MOVING MEDIA

As mentioned previously, the objective is to compute
the expectation of the momentum induced by the quantum
fluctuations at zero temperature. We are interested in both the
quantum expectation of the momentum of matter and fields.
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Let P̂kin = ∫
ĝkind

3r, P̂EM = ∫
ĝEMd3r, and P̂wv =∫

ĝwvd
3r represent the operators of the total kinetic, elec-

tromagnetic, and wave momentum in the considered cavity.
Moreover, we define Pcan = ∫

gcand
3r as the total canonical

momentum. Let us assume that our system is prepared so
that for given (r0,i ,vi) the initial state is the ground state of
ĤEM,P , denoted by |0〉. Because ĤEM,P = ĤEM,P (r0,i ,vi), one
may write more rigorously |0〉 = |0r0,i ,vi

〉. We will omit the
labels (r0,i ,vi) unless they are relevant for the discussion. In
general, a completely isolated system will not remain in this

initial state because dPcan,i

dt
= −〈 ∂ĤEM,P

∂r0,i
〉 is usually different

from zero [see Eq. (3b)]. This is true even if all the bodies
are at rest, and is a consequence of the usual Casimir effect. To
avoid this, we assume that an external force Fext is applied to
counterbalance the standard Casimir force so that dPcan,i/dt =
0. It is interesting to mention that because |0〉 = |0r0,i ,vi

〉 is an

eigenstate of ĤEM,P , one has 〈 ∂ĤEM,P

∂r0,i
〉 = 〈0| ∂ĤEM,P

∂r0,i
|0〉 = ∂E0

∂r0,i
,

where E0 = ∑
ωn>0

h̄ωn

2 is the zero-point energy of the system.
Note that because the Hamiltonian ĤEM,P is independent of
x0,i (because of the assumed translational invariance along
x) it follows that −∂E0/∂x0,i = 0, i.e., within the hypothesis
that the slabs are dispersionless lossless dielectrics there is no
“frictional”-type force acting on the slabs. In case of dispersive
dielectrics a friction force may appear.

Under the action of the external force (such that
dPcan,i/dt = 0), the state |0〉 = |0r0,i ,vi

〉 can thus be regarded
as a stationary state of the total system. Next, we obtain the
quantum expectation of the total momentum of the system in
this stationary state. From Eq. (12) we can write

〈0|P̂tot|0〉 = Pcan + 〈0|P̂wv|0〉. (15)

In the absence of quantum fluctuations (either associated
with the electromagnetic field or with polarization waves),
i.e., in the classical limit, we have gwv = 0 in the ground
state. Therefore, the canonical momentum Pcan may be seen
as the total momentum of the system in the classical limit.
On the other hand, the quantum fluctuations cannot generate
a net momentum, because otherwise it would be possible to
extract a net momentum from the vacuum fluctuations, which
is physically absurd. This indicates that

〈0|P̂wv|0〉 = 0. (16)

In Appendix B, we present further evidence based on the
definition of P̂wv that indeed x̂ · 〈0|P̂wv|0〉 = 0. In particular,
these results imply that x̂ · 〈P̂tot〉 = x̂ · Pcan. This property
also ensures that for systems invariant to translations along
the x axis the quantum expectation of Ŝtot, i.e., the total
relativistic energy density flux (of matter and radiation), has
the same value as in the classical case. In other words, the
quantum fluctuations also cannot create a net flow of energy
in the system. This is a trivial consequence of the relativistic
relation between momentum and energy which implies that
Ŝtot = c2ĝtot.

On the other hand, let P̂kin,Vi
= ∫

Vi
ĝkind

3r represent the
kinetic momentum operator associated with the body Vi ,
and P̂ps,Vi

= ∫
Vi

ĝpsd
3r represent the corresponding pseudo-

momentum. From (11) it is evident that

〈0|P̂kin,Vi
|0〉 = Pcan,Vi

+ 〈0|P̂ps,Vi
|0〉. (17)

Therefore, it is seen that 〈0|P̂ps,Vi
|0〉 is the additional

kinetic momentum acquired by matter due to the quantum
fluctuations, which agrees with the theory of Feigel [Eq. [14]
of Ref. [2]. In the classical limit, i.e., provided the zero-
point fluctuations of the electromagnetic field are neglected,
the kinetic momentum reduces to the canonical momentum,
Pkin = Pcan.

Thus, to determine the additional momentum imparted to
matter, we need to calculate 〈0|P̂ps,Vi

|0〉. This can be done
in two ways. The first (nonrelativistic) approach is simply
based on Eq. (3a). Comparing Eqs. (3a) and (17), one may

readily identify 〈0|P̂ps,Vi
|0〉 = 〈0| ∂ĤEM,P

∂vi
|0〉. But because |0〉 =

|0r0,i ,vi
〉 is an eigenstate of ĤEM,P , it follows immediately that

〈0|P̂ps,Vi
|0〉 = ∂E0

∂vi
, where E0 is the zero-point energy. More

rigorously, one must write 〈0|x̂ · P̂ps,Vi
|0〉 = ∂E0

∂vi
, where vi is

the velocity of the ith body along the x direction because
ĤEM,P can only be defined using a macroscopic theory when
the velocity of the bodies is parallel to the direction of
translational invariance. The second approach is based on
the definition (14b) of the pseudomomentum density. In the
next section, we prove that it yields a result consistent with
the first approach in the nonrelativistic limit. However, very
interestingly, we shall see that this second approach enables
formulating a relativistically covariant theory.

