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Transformation electronics: Tailoring the effective mass of electrons
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The speed of integrated circuits is ultimately limited by the mobility of electrons or holes, which depend on
the effective mass in a semiconductor. Here, building on an analogy with electromagnetic metamaterials and
transformation optics, we describe a transport regime in a semiconductor superlattice characterized by extreme
anisotropy of the effective mass and a low intrinsic resistance to movement—with zero effective mass—along
some preferred direction of electron motion. We theoretically demonstrate that such a regime may permit an
ultrafast, extremely strong electron response, and significantly high conductivity, which, notably, may be weakly
dependent on the temperature at low temperatures. These ideas may pave the way for faster electronic devices
and detectors and functional materials with a strong electrical response in the infrared regime.
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In 1969, Esaki and Tsu suggested that by either periodically
doping a monocrystalline semiconductor or by varying the
composition of the alloy, quantum mechanical effects should
be observed in a new physical scale,1 so that the conduction
and valence bands of such superlattices are structured in the
form of many subbands,1,2 and in particular they predicted
the possibility of a negative differential conductance.1 This
pioneering work has set the stage for dispersion engineering
in semiconductor superlattices. This conceptual breakthrough
and other prior key proposals (e.g., the idea of quasielectric
fields3) are the foundation of many interesting advances in
semiconductor technology,4 and has enabled, among others,
the development of the quantum cascade laser,5 and the real-
ization of ultrahigh mobilities in semiconductor superlattices
and quantum wells.6,7

Following these advancements, more recently, there has
been much activity in the study of a new class of mesoscopic
materials—metamaterials—whose electromagnetic properties
are determined mainly by the geometry and material of its
constituents, rather than from the chemical composition.8,9

Such a line of research has resulted in the development of
double negative materials, which promise erasing diffraction
effects and perfect lensing.8

Until now, the obvious analogy between superlattices and
electromagnetic metamaterials received little attention, apart
from isolated studies.10,11 Here, inspired by the paradigm
offered by electromagnetic metamaterials and transformation
optics,8,9 we develop the paradigm of “transformation elec-
tronics,” wherein the electron wave packets are constrained to
move along desired paths, and predict a transport regime in
a semiconductor superlattice based on the extreme anisotropy
of the effective mass.

In a semiconductor the effective mass determines the inertia
of the electron to an external stimulus. The finite value of
the mobility ultimately limits the speed of integrated circuits
and other devices. In most electronic circuits the electron
flow is supposed to occur along a predetermined path, e.g.,
down the passageway connecting two transistors. However,
typically only a small portion of the available free carriers
responds effectively to an external electric field, i.e., those
whose velocity vg = h̄−1∇kE is parallel to the impressed
field. Would it however be possible to engineer the electron

mass in such a way that all the available electronic states
contribute to the electron flow? Moreover, would it however
be possible to reverse or “cancel” the effects of the intrinsic
electron resistance to movement, along the preferred direction
of motion?

A superlattice with the properties implicit in the first ques-
tion must be anisotropic. Indeed, in order that vg = h̄−1∇kE is
parallel to the desired direction of flow (let us say z), it is neces-
sary that the energy dispersion E = E(k) depends exclusively
on the wave vector component kz, and hence the effective
mass tensor satisfies m∗

xx = m∗
yy = h̄2(∂2E/∂k2

y)−1 = ∞, i.e.,
the resistance to a flow in the x-y plane must be extremely
large. To satisfy the requirements implicit in the second
question it is necessary that m∗

zz = h̄2(∂2E/∂k2
z )−1 be near

zero. Thus ideally we should have m∗
xx = m∗

yy = ∞ and m∗
zz =

0, and thus an effective mass tensor characterized by extreme
anisotropy. Notably, heterostructures with extreme anisotropy
have received some attention in recent years due to their
potentials in collimating both light12 and electrons.13 However,
our findings are fundamentally different from previous studies:
We deal with a bulk semiconductor superlattice, and show how
by combining two different semiconductors it may be possible
to supercollimate the electron flow (m∗

xx = m∗
yy = ∞) and in

addition to have a weak resistance to movement (m∗
zz = 0).

