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Macroscopic electromagnetic response of arbitrarily shaped spatially dispersive bodies
formed by metallic wires
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In media with strong spatial dispersion, the electric displacement vector and the electric field are typically
linked by a partial differential equation in the bulk region. The objective of this work is to highlight that in
the vicinity of an interface, the relation between the macroscopic fields cannot be univocally determined from
the bulk response of the involved materials but instead requires knowledge of internal degrees of freedom
of the materials. We derive such a relation for the particular case of “wire media” and describe a numerical
formalism that enables characterization of the electromagnetic response of arbitrarily shaped spatially dispersive
bodies formed by arrays of crossed wires. The possibility of concentrating the electromagnetic field in a narrow
spot by tapering a metamaterial waveguide is discussed.

DOI: 10.1103/PhysRevB.86.075129 PACS number(s): 42.70.Qs, 78.20.Ci, 41.20.Jb

I. INTRODUCTION

Spatially dispersive materials have the peculiar property
that the macroscopic polarization vector depends not only
on the macroscopic electric field but also on its spatial
derivatives.1 As is well known, this implies that the electric
displacement vector D is related to the electric field E
through a constitutive relation of the form D = ¯̄ε(ω,−i∇) ·
E, which for the case of fields with a plane wave-type
spatial dependence of the form eik·r reduces simply to D =
¯̄ε(ω,k) · E. The dielectric function ¯̄ε(ω,k) fully characterizes
the electromagnetic response of the material in the bulk
region for any macroscopic excitation. However, any realistic
physical system is necessarily of finite extent, and some
of the most interesting electromagnetic phenomena—such
as the refraction and reflection of light, field localization,
and waveguiding—have their origin in interface effects. In
general, the constitutive relation D = ¯̄ε(ω,−i∇) · E does not
hold exactly at the boundary, and this can create ambiguities
in the solution of electromagnetic problems involving bodies
formed by spatially dispersive materials.

To illustrate this, let us consider the simple case in which
both the electric field and the electric displacement field are
oriented in the z-direction and are linked in the bulk region as
follows:

Dz = ε(ω,−i∇)Ez. (1)

Furthermore, for the purpose of illustration, it is assumed
that the material is nonmagnetic and that the dielectric function
is a rational function of the wave vector so that

ε(ω,k) = εh + b0

a0 − a2k2
x + · · · , (2)

where εh, b0, a0, a2, . . . , are independent of the wave vector
but in general may depend on frequency. It is supposed that
the material has a center of symmetry at the microscopic
level so that the dielectric function is an even function of
k. Moreover, it is assumed without loss of generality that
ε(ω,k) depends exclusively on kx ↔ −i ∂

∂x
. Clearly, if the only

nonzero coefficients are a0 and a2, the Dz and Ez fields satisfy

the following partial differential equation in the bulk region:

a0Pc,z + ∂2
x (a2Pc,z) = b0Ez, (3)

where we defined Pc,z = Dz − εhEz, which may be regarded
as the polarization of the medium with respect to a background
with permittivity εh. For a material with a local response, the
coefficient a2 vanishes.

Let us now suppose that the plane x = 0 corresponds to an
interface between two different materials, in which one of the
materials occupies the semispace x > 0, whereas the second
material occupies the region x < 0, and that the constitutive
relation in both bulk materials is of the generic form of Eq. (2).
Evidently, the coefficients a0, a2, and b0 in general differ in
the two materials. Therefore, it is tempting to consider that the
Pc,z and Ez fields are related in all space by

a0(x)Pc,z + ∂2
x (a2(x)Pc,z) = b0(x)Ez. (4)

This equation, together with the standard macroscopic
Maxwell equations ∇ × E = iωμ0H and ∇ × H = jext −
iωD and the Sommerfeld radiation conditions, determines,
for a given excitation jext, the electromagnetic fields (E,H) in
all space. The outlined ideas and other variants are the basis
of several studies that aim to characterize the electromagnetic
response of either nanoparticles or macroscopic bodies made
of natural media or metamaterials with spatial dispersion.2–10

The main objective of the present study is to demonstrate
with specific examples that even though in some scenarios this
direct approach captures correctly the physical response of a
system, in other cases it may produce inaccurate results.