V. QUANTUM EXPECTATION
OF THE PSEUDOMOMENTUM

In what follows we determine 〈0|P̂ps,V0 |0〉, where P̂ps,V0 =∫
V0

x̂ · ĝpsd
3r is the pseudomomentum of a generic body

(invariant to translations along the x direction) that occupies
the region V0, and x̂ · ĝps = 1

2 x̂ · (D̂ × B̂ − 1
c2 Ê × Ĥ) + H.c.

(H.c. stands for Hermitian conjugate).

A. Zero-point pseudomomentum

Let the velocity of the considered body relative to the
rest frame be v. Consistent with Sec. II, the material matrix
depends on the velocity of the matter within the region V0.
To keep track of this dependence we write M = M(r; v) [in
general we can write M = M(r; v1, . . . ,vN ) to keep track of
the dependence of the material matrix on the velocity of all
the bodies in the cavity]. Obviously, the eigenfrequencies of
the cavity depend on v. Let us determine the rate of change
of the frequency of resonance ωn of the nth eigenmode with
respect to the velocity of the considered body. From the theory
of Appendix D [Eq. (D5)], this is given by

∂ωn

∂v
= −ωn

∫
V0

d3r F∗
n · ∂M

∂v
· Fn∫

d3r F∗
n · M · Fn

, (18)

where Fn = ( En

Hn

)
represents the fields associated with the

nth eigenmode, and the integral in the denominator is over
the entire cavity volume. We used the fact that ∂M

∂v
vanishes

everywhere in the cavity, except over V0, i.e., over the volume
of the considered moving region.

In the region V0 the effective parameters of the macroscopic
medium are defined consistently with Eq. (5), and hence it is
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possible to write:

∂M
∂v

=
⎛
⎝ ε0ε

∂
∂v

( 1−β2

1−n2β2

)
It

εμ−1
c2

∂
∂v

(
v

1−n2β2

)
x̂ × I

− εμ−1
c2

∂
∂v

(
v

1−n2β2

)
x̂ × I μ0μ

∂
∂v

( 1−β2

1−n2β2

)
It

⎞
⎠ ,

(19)

where It = I − x̂x̂, n2 = εμ, β = v/c, and ε and μ are the
effective parameters of the body in the comoving frame. Some
lengthy but straightforward calculations show that if we put
F1 = ( E1

H1

)
and F2 = ( E2

H2

)
, and define

( D1
B1

) = M · ( E1
H1

)
and( D2

B2

) = M · ( E2
H2

)
, then the following purely algebraic relation

holds:

−F1 · ∂M
∂v

· F2 = 1

(1 − β2)
x̂ · (D1 × B2 + D2 × B1

− ε0μ0E1 × H2 − ε0μ0E2 × H1). (20)

In particular, if we pick F1 = F and F2 = F∗, it follows that

−1

2
F∗ · ∂M

∂v
· F = 1

(1 − β2)
x̂ · Re{D × B∗ − ε0μ0E × H∗}.

(21)

Substituting the above formula into Eq. (18), it is found that

∂ωn

∂v
= 1

(1 − β2)

ωn

∫
V0

d3r x̂ · Re{Dn × B∗
n − ε0μ0En × H∗

n}
1
2

∫
d3r F∗

n · M · Fn

.

(22)

We are now ready to calculate the ground-state quantum
expectation of the operator P̂ps,V0 . Using Eqs. (9) and (A14),
it is straightforward to verify that

Pps,V0 ≡ 〈0|P̂ps,V0 |0〉

=
∑
ωn>0

h̄ωn

2
x̂ ·

∫
V0

Re

{
Dn × B∗

n − 1

c2
En × H∗

n

}
d3r.

(23)

But from Eq. (22) and from the normalization condition (A6),
it follows that

Pps,V0 = (1 − β2)
∑
ωn>0

h̄

2

∂ωn

∂v
. (24)

Hence, since the zero-point energy of the system (ĤEM,P ) is
E0 = ∑

ωn>0 h̄ωn/2, we finally obtain

Pps,V0 = (1 − β2)
∂E0

∂v
. (25)

Thus, the quantum expectation of the pseudomomentum
transferred to V0 can be written in terms of the derivative of the
zero-point energy with respect to the velocity v of the pertinent
body. In the nonrelativistic limit (β → 0), this result agrees
with that obtained in the end of Sec. IV based on Eq. (3a).

For future reference, it is noted that the total pseudomo-
mentum in the cavity is the sum of the pseudomomenta of the
different bodies, and hence it is given by

Pps,tot =
∑

i

(
1 − β2

i

)∂E0

∂vi

, (26)

where βi = vi/c, and the summation is over all the bodies in
the cavity.

B. Properties of the zero-point pseudomomentum

Equation (25) establishes that the pseudomomentum can
be expressed in terms of the zero-point energy of the system.
Clearly, only the interacting part of the zero-point energy can
depend on the velocity of the moving bodies. Hence, in Eq. (25)
we can replace E0 by E0,int, where E0,int is the zero-point
interaction energy.