A zero mass has been previously predicted to occur at
contacts between semiconductors with normal and inverted
band structures,14 but not an extreme anisotropy regime.

To achieve this, we draw on an analogy with electro-
magnetic metamaterials. The intriguing tunneling phenomena
observed in electromagnetic metamaterials are rooted in the
fact that two materials such that ε1 = −ε2 and μ1 = −μ2, with
ε being the permittivity and μ the permeability, “electromag-
netically annihilate” one another.8,15 It is thus natural to wonder
if in electronics it may be possible to identify complementary
materials that when paired yield m∗ ≈ 0. Since the effective
mass of the carriers is expected to be determined by some
averaging of the values of m∗ in the superlattice constituents,
this suggests that one should look for materials wherein m∗
has different signs.

Even though unusual, the carriers can have a negative
effective mass, notably in semiconductors and alloys with
a negative energy band gap.16 Examples of such materials
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are mercury telluride (HgTe) (a group II-VI degenerate
semiconductor) and some alloys of mercury cadmium telluride
(HgCdTe), which have an inverted band structure,16,17 so that
the �8 (P -type) valence bands lie above the conduction band
�6 (S type), and the effective masses of both electrons and
holes (m∗

c,h) are negative.
In Refs. 18 and 19 we develop a formal analogy between

the Helmholtz equation for the electromagnetic field and a
Schrödinger-type equation for the envelope wave function
consistent with the standard Kane model (k·p method) for
semiconductors with a zinc-blende structrure.20 Within this
formalism, which is consistent with Bastard’s theory,21 the
electron is described by a single component wave function ψ ,
which may be regarded as the spatially averaged microscopic
wave function. This contrasts with the conventional k·p
approach where the electron is described by a multicomponent
wave function.20 For the case of Bloch waves, ψ may be
identified with the zeroth order Fourier harmonic of the micro-
scopic wave function.18,19 Related averaging procedures have
been considered previously in the context of electromagnetic
metamaterials.22 The wave function in the superlattice satisfies

−h̄2

2
∇ ·

(
1

m(E,r)
∇ψ

)
+ [V (E,r) − E]ψ = 0. (1)

The effective potential V (E,r) = Ec(r) = E�6 (r) is deter-
mined by the energy level of the conduction band in each
component of the heterostructure. Provided the effect of the
spin-orbit split-off bands is negligible, the dispersive (energy-
dependent) mass m = m(E,r) of the heterostructure can
be approximated by m(E,r) ≈ [E − Ev(r)]/[2v2

P (r)], where
Ev(r) = E�8 (r) is the valence band energy level, m0 is the free-
electron mass, EP = 2P 2m0/h̄

2, P is Kane’s parameter,20 and
vP = √

EP /(3m0) has dimensions of velocity. The dispersive
mass m = m(E,r) should not be confused with the effective
mass m∗ = h̄2[∂2E/∂ki∂kj ]−1 determined by the curvature
of the energy diagram. For narrow gap semiconductors m∗

satisfies (for both electrons and holes) m∗
c ≈ m∗

h ≈ Eg

2v2
P

, where
Eg = Ec − Ev is the band-gap energy of the semiconductor.
The sign of m∗ is the same as that of Eg .

Let us consider a superlattice formed by slabs of two
narrow gap semiconductors alternately stacked along the z

direction [Fig. 1(a)]. Each semiconductor layer (i = 1,2)
has thickness di , and is described by parameters Vi and
mi = mi(E), and the band gap energies of the semiconductors
have different signs so that Eg,1 > 0 (e.g., an alloy of HgCdTe)
and Eg,2 < 0 (e.g., HgTe). In addition, the valence band offset
� = Ev,2 − Ev,1 is such that 0 < � < Eg,1 + |Eg,2| so that
there is no overlap between conduction and valence bands
in the two materials [Fig. 1(c)]. From the analogy between
the Schrödinger [Eq. (1)] and Helmholtz equations outlined
in Refs. 18 and 19, we have the correspondences between
the parameters ε and μ (permittivity and permeability) and
V and m, μ(ω) ↔ m(E) and ε(ω) ↔ E − V (E), analogous
to Ref. 10. Hence, it follows that the material with a positive
band gap (Eg,1 > 0) is seen by an electron with energy E in the
band gap as a material with ε < 0 and μ > 0 (ENG material),
whereas the material with a negative band gap (Eg,2 < 0) is
seen as a material with ε > 0 and μ < 0 (MNG material) [see
Fig. 1(b)].