Indeed, even if the bulk constitutive relation in Eq. (3) holds
exactly up to the boundary, in general the form of Eq. (4)
remains unjustified at x = 0, i.e., at the boundary. The reason
is that there are many inequivalent ways of relating Pc,z and
Ez through a differential equation, but these reduce to Eq. (3)
in the bulk regions. For an abrupt interface, the coefficients
a0, a2, and b0 are discontinuous at x = 0; therefore, a priori
nothing forbids Pc,z and Ez to be linked by, for example,

a0(x)Pc,z + ∂x[a2(x)∂xPc,z] = b0(x)Ez (5)

rather than by Eq. (4). The preceding equation is equivalent
to Eq. (4) in the bulk regions (i.e., for x �= 0, where
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a2(x) = const.) but not at x = 0. In fact, the form of Eq. (4)
suggests that ∂x(a2Pc,z) is continuous at the interface, whereas
Eq. (5) implies that a2∂xPc,z is continuous at the interface.
Hence, the two formulations imply different boundary
conditions at the interfaces, even though they are equivalent
in the bulk regions. In this discussion, it is implicit that the
pertinent solution (Pc,z) is defined in a space of generalized
functions and that the equations hold in the distributional sense.

Generally, when electromagnetic waves illuminate spa-
tially dispersive bodies, “additional waves” can be excited;
therefore, the classical boundary conditions that impose the
continuity of the tangent fields at the interfaces are insufficient
to solve a scattering problem based on mode matching.
The usual way to fix this problem is to impose additional
boundary conditions (ABCs).1,11–13 However, in a framework
where the bulk constitutive relations are extended across the
interface [e.g., Eqs. (4) or (5)], the scattering problem is
complete and logically consistent on its own; hence, it does not
require further boundary conditions to be explicitly imposed.
However, as should be clear from the preceding argument, the
structure of the adopted constitutive relation [e.g., Eqs. (4)
or (5)] at the boundary may indirectly enforce an ABC at
an interface at which the coefficients of the equation are
discontinuous. Therefore, knowledge of the correct form of the
constitutive relation across the interface is intimately related
to knowledge of ABCs, and these are complementary aspects
of the same problem.

The previous discussion illustrates that there are distinct
ways of linking Pc,z and Ez close to the boundary that are
consistent with constitutive relations in the bulk regions.
Indeed, there are infinitely many possibilities of linking Pc,z

and Ez at the boundary, and some of them cannot even be
formulated in terms of the coefficients a0, a2, and b0 of the
effective medium model. For example, if we replace the term
∂2
x (a2Pc,z) in Eq. (4) by the term A(x)∂x[A−1(x)∂x(a2Pc,z)]

where A(x) is an arbitrary piecewise constant function of x

discontinuous at x = 0, we obtain other inequivalent ways of
linking Pc,z and Ez in all space involving an extra parameter
(A(x)), which is unrelated to the bulk material dielectric
function.

In this work, our aims are (1) to highlight that the correct
manner of extending the bulk constitutive relations across the
interface requires knowledge of internal (microscopic) degrees
of freedom of the involved materials at the boundary, and (2)
to discuss how the Maxwell equations can be solved using
numerical methods in the presence of arbitrarily shaped bodies
with a spatially dispersive response. To this end, we investigate
the electromagnetic response of arbitrarily shaped bodies
of “wire media,” which are metamaterials known to have
a strongly spatially dispersive response14–17 and interesting
applications in the emerging fields of nanophotonics and
plasmonics.18–26

The uniaxial wire medium14 is the most well-known
metamaterial with a nonlocal response, but such a property
is also inherent to other wire media topologies, such as arrays
of long helices and arrays of both connected and nonconnected
wires.13,17 In this work, we choose the double wire medium—a
double array of nonconnected metallic wires—for illustration
purposes, but the theory can be trivially extended to other wire
medium topologies. Based on an effective medium framework

wherein the metamaterial response is expressed in terms of
additional variables with known physical meaning,27 we prove
that the correct manner of linking the D and E fields across
the boundary does not reduce to a simple Fourier inversion
of the bulk constitutive relations, as in Eq. (4). We use
our theory to develop a spatially dispersive finite-difference
frequency-domain (FDFD-SD) numerical method that enables
us to solve the Maxwell equations in scenarios wherein
electromagnetic waves can interact with arbitrarily shaped
bodies formed by wire media. We demonstrate with numerical
simulations that if the host medium of the metallic wires is
a dielectric, or even more drastically if the nanowires are in
contact with a metallic surface, a numerical solution based on
Eq. (4) may fail at the interfaces. We apply the FDFD-SD
formalism to investigate applications of the double wire
medium in superlensing18 and in ultraconfined waveguiding.
In this work, a time variation of the form e−iωt is assumed.