To calculate the interaction energy E0,int, we rely on the
theory of Ref. [14], which is based on a summation of the
zero-point energy of the system using the argument principle
[29,30]. Specifically, for a multilayered system of moving
parallel dielectric slabs (invariant to translations along x and z)
the interaction part of the zero-point energy at zero temperature
may be written as a generalized Lifshitz formula Eq. (51) of
Ref. [14]

E0,int

A
= h̄

(2π )3

∫ ∫
dkxdkz

∫ +∞

0
dξ ln D(iξ,kx,kz), (27)

where D(ω,kx,kz) is such that D(ω,kx,kz) = 0 determines the
characteristic equation of normal Bloch modes associated with
the transverse wave vector (kx,kz), and A = Lx × Lz is the
cross-sectional area of the cavity parallel to the xoz plane.
The dispersion equation can be written explicitly in terms of
reflection matrices, and for more details the reader is referred
to Ref. [14]. It should be noted that D(ω,kx,kz) depends on the
geometry and material parameters of the bodies under analysis,
and so we can write D = D(ω,kx,kz; v1, . . . ,vN ,d12,d13, . . .),
where vi represents the velocity of the ith body in the cavity
and di,j represents the relative distance between the ith and
j th bodies. Thus, the interaction energy is such that E0,int =
E0,int(v1, . . . ,vN ,d12,d13, . . .). In the particular case of two
interacting bodies, separated by the distance d, the Casimir
force acting on the bodies is F = −∂E0,int/∂d [14], which
can be shown to be consistent with the quantum expectation
of the Maxwell stress tensor.

It should be noted that in Eq. (27) it is implicit that the
length of the considered cavity along the x and z directions
(Lx and Lz, respectively) is rather large so that (kx,kz) vary in
a continuum, rather than being quantized (e.g., kx = 2πm/Lx ,
m = 0,±1,±2, . . .).

Based on Eq. (27), it is possible to conclude that for the
ith body the zero-point pseudomomentum per unit of cross-
sectional area satisfies

Pps,Vi

A
= (

1 − β2
i

) ∂

∂vi

(
E0,int

A

)
. (28)

Let us discuss some important consequences of our theory.
To this end, let us consider the interaction between two
parallel slabs, separated by a distance d in a vacuum, and
moving with velocities v1 and v2, respectively. First of all,
we note that by symmetry it is obvious that E0,int(v1,v2 = 0)
[E0,int(v1 = 0,v2)] is an even function of v1 (v2), and hence for
v1 = 0 and v2 = 0 the zero-point pseudomomentum vanishes
for both bodies: Pps,Vi

= 0. Thus, as expected, the zero-point
pseudomomentum can be nonzero only when at least one of
the bodies is moving.
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Suppose now that (v1,v2) �= (0,0). It was shown in Ref. [14]
that E0,int/A is a relativistic invariant in the sense that it
has the same value for all the reference frames that move
with a constant x-directed velocity u with respect to the lab
frame, provided that the velocities of the slabs and material
parameters are transformed in a covariant manner. Such a result
assumes that Lx → ∞. This important property implies that
E0,int(v1,v2)/A is such that

1

A
E0,int

(
v1 + u

1 + uv1/c2
,

v2 + u

1 + uv2/c2

)
= const, (29)

where u can be arbitrary and the constant on the right-hand
side is independent of u. Differentiating the above formula
with respect to u and putting u = 0, we readily find that
(1 − β2

1 ) ∂
∂v1

E0,int

A
+ (1 − β2

2 ) ∂
∂v2

E0,int

A
= 0. Hence, from Eq. (26)

it follows that the total pseudomomentum of the system
vanishes: Pps,tot = 0. This result can be readily generalized to
the case of N different slabs. Therefore, we proved that the total
pseudomomentum Pps,tot generated by quantum fluctuations
in the cavity vanishes, and hence, from Eq. (13) (P̂wv =
P̂ps + P̂EM) and Eq. (16) also the quantum expectation of the
total electromagnetic momentum PEM,tot in the cavity vanishes:
〈0|P̂EM|0〉 = 0. This result is full of physical significance,
and makes manifest that both the total additional momentum
imparted to matter and the total momentum imparted to the
fields by the quantum fluctuations are zero. In particular, we see
that our theory predicts that a bulk uniform moving medium
must have Pps,tot = 0.

It can be also proven in a similar manner that the pseu-
domomentum of a given slab per unit of area (Pps,Vi

/A) stays
invariant in all reference frames that move along the x axis with
constant velocity. The proof is given in Appendix E. In light
of the results derived above, this shows that if all the bodies
in the system move with the same velocity, then the individual
pseudomomentum of each body vanishes. Therefore, unlike
Feigel’s theory [2], and in agreement with Ref. [4], our results
do not predict an additional momentum imparted to matter for
the case of a single uniform unbounded body. Moreover, the
assumption that the body is uniform and unbounded is unnec-
essary: All that is required is that the body is invariant to trans-
lations along the direction of movement, so that all the particles
from which the body is made up move with the same velocity.

Even though Pps,tot = 0, in general the quantum expectation
of the pseudomomentum associated with a specific body Vi

can be different from zero. However, since Pps,tot = 0, if one
body acquires an extra pseudomomentum, this must be done
at the expense of the other bodies in the system. Moreover,
because we are interested in the processes in which the
x-directed canonical momentum of each body is conserved,
a change in the pseudomomentum is always accompanied
with a compensating change in the kinetic momentum of a
body. Thus, the phenomenon under analysis can be pictured
simply as an exchange of momentum between different
bodies moving at different velocities induced by the zero-point
quantum fluctuations.