FIG. 1. (Color online) Transformation electronics and electronic
metamaterials: Sketch of the geometry and electronic band diagram
of the elements of the superlattice. (a) Geometry of a stratified
superlattice formed by alternating layers of semiconductor alloys
with band gaps with different signs. (b) Electromagnetic analog of the
superlattice for energy levels close to E − Veff ≈ 0: In the band gap
the semiconductor with a positive (negative) band gap is the electronic
analog of an ε < 0 (μ < 0) electromagnetic material. (c) Detailed
energy band structure of each layer of the superlattice, showing the
valence band offset � between the two semiconductors.

We calculated analytically the dispersion of the superlattice
Bloch modes, using Eq. (1) and imposing generalized Ben
Daniel–Duke boundary conditions at the interfaces.21 Our
Kronig-Penney type model yields19

cos(kza) = cos(kz,1d1) cos(kz,2d2) − 1

2

(
kz,1m2

kz,2m1
+ kz,2m1

kz,1m2

)

× sin(kz,1d1) sin(kz,2d2) (2)

where a = d1 + d2 is the lattice constant, kz,i =√
2mi (E)

h̄2 [E−Vi (E)]−k2
||, k = k|| + kzẑ is the wave vector, and the

effective parameters of the semiconductors are Vi = Ec,i and
mi = (E − Ev,i)/2v2

P,i , i = 1,2. The conduction miniband
resulting from the hybridization of the energy diagrams of the
two semiconductors emerges at the energy level E = Veff ,
where Veff = V1f1 + V2f2. The energy origin is fixed so that
Veff = 0.

A detailed analysis of Eq. (2) reveals that the effective mass
of the superlattice satisfies M∗

zz = 0 and M∗
xx = M∗

yy = ∞ (for
both electrons and holes) provided the spatially averaged band-
gap energy (Eg,av) and the filling ratio of the materials satisfy19

Eg,av = �

2

v2
P,1 − v2

P,2

v2
P,1 + v2

P,2

and f1 = f2 = 1

2
. (3)

For ternary alloys of Hg1−xCdxTe we have vP,1 ≈ vP,2,
because Kane’s P parameter varies little with the mole
fraction x,17 and hence Eq. (3) reduces to Eg,av = 0. This
can be realized taking the negative band-gap material
as HgTe [Eg,2 = −0.3 eV (Refs. 16 and 17)], and the
positive band-gap material as Hg0.65Cd0.35Te, which has
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FIG. 2. (Color online) Effective parameters (mass and potential)
of the semiconductor alloys. Left axis: Dispersive mass as a function
of the normalized electron energy E; solid lines: exact result taking
into account the effect of the split-off bands (see Refs. 18 and 19);
dashed lines: linear mass approximation described in the main text.
As seen, the effect of the split-off bands is negligible in the energy
range of interest. Right axis: Effective potential (E−V ) as a function
of the normalized electron energy E.