II. MODEL BASED ON THE BULK
ELECTROMAGNETIC RESPONSE

The double wire medium is formed by two arrays of metallic
wires with radius rw such that each array of parallel wires is
arranged in a square lattice with lattice constant a and tilted by
±45◦ with respect to the interfaces. One set of wires is oriented
in the direction û1 = (1,0,1)/

√
2, while the complementary

set of wires is oriented in the direction û2 = (−1,0,1)/
√

2.
Both sets of wires lie in planes parallel to the xoz plane,
and the distance between adjacent perpendicular wires is a/2
[Figs. 1(a) and 1(b)].

The wires stand in a host material with relative permittivity
εh. The effective response of the double wire medium is
characterized by a dielectric function ¯̄ε(ω,k) such that12,16,28

¯̄ε

ε0
= εhûy ûy + ε11û1û1 + ε22û2û2

εii(ω,ki) = εh

⎛
⎝1 + 1

1
(εm/εh−1)fV

− εh(ω/c)2−k2
i

β2
p

⎞
⎠ , (6)

where ε0εm is the permittivity of the metal, fV = π (rw/a)2

is the volume fraction of each set of wires, βp =
{2π/[ln(a/2πrw) + 0.5275]}1/2/a is the plasma wave number,
and c is the speed of light in vacuum. For simplicity, in this
work, we restrict our attention to the case of propagation along
the xoy plane with kz = 0 (or equivalently, ∂z = 0), and assume
that the only nontrivial electromagnetic field components are
Ez, Dz, Hx , and Hy . In this scenario, the dielectric function

(a) (b)

FIG. 1. (Color online) Cuts of a double wire medium along the
(a) xoy and (b) xoz planes. The slab has thickness L.
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reduces to a scalar in the xoy plane, ε(ω,kx) = εii(ω,ki),
i = 1,2, because for kz = 0, we have k1 = kx/

√
2 = −k2.

Therefore, in this situation, Eq. (6) becomes

ε(ω,kx) = εh

⎛
⎝1 + 1

1
(εm/εh−1)fV

− εh(ω/c)2−k2
x/2

β2
p

⎞
⎠ , (7)

which is clearly of the same form as Eq. (2); i.e., it is a rational
function of the wave vector.

Because the only non-zero-field components in the prob-
lems that we are interested in are Ez, Dz, Hx , and Hy , it
is easily found that Maxwell equations ∇ × E = iωμ0H and
∇ × H = jext − iωD reduce to the scalar equation

∂2

∂x2
Ez + ∂2

∂y2
Ez +

(
ω

c

)2
Dz

ε0
= −iωμ0js,z, (8)

where jext = js,zẑ represents an external current density, i.e.,
an external excitation. Therefore, provided we are able to link
Ez and Dz in all space, the Maxwell equations can be solved
univocally. Next, we discuss how this can be done based on
Eq. (7).

A. Constitutive relations in the bulk region

Similar to what was outlined in Sec. I, substituting Eq. (7)
into Eq. (1) and calculating the inverse Fourier transform
(i kx ↔ ∂x) of the resulting expression, it is possible to obtain
a spatial relation between the electric field Ez and the electric
displacement Dz that makes manifest the spatially dispersive
nature of the response of the metamaterial:[

1

2

∂2

∂x2
+ εh

(
ω

c

)2

+ β2
c

]
Pc,z

ε0
+ εhβ

2
pEz = 0, (9)

where β2
c = − β2

p

(εm/εh−1)fV
and Pc,z = Dz − ε0εhEz. This is

analogous to Eq. (3) for the particular case of the double
wire medium. Pc,z is the contribution to the polarization
vector due to the conduction currents in the nanowires. Thus,
Eq. (9) effectively determines the response of the conduction
polarization current to the “applied” macroscopic electric field.