One may wonder why Pps,tot = 0 is independent of the
geometry of the system (e.g., independent of the distance
between two bodies), whereas, for example, the zero-point
energy of the system depends on the specific configuration

under analysis. To understand the reason, one can imagine that
the two interacting rigid bodies, let us say, two slabs, are first
infinitely far apart and stand in a vacuum. In such conditions,
since the bodies do not interact, the total pseudomomentum
of each body must vanish. Let us now suppose that one of
the bodies is brought to the vicinity of another by applying
an external force Fext to the first body. In this process the
center-of-mass coordinates of each slab can change, and in
particular (r0,i ,vi) will change. We imagine that the process
is sufficiently slow so that at each time instant dPcan,i/dt =
−〈∂ĤEM,P /∂r0,i〉 + Fext = 0, i.e., the canonical momentum
of each slab is conserved. Moreover, the process should be
sufficiently slow so that the state of the electromagnetic field
and polarization waves is always |0r0,i ,vi

〉 (thus, we neglect the
dynamic Casimir effect). However |0r0,i ,vi

〉 changes as the slabs
are brought to the vicinity of one another, because (r0,i ,vi)
also changes. Note that even though vi depend on the relative
distance between the slabs, we assume that the velocities vary
slowly with time so that the quantization theory of Sec. II still
applies. In the enunciated conditions, 〈∂ĤEM,P /∂x0,i〉 = 0,
and hence the external force is perpendicular to the x direction.
Clearly, in the outlined process the external force is required to
do some work, to counteract the quantum fluctuation-induced
Casimir forces, and hence this explains why the zero-point
interaction energy of the system is changed. However, as the
external force acts perpendicularly to the direction of initial
movement of the pertinent slab it does not change the x

component of the total momentum of the system, which must
therefore be conserved. Moreover, since the x component of
the canonical momentum of each slab is conserved, it follows
that the wave momentum also is. Because heuristically one
may also expect that the net electromagnetic momentum gener-
ated by quantum fluctuations vanishes, the previous discussion
suggests that Pps,tot = 0, in agreement with our theory.

It is emphasized that our quantization of ĤEM,P is based
on the relativistic constitutive relations in moving media, and
that formula (25) for the pseudomomentum is also consistent
with relativity. Hence, it seems reasonable to modify Eq. (3a)
to take also into account the relativistic effects in the kinetic
momentum. This can be easily done by using gkin,i = ρ0,iγ

2
i vi

[see Eq. (10)], ρ0,i is the density of mass of the ith slab in the
comoving frame. Using Eq. (25), one readily finds that the x

component of the kinetic, canonical, and pseudomomentum of
the ith slab is related by

ρ0,iγ
2
i vi = gcan,i + (

1 − β2
i

) 1

ALy,i

∂E0

∂vi

, (30)

where Ly,i is the thickness of the ith slab along the y direction,
γi = 1/

√
1 − v2

i /c
2, and gcan,i = Pcan,i/V is the density of

canonical momentum. As outlined previously, in the type of
problems we are interested in, Pcan,i is conserved, and can
typically be regarded as the kinetic momentum when the
bodies are infinitely far apart. This implies that gcan,i/γi is
invariant and equal to gkin,i,∞/γi,∞ = ρ0,iγi,∞vi,∞, where vi,∞
is the velocity of each slab when they are infinitely far apart
and γi,∞ = 1/

√
1 − v2

i,∞/c2. Thus, we have

ρ0,iγ
2
i vi = ρ0,iγiγi,∞vi,∞ + 1

Ly,i

1

γ 2
i

(
1

A

∂E0

∂vi

)
,

(31)
i = 1,2, . . . ,N.
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Note that both the left- and right-hand sides of the equation
depend on the velocities of the slabs v1,v2, . . . ,vN . By solving
the above system it is possible to determine how the velocity
of each slab varies with the distance between the slabs,
provided vi,∞ are specified. It is important to make clear
that the velocities vi depend on the (tiny) effect (i.e., on the
expectation) of the quantum fluctuations, and hence need to be
determined self-consistently. To an excellent approximation,
since typically the quantum corrections on vi,∞ are quite
tiny, one can simply evaluate Pps,Vi

[the second term in the
right-hand side of Eq. (31)] using the velocities vi,∞, rather
than vi .

VI. NUMERICAL EXAMPLES

To quantify the electromagnetic momentum generated by
quantum fluctuations in Casimir-type geometries, we made a
numerical study that is reported next. In the first example we
consider a scenario wherein a pair of extremely thick dielectric
slabs (modeled here as semi-infinite layers) are separated by a
vacuum gap. With respect to the laboratory frame, the first slab
moves with a constant speed v1 and the second is stationary
(v2 = 0). The relative velocity of the layers is kept below the
Cherenkov threshold.

Using the theory of Ref. [14], we numerically calculate
the Casimir interaction energy in this system (per unit area),
and then find the pseudomomenta (per unit area) of the layers
from Eq. (28). The results of these calculations are plotted
in Fig. 2 as functions of the normalized velocity of the first
layer β = v1/c. We note that the pseudomomentum of the
moving layer Pps,V1 is antiparallel to the velocity of this layer
(βPps,V1 < 0) and grows in magnitude monotonically with the
velocity. Since Pkin,Vi

= Pcan,Vi
+ Pps,Vi

this implies that in a
closed system in which the canonical momentum is conserved
the interaction between the two slabs causes a reduction of the
kinetic momentum of slab 1, and an increase of the kinetic
momentum of the slab 2, which is the most intuitive result.

FIG. 2. (Color online) Normalized pseudomomenta Pps,V1,norm

and Pps,V2,norm of two moving nondispersive identical semi-infinite
dielectric layers separated by a vacuum gap of width d as functions
of the normalized velocity of the first layer β = v1/c. The second
layer is stationary (v2 = 0). The values of the pseudomomentum per
unit area [Eq. (28)] are normalized as Pps/A = Pps,normπ 2h̄/(720d3).
The different curves correspond to different values of the dielectric
constant of the layers: ε1 = 2, ε2 = 4, ε3 = 8.