Eg,1 = +0.3 eV.23 Figure 2 shows the effective dispersive
mass and effective potential calculated using our model [with
� = 0.40|Eg| = 0.12 eV (Ref. 24)], confirming that the

effective parameters of each material have different signs.
In the conditions of Eq. (3), and for vP,1 = vP,2 ≡ vP , the
energy dispersion may be approximated by19

E = ±h̄ |kz| vP (1 + k2
|| 4 h̄2v2

P /�2)−1/2. (4)

Thus, the energy dispersion along the z direction varies
linearly, consistent with the property M∗

zz = 0. Hence, even
though our system is fully three dimensional and the wave
function is not a pseudospinor as in graphene, the electron
transport along z may be somewhat analogous to that in
graphene. On the other hand, close to the surface kz = 0,
∇kE is parallel to ẑ, and thus all the associated electronic
states contribute to an electron flow along the z direction,
as expected from M∗

|| = ∞. These properties are confirmed
by Fig. 3(a) [obtained using Eq. (2)] which depicts the
energy dispersion for an Hg0.65Cd0.35Te-HgTe superlattice
with a = 6as = 3.9 nm, with as = 0.65 nm the lattice
constant of the bulk semiconductors.17 Figure 3(c) shows that
the dispersion calculated with Eq. (4) captures accurately the
results of the Kronig-Penney model. The value of vP in the
superlattice is similar to that of the Fermi velocity in graphene,
vP = √

EP /3m0 = 1.06 × 106 m/s [Ep = 19 eV (Ref. 17)],
and hence, in the limit of low scattering, the electron response
in the superlattice can be extremely fast. Similar to photonic
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FIG. 3. (Color online) Electronic band structure of the superlattice electronic metamaterials. (a) Energy dispersion of a superlattice with
vP = 1.06 × 106 m/s, Eg1 = −Eg2 = 0.30 eV, � = 0.40Eg1, f1 = f2 = 0.5, and a = 6as = 3.9 nm. (b) Contours of constant energy in the
x-z plane. (c) Comparison between the energy dispersion calculated using the Kronig-Penney model [Eq. (2)] and the approximate result given
by Eq. (4) for the values of kxa/π = 0.0,0.2,0.5,1.0. (d) Energy dispersion of the superlattice when f1 = f2 = 0.5 (black solid line), f1 = 0.48
(green dashed line), and f1 = 0.52 (blue dotted-dashed line).
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FIG. 4. (Color online) Conductivity and density of states of the superlattice. (a) Conductivity of the semiconductor superlattice (SL)
at 10 THz as a function of the temperature for different values of the valence band offset: � = Eg (green lines), � = 0.67Eg (blue
lines), and � = 0.4Eg (black lines). The gray arrows indicate the direction of increasing �. The solid lines were calculated using the
“exact” energy dispersion of the superlattice, whereas the dashed lines were obtained from Eqs. (5a) and (5b). (b) Conductivity of the
semiconductor superlattice as a function of frequency for different values of the valence band offset at 300 K. (c) Similar to (a) but
for the normalized intraband conductivity of Hg0.65Cd0.35Te, assuming that the Fermi level lies at the midpoint of the energy band gap.
(d). Normalized density of states of the semiconductor superlattice for different values of the valence band offset. In all the calculations it
was assumed that k||, max = 0.1π/as . Since g(E) was computed based on the approximate model (4), the results of (d) are meaningful only for
|E| 	 �.

metamaterials, a description of the superlattice in terms
of effective parameters is possible when ka 	 1, where k

represents the wave vector in a generic region. The spread of
the wave vector is determined by the temperature, and thus at
low temperatures the effective medium theory is expected to
be quite accurate. Based on Eq. (4), imposing E ∼ kBT and
ka < 0.1π , one may estimate that the lattice constant should
not be greater than amax ∼ h̄vP 0.1π/(kBT ), which at room
temperature gives amax ∼ 8 nm.

Ideally, the energy dispersion should be independent of k||.
This is achieved close to the plane kz = 0, where the constant
energy surfaces are flat, whereas for larger values of kz they
become hyperbolic [Fig. 3(b)]. Indeed, within the validity of
Eq. (4), the ideal case requires � → ∞. In Fig. 3(d), it is
shown that if the lattice constants of the materials are slightly
mismatched, the energy dispersion is perturbed and a small
band gap may appear. Even in this nonideal scenario, the
effective mass M∗

zz remains near zero, whereas M∗
|| remains

extremely large (not shown).
The transport properties of the superlattice, and most

notably the conductivity, may be radically different from
those of the constituent semiconductors. A detailed calculation
shows that within the validity of Eq. (4), the intraband
conductivity is given by19