A priori, Eq. (9) is only valid in the bulk region of
the metamaterial. However, it can be trivially extended to
scenarios wherein a metamaterial body is surrounded by a
standard dielectric (e.g., air). Indeed, if we regard εh ≡ εh(x,y)
as a position-dependent function that represents the relative
permittivity of the background dielectric regions, and similarly
βp ≡ βp(x,y) and βc ≡ βc(x,y) as functions that vanish
outside the metamaterial, it is clear that in a standard dielectric
Eq. (9) reduces to[

εh

(
ω

c

)2

+ 1

2

∂2

∂x2

]
Pc,z = 0. (10)

This relation is correct because in a standard dielectric
Dz = ε0εhEz, or equivalently Pc,z = 0. Thus, if we let εh ≡
εh(x,y), βp ≡ βp(x,y), and βc ≡ βc(x,y) be space dependent,
Eq. (9) yields the correct constitutive relations both in the bulk
metamaterial and in the bulk dielectric region (i.e., in the region
that surrounds the metamaterial body). If we assume that
Eq. (9) also holds across the boundary—which as discussed in
Sec. I in general may be a “leap of faith”—then it is possible to

calculate the electromagnetic fields in all space by combining
and solving Eqs. (8) and (9). In the next subsection, we briefly
describe how this can be done numerically using the FDFD
method.

B. FDFD discretization

The unknown fields (solution of Eqs. (8) and (9)) can be
obtained using the well-known FDFD method based on Yee’s
mesh.29 The discretization of the second-order derivatives in
these equations is done based on the formulas proposed in
Ref. 30

∂2

∂x2
F (i,j ) = F (i + 1,j ) − 2F (i,j ) + F (i − 1,j )

�x2
(11a)

∂2

∂y2
F (i,j ) = F (i,j + 1) − 2F (i,j ) + F (i,j − 1)

�y2
, (11b)

where F = Pc,z = Dz − ε0εhEz; �x and �y are the grid
spacing in the x- and y-directions, respectively; and the
discrete indices (i,j ) stand for a given ith and j th nodes of the
grid mesh in the x- and y-directions, respectively. As discussed
previously, εh ≡ εh(x,y) is a position-dependent function that
is equal to the host permittivity in the metamaterial, and equal
to the permittivity constant in the dielectric material. However,
βp ≡ βp(x,y) and βc ≡ βc(x,y) are set equal to zero outside
the metamaterial.

We considered two FDFD solutions for the described
problem. In the first approach, Eq. (9) is used in all regions
of space to link Ez and Dz. We refer to this solution as
the first direct inverse transform (DIT1) solution. In the
second approach, we use Eq. (9) to link Ez and Dz inside
the metamaterial, as well as for all nodes that are over the
boundary. For nodes that are outside the metamaterial (such
that all neighboring nodes are also outside the metamaterial),
we use simply Dz = ε0εhEz rather than Eq. (9). We refer
to this implementation as the second direct inverse transform
(DIT2) solution. The perfectly matched layer (PML) described
in Ref. 31 is used to truncate the computation domain in both
implementations.

III. MODEL BASED ON INTERNAL DEGREES
OF FREEDOM OF THE MEDIUM

Recent works13,27,32 have shown that the spatial dispersion
inherent to wire media may be described by a quasistatic ho-
mogenization model that applies in a wide range of scenarios,
including the case in which the wires are periodically loaded
with conducting metallic bodies. In this homogenization
framework, a current I and an additional potential ϕ are
associated with each set of wires. The current may be identified
with the current that flows along the metallic wires, whereas
the additional potential is the average quasistatic potential drop
from a given wire to the boundary of the respective unit cell
(both the current and the additional potential are interpolated
in a suitable manner so that they become continuous functions
of the spatial coordinates).27 As detailed in Appendix A, for
the case of the double wire medium, the electrodynamics of
the metamaterial is described by a 10-component state vector
F = (E,H,ϕ1,I1,ϕ2,I2) that satisfies a differential system of
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the form

L̂ · F = +iωM̂ · F + Jext, (12)

where L̂ = L̂(∇) is a linear differential operator, M̂ =
M̂(εh,μ0,Lw,Zw,Cw) is a material matrix that depends on
the geometry of the array of metallic wires and on the
electromagnetic properties of the involved materials, and Jext

represents a source term.
This formalism based on the introduction of additional

variables provides a framework within which the wire medium
response is “local” (even though the electrodynamics is
nonlocal) in the sense that the material response can be written
in terms of the 10-component vector F = (E,H,ϕ1,I1,ϕ2,I2)
through a linear operator (M̂) independent of the spatial
derivatives. Hence, it is reasonable to assume that Eq. (12)
holds even across a boundary between two regions with
different structural parameters such that M̂ = M̂(x,y,z). Such
premise is the basis of the ideas developed in this section,
where we obtain a solution for the electromagnetic fields in
all space relying on Eq. (12). A standard dielectric can also be
described with this formalism, because it can be considered
the limit of a nanowire material with vanishingly thin wires.