FIG. 3. (Color online) Normalized pseudomomenta Pps,V1,norm

and Pps,V2,norm in a system composed of a moving dielectric slab
of thickness d (first layer) on top of a semi-infinite dielectric (second
layer) as functions of the normalized velocity of the first layer,
β = v1/c. The second layer is stationary (v2 = 0). The rest of the
legend is as in Fig. 2. Both layers have the same dielectric constant
in the respective rest frame.

We remind that the canonical momentum of each slab, Pcan,Vi
,

is a constant and is independent of the distance of the slabs.
As expected, at any given velocity β of the first layer, the
second (stationary) layer acquires exactly the opposite amount
of the pseudomomentum, Pps,V2 = −Pps,V1 , so that the total
pseudomomentum of the system vanishes, which is in full
agreement with the theoretical result obtained above.

In the next example we study the zero-point pseudomomen-
tum in a system that comprises a moving dielectric layer with
thickness d placed directly on the top of a very thick dielectric
“substrate” (modeled as semi-infinite layer). The velocity of
the moving layer with respect to the substrate is v1, and the
substrate is assumed stationary with respect to the laboratory
frame, v2 = 0. Above the moving slab there is a vacuum. When
both layers are of the same permittivity this situation can be
visualized as a special case of a nonuniformly moving fluid,
where only a thin layer close to the free surface of the fluid is
moving.

The numerically calculated pseudomomenta of the moving
layer and the substrate for this case are plotted in Fig. 3.
Contrary to the previous example, in this setup the pseudomo-
mentum of the moving layer is collinear with its velocity,
βPps,V1 > 0. As before, the total pseudomomentum of the
system vanishes at arbitrary velocity β: Pps,V2 + Pps,V1 = 0. In
both examples, the pseudomomentum acquired by the slabs is
higher for higher values of the slab permittivities. One may
speculate that the sign of Pps,V1 may be somehow related
to the difference of the probabilities of transmission from
medium 2 to medium 1, of two virtual quasiparticles (which,
loosely speaking, we may identify with plane-wave modes)
with transverse momentum h̄kx/2 and −h̄kx/2, respectively.
Further studies are required to understand if this explanation
is physically correct.

The result βPps,V1 > 0 may look incompatible with the
general behavior predicted by Fig. 2. However, it must be noted
that the scenario of Fig. 3 cannot be regarded as the limit case
d → 0 of the configuration of Fig. 2. Indeed, as d → 0 in the
configuration of Fig. 2, the pseudomomentum [which for a
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fixed velocity is proportional to π2h̄/(720d3)] diverges to ∞
unless the velocity of the slabs is progressively closer. Thus, to
keep the canonical momentum of the two slabs invariant (as it
should be), it is necessary that in the limit d → 0 the two slabs
move with the same velocity, which is very different from the
case of Fig. 3.

Simple estimations based on Eq. (31) show that in the
scenario of Fig. 2 an initially stationary 10-nm-thick slab of a
material with mass density ρ = 103 kg m−3 and the dielectric
constant εr = 4 will acquire a velocity of about v1 = 5.6 nm/s
when brought from infinity to a close distance of 10 nm from a
massive slab of the same material moving at a speed v2 = 0.3c.
This is a quite encouraging result since for magnetoelectric
materials the theory of Tiggelen [4] predicts velocities of the
order 10−17 nm/s. Thus, the scenarios considered in this paper
may be instrumental for detecting a momentum exchange
originated by the quantum fluctuations. On the other hand, at
the separation of 1 Å the same slab will acquire a velocity on
the order of 5.6 mm/s. Therefore, the limiting case discussed
above (i.e., v1 → v2 in the limit d → 0) is purely theoretical
as it necessarily happens at unphysically small separations
wherein the description of matter as an effective continuous
medium is obviously inapplicable.

So far we have considered dielectric layers with the
same permittivity, however, and especially for the second
example, it is interesting to check how a small difference in
the dielectric permittivity of the layers affects the behavior
of the pseudomomentum. In this regard, it is instructive to
compare the dependence of the Casimir energy on the layer
velocities in a few representative cases. In order to do this,
we let the permittivity of the moving layer be ε1 = ε2 + �ε,
where ε2 is the permittivity of the stationary layer. In the
configuration of the second example (thin layer on top of
a thick substrate) one may expect E0,int > 0 when �ε < 0
(which is the case of the Casimir repulsion for nondispersive
dielectrics with ε2 > ε1 > 1), and E0,int < 0 when �ε > 0

FIG. 4. (Color online) Normalized Casimir interaction energy
E0,int,norm in a system composed of a dielectric layer of thickness
dabove a semi-infinite dielectric layer as a function of the normalized
velocity of the top layer β = v1/c. The bottom layer is stationary
(v2 = 0) and has permittivity ε2 = 2. The permittivity of the moving
layer is ε1 = ε2 + �ε, with varying �ε = −0.2,−0.1,0,0.1,0.2, as
indicated by the arrow. The energy per unit area is normalized to
π 2h̄c/(720d3).

(the Casimir attraction case) at zero relative velocity β = 0.
Thus, the Casimir interaction energy changes sign when �ε

crosses zero, but how does this affect the pseudomomentum?
This may be understood from Fig. 4 where we show the
velocity dependence of the Casimir interaction energy for
different values of �ε. It is seen that when �ε > 0 the Casimir
attraction may shift to Casimir repulsion at sufficiently large
velocities (and at some intermediate velocity the Casimir force
is fully compensated). This result by itself is quite interesting
and complements the findings of earlier work on Casimir
forces in moving media (see Ref. [14]), where this specific
case was not studied. However, when the pseudomomentum
in this structure is considered, it can be inferred from Fig. 4 and
Eq. (28) that independently of the sign of �ε the behavior of the
pseudomomentum with the velocity β remains qualitatively
the same as in Fig. 3.