σintra,xx = σintra,yy = ie2

h̄2ω

1

h̄vP

1

6
(kBT )2

(
D + 1

D
− 2

)
,

(5a)

σintra,zz = ie2

h̄2ω

1

h̄vP

(
�

2π

)2

(D − 1), (5b)

where D = √
(k||, max2h̄vP /�)2 + 1 and k||, max ∼ π/as is a

cutoff parameter.19 It is assumed that the Fermi level lies
exactly at E = 0. Moreover, we neglect scattering effects
due to defects or an interface mismatch, which may in any
case be modeled phenomenologically by replacing ω by
ω + i� in the above formulas, where � represents a collision
frequency. It should be mentioned that the effective medium
model based on Eq. (1) is unable to predict the dispersion of
(the hybridized) heavy-hole states, and thus their contribution
to the conductivity was not considered. However, since the
heavy-hole minibands are expected to be nearly flat they may
not influence much the transport properties.

Equation (5) predicts that the conductivity along the z

direction is independent of the temperature in the regime
M∗

zz = 0 and M∗
|| = ∞. Furthermore, the conductivity may

be characterized by extreme anisotropy, and when D � 1 the
anisotropy ratio σ intra,zz/σ intra,xx = 3/(2π2)(�/kBT )2 may be
extremely large. Even though Eq. (5) was derived using the
approximate dispersion (4), Fig. 4(a) shows that it describes
fairly well the conductivity calculated using Eq. (2) (the case
� = 0.4Eg models the superlattice Hg0.65Cd0.35Te-HgTe).
Due to the extreme anisotropy, at low temperatures most of
the states contribute to the electron flow along z, and thus the
conductivity in the x-y plane vanishes in the limit T → 0.
The anisotropy ratio, as well as the absolute value of σzz,
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are enhanced with larger values of �, because larger values
of � yield an energy dispersion closer to the ideal case,
E = ±h̄|kz|vP . Figures 4(b) and 4(c) show that the superlattice
conductivity can be made several orders of magnitude (∼103

at T = 300 K) larger than that of the constituent materials. To
shed light on the intriguing independence of σzz on T , using
Eq. (4) we calculated the density of states in the superlattice,
g(E) = 1

6π2 (�
2

1
h̄vP

)2 1
h̄vP

(D3 − 1), which is independent of the
energy and does not vanish at the Fermi level [Fig. 4(d)].
Hence, at the Fermi level the surfaces of constant energy
are not reduced to a point as in a normal semiconductor (or
graphene), but instead are collapsed into the kz = 0 plane (a
square-shaped surface). The electrons occupying such states
can respond effectively to an external field oriented along z,
which explains the finite conductivity in the T → 0 limit.

In conclusion, we have investigated the transport properties
of a metamaterial-inspired superlattice, characterized by linear
energy dispersion along some preferred direction of carrier
motion and extreme anisotropy. The condition M∗

zz = 0 results
from pairing materials with band gaps of different signs

that effectively interact as “matter-antimatter,” in the same
manner as ENG and MNG metamaterials electromagnetically
annihilate one another. Our ideas may establish a paradigm for
an ultrafast and extremely strong electronic response, which
may be nearly independent of temperature in the limit T → 0,
and exciting developments in electronics and photonics. As the
concept of “transformation optics” enables tailoring the path
of light, in our system we can have the same but for electrons,
namely, the electron’s path may be constrained so that the
electrons are forced to move along a preferred direction. Since
it may be possible to vary the parameters of semiconductors
continuously either by doping or by controlling the material
composition or—in case of a two-dimensional electron gas—
by tailoring externally the potential seen by the electrons with
a top gate, we envision that some of the ideas of transformation
optics can be brought to the field of electronics.

This work is supported in part by the US Air Force of
Scientific Research (AFOSR) Grants No. FA9550-08-1-0220
and FA9550-10-1-0408.
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