The effective medium formalism associated with Eq. (12) is
based on knowledge of the dynamics of the additional variables
I and ϕ, which have known physical meaning, and thus is
based on knowledge of internal degrees of freedom (IDF) of
the material.

A. Constitutive relations based on the internal
degrees of freedom

In Appendix A, it is shown that in the general case where the
structural parameters are arbitrary functions of the coordinates
(M̂ = M̂(x,y,z)), Eq. (12) reduces to

εhβ
2
p

2

∂

∂x

[
1

εhβ2
p

∂

∂x

Pc,z

ε0

]
+

[
εh

(
ω

c

)2

+ β2
c

]
Pc,z

ε0

+ εhβ
2
pEz = 0, (13a)

∂2

∂x2
Ez + ∂2

∂y2
Ez +

(
ω

c

)2
Dz

ε0
= −iωμ0js,z. (13b)

Evidently, Eq. (13b) is the same as Eq. (8). In addition,
Eq. (13a) is the same as Eq. (9) in the bulk region, i.e., when
βp and εh are constant and independent of position. However,
the two equations are different at the interfaces, because the
parameters βp, βc, and εh may vary with space. This happens
if, for example, either the permittivity of the host medium or
the radii of the wires vary in space.

In the same manner as in Sec. II, here we assume that
εh = εh(x,y), βp = βp(x,y), and βc = βc(x,y). In a standard
dielectric, we take the limit βp → 0 and put βc(x,y) = 0. In
this case, βp cannot be chosen exactly equal to zero; otherwise,
Eq. (13a) becomes singular.

B. FDFD discretization

The FDFD discretization of the system in Eqs. (13a) and
(13b) is analogous to that already described in Sec. II B.
The only relevant difference is that the second-order deriva-
tives of Eqs. (13a) and (13b) are of the generic form

∂
∂x

G(x,y) ∂
∂x

U (x,y), where G(x,y) = 1/[εh(x,y)β2
p(x,y)] and

U (x,y) = Pc,z/ε0. The derivative ∂
∂x

G(x,y) ∂
∂x

U (x,y) is dis-
cretized in the following manner:[

∂

∂x
G

∂

∂x
U

]
(i,j ) = A(i,j )U (i + 1,j )

�x2
− B(i,j )U (i,j )

�x2

+ C(i,j )U (i − 1,j )

�x2
, (14)

where A(i,j ) = [G(i,j ) + G(i + 1,j )]/2, B(i,j ) = G(i,j ) +
[G(i + 1,j ) + G(i − 1,j )]/2 and C(i,j ) = [G(i,j ) + G(i −
1,j )]/2. The computation domain is truncated with a PML.31

In this implementation, we use Eq. (13a) in all space (both
in the metamaterial and in standard dielectrics or metals). We
refer to this solution based on the internal degrees of freedom of
the metamaterial as the IDF solution. The discretized equations
for Eqs. (13a) and (13b) are given in Appendix B.

IV. NUMERICAL RESULTS AND DISCUSSION

Next, we compare the results obtained with the formulations
of Secs. II and III and confirm that the form of constitutive
relations at the interfaces is of crucial importance.

In the first example, we consider a double wire medium slab
formed by perfect electric conductor (PEC) wires, i.e., εm =
−∞. The metamaterial has thickness L and is surrounded by
air [Fig. 1(b)]. The permittivity of the host region in the double
wire medium is taken as εh = 10, and the lattice constant a is
such that a = L/20 and rw = 0.05a. In Fig. 2, the reflection
and transmission coefficients ρ and τ are depicted as functions
of the normalized frequency ωL/c for a plane wave that
illuminates the slab with an angle of incidence θi = 15◦.