VII. CONCLUSION

In this paper, we proposed a macroscopic quantum theory
to characterize the exchange of momentum in moving matter
induced by the quantum vacuum at zero temperature. In our
approach, both the electromagnetic field and the polarization
waves (related to the oscillations of electric dipoles associated
with the moving matter) are quantized, but the canonical
momentum associated with the center of mass of the moving
particles is treated classically. For lossless nondispersive
systems invariant to translations along the direction of move-
ment, the canonical momentum is conserved. It was argued
that the total net (wave) momentum generated by quantum
fluctuations (i.e., the momentum of the clothed polariton
photons) vanishes. In general, the quantum expectation of the
additional kinetic momentum imparted to a specific moving
body may be nonzero, and can be expressed in terms of the
pseudomomentum. We have demonstrated that the zero-point
pseudomomentum at zero temperature can be written in terms
of the zero-point interaction energy of the system, and we
numerically calculated it for several illustrative examples.
Since the total pseudomomentum of the system vanishes, there
is no net total momentum generated by quantum fluctuations
neither in matter components of the system nor in the
electromagnetic field.

ACKNOWLEDGMENT

This work is supported in part by Fundação para a Ciência
e a Tecnologia Grant No. PTDC/EEATEL/100245/2008.

APPENDIX A: QUANTIZATION OF
THE ELECTROMAGNETIC FIELD

Here, we develop a theory that characterizes the quantum
fluctuations in macroscopic moving media. The geometry of
the system is the one described in Sec. II, and it is assumed
without loss of generality that the pertinent cavity is terminated
with periodic boundary conditions.

Let us first characterize the normal modes of the system
from a classical point of view. Within a macroscopic approach,
the electromagnetic field satisfies the Maxwell’s equations
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[Eq. (7)]

N̂F = iM · ∂F
∂t

. (A1)

As discussed in Sec. II, the material matrix M is Hermitian
and real valued, M = M†. In addition, it can be easily checked
from Eq. (5) that, provided the velocity of each moving
component of the system is below the Cherenkov threshold,
i.e., if |v| < c/n, then M is a positive definite matrix at every
point r. This condition is assumed to hold throughout this
work. An important consequence of M being positive definite
is that the stored energy,

HEM,P = 1

2

∫
d3rB · H + D · E = 1

2

∫
d3rF · M · F, (A2)

is always positive in the lab frame, i.e., HEM,P > 0. Such a
property will be of key importance in what follows.

Let us introduce an inner product 〈 | 〉 such that for two
six-component vectors F1 and F2 we have

〈F2|F1〉 = 1

2

∫
d3r F∗

2 · M(r) · F1. (A3)

Since M is positive definite, it is evident that 〈F|F〉 > 0 for
F �= 0, and thus 〈 | 〉 really defines an inner product. It is
straightforward to check that, provided F1 and F2 satisfy
periodic boundary conditions at the walls of the cavity, one
has

〈F2|M−1N̂F1〉 = 〈M−1N̂F2|F1〉, (A4)

i.e., M−1 · N̂ is an Hermitian operator in the Hilbert space of
six vectors that satisfy periodic boundary conditions with an
inner product determined by 〈 | 〉. In particular, it follows that
M−1 · N̂ has a complete set of eigenfunctions Fn = ( En

Hn

)
, such

that

M−1 ·
(

0 i∇×
−i∇× 0

)
Fn = ωnFn, (A5)

where ωn are the eigenfrequencies of the cavity, and

δm,n = 〈Fm | Fn〉 = 1

2

∫
d3r F∗

m · M(r) · Fn. (A6)

It is interesting to note that Fn is necessarily complex
valued for ωn �= 0. In fact, if Fn were purely real valued,
the left-hand side of Eq. (A5) would be an imaginary pure
vector, whereas the right-hand side of the same equation
would be a purely real vector, and this is impossible for a
nontrivial Fn. Therefore Fn is complex valued for ωn �= 0. In
particular, it should be clear (because M is real valued) that F∗

n

is an eigenfunction associated with −ωn. Hence, despite the
nonreciprocal response of the materials, the spectrum of the
cavity is always symmetric with respect to ω = 0.

It is evident that all the eigenmodes associated with an ωn �=
0 are transverse fields, i.e., they satisfy ∇ · D = 0 = ∇ · B, i.e.,
the density of electric charge vanishes. In particular, any six-
vector field F that satisfies the periodic boundary conditions
and ∇ · D = 0 = ∇ · B can be expanded in terms of transverse
eigenmodes, as follows:

F =
∑
ωn>0

[bnFn(r) + b̃nF∗
n(r)], (A7)

where bn = 〈Fn|F〉, etc. Notice that the summation is restricted
to eigenvalues ωn > 0, because the eigenfunction associated
with −ωn is F∗

n, as discussed previously. In particular, when F
is real valued we may write

F =
∑
ωn>0

[bnFn(r) + b∗
nF∗

n(r)]. (A8)

The stored energy associated with the field F is obviously
equal to 〈F|F〉, and hence using the normalization of the modes
[Eq. (A6)] it satisfies