The green triangles and blue circles represent the results
computed with FDFD-SD methods DIT1 and DIT2, respec-
tively (see Sec. II B). These two approaches are based on
Eq. (9). The orange stars were obtained using the FDFD-SD
method IDF (see Sec. III B) based on knowledge of the internal
structure of the metamaterial Eq. (13). In the DIT1 and IDF
implementations, the parameter β2

p is taken as vanishingly
small outside the metamaterial. Finally, the black solid curves
in Fig. 2 were computed using an analytical approach derived
in Ref. 12, based on mode matching and ABCs. It was
demonstrated in Ref. 12 (and confirmed in Fig. 3) that this
analytical method compares well with full-wave simulations
that take into account all minute details of the microstructure of
the metamaterial. Therefore, the solid curves can be regarded
here as the exact solution of the problem.

Figure 2 shows that the DIT1 method can be quite inaccu-
rate, as the green triangle curve for the amplitude of the trans-
mission coefficient τ [Fig. 2(c)] largely mismatches the black
solid curve obtained with the analytical model. This confirms
that proper discretization of the electromagnetic fields at the
interfaces between the spatially dispersive metamaterial and
the air region is of crucial importance. However, the blue circle
curves (DIT2) concur better with the analytical model. The
results obtained with the IDF implementation (orange stars)
yield near-perfect agreement with the analytical formalism.
This supports that to model the electromagnetic response of
spatially dispersive bodies correctly, it may be necessary to
know some internal degrees of freedom of the metamaterial,
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(a) (b)

(c) (d)

FIG. 2. (Color online) Reflection and transmission coefficients as functions of the normalized frequency for a double wire medium slab with
thickness L = 20a illuminated by a plane wave with the angle of incidence θi = 15◦. (a) Amplitude and (b) phase of the reflection coefficient
ρ. (c) Amplitude and (d) phase of the transmission coefficient τ . Solid (black) curves indicate the mode-matching approach based on ABCs
(Ref. 12). Stars (orange) indicate the IDF approach, triangles (green) indicate the DIT1 approach, and circles (blue) indicate the DIT2 approach
(see Sec. II B).

which cannot be accessed simply from knowledge of
the bulk electromagnetic response. In Fig. 3, we compare the
results obtained with the IDF implementation and full-wave
simulations33 that take into account the microstructure of
the metamaterial. As seen, the agreement is nearly perfect.

The several dips in the reflection characteristic in Fig. 2
are associated with Fabry-Pérot resonances. These resonances
are ultra-subwavelength (e.g., the first dip of the reflection
coefficient occurs at ωL/c ≈ 0.13, which corresponds to
metallic wires with length Lwm = √

2L = 0.03λ0), because
the double wire medium can be characterized by a very
large positive index of refraction with anomalous frequency
dispersion in the low frequency limit.21,26 It is interesting
to mention that the electromagnetic response of wire media
typically has a dual behavior, and so, depending on the
excitation, the metamaterial may behave either as an effective
medium with positive permittivity or as a material with
negative permittivity.32

To illustrate the application of the method in case of metallic
loss, next we suppose that the metal permittivity ε0εm has a

Drude-type dispersion so that εm = 1 − ω2
p

ω(ω+i) , where ωp

is the plasma frequency and  is the collision frequency. It
is assumed that the plasma frequency is such that ωpa/c =
0.125 and that the collision frequency is /ωp = 0.05. The
remaining structural parameters, as well as the incoming wave,
are as in Fig. 2. The reflection and transmission coefficients
calculated with the IDF approach and with the analytical (ABC

based) approach12 are plotted in Fig. 4. As seen, the agreement
between the FDFD-SD results and the analytical model is
excellent, confirming that the constitutive relation in Eqs. (13a)
and (13b) is valid across the interfaces between different media
even in a case of metal loss.

Next, we consider a case in which the metamaterial slab is
backed by a metallic region (a good conductor, which we refer
to as the ground plane; the permittivity of the ground plane is
taken as εh → −∞). The incoming wave propagates in air as
in the previous examples, and the angle of incidence is taken
as θi = 70◦. The thickness of the slab is L = 20a, the radius of
the wires is rw = 0.05a, and the relative permittivity of the host
region is εh = 30. The metallic wires are assumed to be PEC.

We consider a scenario in which the metallic wires are in
ohmic contact with the ground plane. In the DIT2 formalism
(see Sec. II B), there is no way of specifying that the metallic
wires are in contact with the ground plane. However, in the
DIT1 and IDF models, this can be taken into account by
imagining that the wires are slightly prolonged into the metal
so that they penetrate a thin transition layer inside the metal.
Thus, in the transition layer, the parameter βp (which only
depends on the radius of the wires) is taken to be the same as
in the metamaterial region. Farther inside the metal, similar to
the previous examples, we take the limit βp → 0 to model that
the wires are severed past the transition layer. In the numerical
implementation, the thickness of the metal transition layer was
taken as equal to 0.04L.
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(a) (b)

(c) (d)

FIG. 3. (Color online) Same example as in Fig. 2. Dashed (blue) curves show full-wave results obtained with CST Microwave Studio
(Ref. 33). Stars (orange) indicate the IDF approach (see Sec. III B).

In Fig. 5, we depict the phase of the reflection coefficient
ρ as a function of frequency. Similar to the previous examples
(Figs. 2 and 4), it is seen in Fig. 5(a) that the agreement between
the analytical method based on ABCs (solid black curve) and
the IDF approach is nearly perfect. The results also concur
well with full-wave simulations that take into account the
granularity of the metamaterial (dashed blue curve). However,
both the DIT1 and the DIT2 approaches yield wrong results
[Fig. 5(b)], because they are unable to capture the dynamics of
the current along the wires in the vicinity of the ground plane.
This not only confirms that proper discretization is of vital
importance at the interfaces, but also shows that the DIT1 and
DIT2 methods are inaccurate in a scenario where the double
wire medium is attached to a metallic surface.

We underline that the FDFD implementations do not
require any ABCs, because they assume that Eq. (9) or
Eq. (13a), depending on the implementation, are valid across
the interface. In some sense, as already mentioned in Sec. I,
in the FDFD implementations the ABCs are indirectly
enforced by the adopted form of the constitutive relation
across the interface. For example, for the IDF approach,
Eq. (13a) implicitly imposes that both Pc,z and 1

εhβ2
p

∂Pc,z

∂x
, with

Pc,z = Dz − ε0εhEz, be continuous across the interfaces. In
the case of a wire medium adjacent to a dielectric (e.g., air
region), this implies (because we take β2

p → 0 in the dielectric)
that ∂xPc,z|diel = 0 at the dielectric side of the boundary.
This homogeneous boundary condition effectively ensures
(together with the PML boundary conditions) that Pc,z = 0

in the dielectric region and thus, because Pc,z is continuous
at the boundary, that the conduction current vanishes at
the wire medium side of the interface, Pc,z|WM = 0, which
is equivalent to the ABC used in Ref. 12. On the other
hand, if the wire medium is adjacent to a metal transition
layer (such that the wires are prolonged into the metal),
the continuity of 1

εhβ2
p

∂Pc,z

∂x
enforces that ∂xPc,z|WM = 0 at

the wire medium side of the boundary, because εh → −∞
at the metal side. This boundary condition is also equivalent
to that considered in Ref. 12. Thus, it follows that the IDF
approach is compatible with the ABC formalism described in
our previous work.12 On the other hand, the ABCs implicitly
enforced by the DIT1 method are the continuity of Pc,z and
∂xPc,z at the interfaces. These in general are inconsistent with
the microstructure of the material, because we should have
∂xPc,z|diel = 0 and Pc,z|diel = 0 at the dielectric side of the
boundary, rather than the continuity of Pc,z and ∂xPc,z.

The geometries considered in all previous examples are
quite elementary; therefore, the considered problems admit
an analytical solution based on mode matching and ABCs.12

However, one of the key features of the FDFD-SD approach
is that it enables us to obtain the solution of scattering and
waveguiding problems in scenarios wherein electromagnetic
waves interact with complex arbitrary shapes of spatially
dispersive bodies. Typically, such problems cannot be solved
using analytical methods.

To illustrate this, in what follows, we investigate the
imaging of a source by a metamaterial slab with a finite
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(a) (b)

(c) (d)

FIG. 4. (Color online) Similar to Fig. 2, but the permittivity of the wires is described by the Drude model εm = 1 − ω2
p/ω(ω + i). The

parameters of the Drude model are ωpa/c = 0.125 and /ωp = 0.05. Solid (black) curves indicate the mode-matching approach based on
ABCs (Ref. 12). Stars (orange) indicate the IDF approach (see Sec. III B).

width [inset of Fig. 6(a)]. Previous works18,19,34 have shown
that a high-index dielectric material can be used as a lens
that enhances the near field and the subwavelength details,
and thus enables a superlensing effect. In Refs. 18 and 19,
it was theoretically suggested and experimentally verified
that an ultradense array of crossed metallic wires may have
a large index of refraction and may support highly confined
modes with very short propagation wavelengths, which when

excited by a source permit restoration of the subwavelength
spatial spectrum. Next, we study the imaging properties
of the double wire medium based on the FDFD-SD (IDF)
discretization.