HEM,P = 2
∑
ωn>0

|bn|2 = 2
∑
ωn>0

(
b′2

n + b′′2
n

)
, (A9)

where bn = b′
n + i b′′

n. In order that F satisfies the Maxwell’s
equations (A1), it is necessary that ωnbn = iḃn with ḃn =
dbn/dt [this implies bn(t) = bn(0)e−iωnt ]. Thus, the real and
imaginary parts of bn must satisfy ḃ′

n = ωn b′′
n and ḃ′′

n =
−ωn b′

n.
Let us now define the variables qn and pn such that b′

n =
ωn

2

√
mqn and b′′

n = 1
2
√

m
pn, where m has dimensions of mass

(and can be chosen arbitrarily). Then, from the previous results
it is clear that the stored energy can be written as

HEM,P =
∑
ωn>0

(
1

2
mω2

nq
2
n + 1

2m
p2

n

)
, (A10)

with q̇n = 1
m

pn = ∂HEM,P

∂pn
and ṗn = −mω2

nqn = − ∂HEM,P

∂qn
.

Therefore, the classical system is described by an infinite set
of decoupled harmonic oscillators.

We are now ready to quantize the electromagnetic field. To
this end, we only need to promote qn and pn to operators
that satisfy canonical commutation relations, [q̂n,p̂n] = ih̄,
etc. By doing this, introducing the annihilation operator
ân =

√
mωn

2h̄ q̂n + i
√

1
2h̄mωn

p̂n, it is straightforward to verify that
the Hamiltonian of the quantized system is given by

ĤEM,P =
∑
ωn>0

h̄ωn

(
â†

nân + 1

2

)
, (A11)

whereas the quantized field operator becomes (in the
Schrödinger representation)

F̂ =
(

Ê
Ĥ

)
=

∑
ωn>0

√
h̄ωn

2
[ânFn(r) + â†

nF∗
n(r)]. (A12)

Note that the modes Fn should be normalized according to
Eq. (A6). This result agrees with the quantized electromag-
netic field in a standard dielectric cavity (with no moving
components and assuming that the materials are not dispersive)
[31]. The creation and annihilation operators satisfy the usual
commutation relations

[an,am] = [a†
n,a

†
m] = 0, [an,a

†
m] = δn,m. (A13)

The operators associated with the electric displacement and
with the magnetic induction are defined by

Ĝ ≡
(

D̂
B̂

)
= M ·

(
Ê
Ĥ

)
=

∑
ωn>0

√
h̄ωn

2
[ânGn(r) + â†

nG∗
n(r)],

(A14)

where Gn = M · Fn.
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APPENDIX B: THE QUANTUM EXPECTATION
OF THE WAVE MOMENTUM

In this Appendix, we provide evidence that 〈0|x̂ · P̂wv|0〉 =
0, where |0〉 denotes the ground state of ĤEM,P , P̂wv =∫

ĝwvd
3r is the total wave momentum in the cavity and the

integration is over the volume of the cavity. To begin with, we
note that based on Eqs. (14) and (A14) it is possible to write

x̂ · 〈0|ĝwv|0〉 = x̂ ·
∑
ωn>0

h̄ωn

2

1

2
(Dn × B∗

n + D∗
n × Bn). (B1)

Since by hypothesis our system is invariant to translations
along the x direction, the dependence on x of a generic mode
is necessarily of the form eikxx , where kx depends on the
considered mode. The allowed values of kx are determined
by the length Lx of the cavity along x: kx = 2πm/Lx ,
m = 0,±1,±2, . . . . In Appendix C, we demonstrate that a
generic eigenmode Fn associated with the eigenfrequency ωn

and with the wave number kx satisfies [Eq. (C1)]∫
d3r x̂ · 1

2
(Dn × B∗

n + D∗
n × Bn)

= kx

ωn

{
1

2

∫
d3r(D∗

n · En + B∗
n · Hn)

}
= kx

ωn

, (B2)

where the second identity is a consequence of the normaliza-
tion condition (A6). A similar relation between the energy and
the wave momentum associated with a plane-wave mode in a
uniform moving medium was also derived in Ref. [14]. Hence,
substituting the above result into Eq. (B1), it follows that

〈0|x̂ · P̂wv|0〉 =
∑
ωn>0

h̄(kx)n
2

, (B3)

where (kx)n represents the wave number associated with
the nth mode. This formula shows that the “zero-point
momentum” of each quantum oscillator is h̄kx/2. The relation
between the wave momentum and Nh̄k was also pointed out
in Ref. [24] for the case of a uniform medium.

But since the allowed values for kx are symmetric with
respect to the origin (kx = 2πm/Lx , m = 0,±1,±2, . . .), it
follows that if we consider the same number of modes for
each kx the series (B3) has a sum equal to zero:

〈0|x̂ · P̂wv|0〉 = 0. (B4)

In other words, the quantum expectation of the total wave
momentum in the ground state of the system is zero. It should
be mentioned that our argument is only partially rigorous
because, strictly speaking, the series (B3) is not absolutely
convergent, and thus the sum of the series may depend on the
order of summation.

APPENDIX C: THE WAVE MOMENTUM
FOR A NATURAL MODE

Here, we prove that if Fω = ( Eω

Hω

)
is a eigenmode [i.e., it

satisfies N̂Fω = ωM · Fω: See Eq. (A5)] associated with the
frequency ω and with the wave number kx (the system is

invariant for translations along x) then∫
d3r x̂ · Re(Dω × B∗

ω)

= kx

ω

{
1

2

∫
d3r(D∗

ω · Eω + B∗
ω · Hω)

}
. (C1)

To begin with, we note that the following identity holds for
arbitrary vectors:

x̂ · (E∇ · D − D × ∇ × E) = ∇ · (D Ex) − D · ∂E
∂x

. (C2)

Replacing D → D∗
ω and E → Eω in the above equation, and

using Eq. (A5) and ∇ · Dω = 0, it follows that

x̂ · (−D∗
ω × iωBω) = ∇ · (D∗

ω Eω,x) − D∗
ω · ∂Eω

∂x
. (C3)

Hence, integrating over the entire cavity we obtain∫
d3r x̂ · (−D∗

ω × iωBω) =
∫

d3r
(

−D∗
ω · ∂Eω

∂x

)
. (C4)

Likewise, it is also possible to show that∫
d3r x̂ · [−B∗

ω × (−iωDω)] =
∫

d3r
(

−B∗
ω · ∂Hω

∂x

)
. (C5)

This implies that

−iω

∫
d3r x̂ · (D∗

ω × Bω + Dω × B∗
ω)

= −
∫

d3r
(

D∗
ω · ∂Eω

∂x
+ B∗

ω · ∂Hω

∂x

)
. (C6)

Using now the fact that the system is invariant to translations
along the x direction, and hence ∂

∂x
= ikx , we readily obtain

Eq. (C1). It is interesting to mention that Eq. (C1) can be
rewritten as

gwv,av · x̂ = Wav
kx

ω
, (C7)

where gwv,av = 1
V

∫
d3r 1

2 Re(Dω × B∗
ω) is the time-

and volume-averaged wave momentum density,
Wav = 1

4V

∫
d3r(D∗

ω · Eω + B∗
ω · Hω) is time- and

volume-averaged stored energy density, and V is the
volume of the region of interest.

APPENDIX D: PERTURBATION OF THE
EIGENFREQUENCIES OF AN ELECTROMAGNETIC

CAVITY UNDER AN INFINITESIMAL VARIATION
OF THE MATERIAL PARAMETERS

Here, we consider a generic cavity filled with a nonuniform,
nondispersive, bianisotropic material described by the material
matrix M = M(r), consistent with the geometry of Fig. 1.
We suppose that the material matrix depends on a continuous
parameter u, which controls, for example, either the geometry
of the system or the velocity of one of the moving components
of the system, so that M = M(r,u). The objective is to
determine the perturbation of the eigenfrequencies of the
cavity under an infinitesimal variation of u. To begin with,
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let us consider an eigenmode Fn = ( En

Hn

)
such that [Eq. (A5)]

N̂ · Fn = ωnM · Fn, (D1)

where ωn is the eigenfrequency (for simplicity, in what follows
the subscript n will be dropped). Since M depends on the
parameter u, it is clear that F and ω also do. Hence, we may
write

(N̂ − ω M) · ∂F
∂u

= ∂ω

∂u
M · F + ω

∂M
∂u

· F. (D2)

Calculating the scalar product of both sides with F∗, and
integrating over the volume of the cavity, we find that∫

d3r F∗ · (N̂ − ωM) · ∂F
∂u

=
∫

d3r
(

∂ω

∂u
F∗ · M · F + ω F∗ · ∂M

∂u
· F

)
. (D3)

But straightforward calculations show that∫
d3r F∗ · (N̂ − ωM) · ∂F

∂u

=
∫

d3r[(N̂ − ωM) · F]∗ · ∂F
∂u

= 0, (D4)

where we used the fact that N̂ − ωM is Hermitian with
respect to the standard canonical scalar product, and Eq. (D1)
(notice that the boundary conditions satisfied by ∂F

∂u
at the

walls of the cavity are the same as those satisfied by F,
e.g., periodic boundary conditions). Feeding this result into
Eq. (D3), we obtain the desired formula for the perturbation
of the eigenfrequency in terms of the variation in the material
matrix:

∂ω

∂u
= −ω

∫
d3r F∗ · ∂M

∂u
· F∫

d3r F∗ · M · F
. (D5)

APPENDIX E: THE RELATIVISTIC INVARIANCE
OF THE PSEUDOMOMENTUM

Let us consider a reference frame that moves with a constant
velocity u with respect to the laboratory frame. We assume
that the velocity is directed along the x axis. In this frame, the
pseudomomentum P ′

ps,Vi
of a given slab reads [Eq. (28)]

P ′
ps,Vi

A′ = (
1 − β ′2

i

) ∂

∂v′
i

(
E0,int(v′

1, . . . ,v
′
i , . . . ,v

′
n)

A′

)

= (
1 − β ′2

i

) ∂

∂v′
i

(
E0,int(v1, . . . ,vi, . . . ,vn)

A

)
, (E1)

where the primed quantities are with respect to the moving
frame, and we have used the invariance of E0,int

A
with respect

to movements along the x direction, as discussed in Sec. V B.
The slab velocities in the laboratory frame and in the moving
frame are related by the relativistic velocity addition law,

vi = v′
i + u

1 + uv′
i/c

2
, v′

i = vi − u

1 − uvi/c2
, (E2)

therefore, the pseudomomentum as seen from the moving
frame is

P ′
ps,Vi

A′ = (
1 − β ′2

i

) (
∂vi

∂v′
i

)
∂

∂vi

(
E0,int

A

)
. (E3)

But straightforward calculations show that(
1 − β ′2

i

)∂vi

∂v′
i

= 1 − β2
i , (E4)

and thus Eqs. (28) and (E3) imply that P ′
ps,Vi

/A′ = Pps,Vi
/A,

i.e., that the pseudomomentum density is the same in both
frames and is invariant with respect to relative motion along
the x axis.
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