We consider a double wire medium with a thickness
L = 10a in the near field of an electric line source placed
at a distance d1 = 0.04λ0 above the metamaterial [inset
of Fig. 6(a)]. The radius of the wires is rw = 0.05a, and

(a) (b)

FIG. 5. (Color online) Phase of the reflection coefficient ρ as a function of the normalized frequency for a double wire medium slab
with thickness L, backed by a PEC surface. Solid (black) curves indicate the mode-matching approach based on ABCs (Refs. 11 and 12).
(a) Stars (orange) indicate the IDF approach (see Sec. III B), and the dashed (blue) curve shows the results obtained with CST Microwave
Studio (Ref. 33). (b) Triangles (green) indicate the DIT1 approach, and circles (blue) indicate the DIT2 approach (see Sec. II B).
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FIG. 6. (Color online) (a) Amplitude of
the normalized squared electric field imaged
by a metamaterial lens with L = 0.3λ0/2π ,
a = L/10, and rw = 0.05a (see the inset).
The solid (black) curve indicates the analyt-
ical model (Ref. 18). Stars (orange) indicate
the FDFD-SD method. (b) Density plot of
the normalized electric field for the scenario
of panel (a). (c) and (d) are similar to (a)
and (b), respectively, but for a case in which
the metamaterial lens is illuminated by two
electric sources separated by a distance
�g,s = 0.25λ0.

the normalized frequency of operation is ωL/c = 0.3. It is
assumed that the wires are PEC and stand in air. The width of
the slab in the y-direction is w = 1.2λ0.

Figure 6(a) shows the normalized electric field profile at a
distance d2 = d1 below the lens calculated using the FDFD-SD
method (orange stars), and Fig. 6(b) shows the associated
electric field density plot. The predicted half-power beamwidth
(HPBW) is 0.13λ0, which is nearly four times smaller than
the traditional diffraction limited value. In the absence of
the metamaterial lens, and for the same propagation distance
(d1 + d2) in the air region, the HPBW would be 0.32λ0, which
clearly confirms that the metamaterial lens can restore the
subwavelength details of the source and compensate for the
evanescent decay in the air regions. We also calculated
the electric field profile using an analytical model (black solid
curve in Fig. 6(a)) based on a Sommerfeld-type integral (see
Ref. 18 for details). The analytical method assumes that the
metamaterial slab has an infinite width w in the y-direction.
As seen in Fig. 6(a), the results obtained with the analytical
model concur well with the FDFD-SD simulations.

In Figs. 6(c) and 6(d), we consider a scenario similar to that
of Figs. 6(a) and 6(b), but in this case the metamaterial lens
is illuminated by two electric sources separated by a distance
�g,s = 0.25λ0 [Fig. 6(d)]. It can be seen in Fig. 6(c) that the
metamaterial lens clearly discriminates two sources separated
by a distance nearly two times inferior to the diffraction limit.
The agreement between the analytical results and the FDFD-
SD method is again satisfactory.

V. CONCENTRATING THE ELECTROMAGNETIC FIELD
WITH A DOUBLE WIRE MEDIUM WAVEGUIDE

It is known that by tapering plasmonic waveguides, one
can slow and ultimately stop light35–37 and concentrate
electromagnetic energy in the nanoscale.35,38 In what follows,
we show that by tapering a double wire medium waveguide, it
is possible to enhance significantly the magnetic field toward
the tip of the waveguide.

First, we use the FDFD-SD (IDF) method to characterize
the guided modes supported by an ultradense array of metallic
wires.21 Figure 7(a) shows the dispersion characteristic of the
transverse electric (TE) surface wave modes supported by a
dense array of PEC wires for different lattice constants a.
The discrete orange stars were calculated using the FDFD-SD
method, and the black solid curves were obtained using an
analytical method based on mode matching and ABCs.21

Dispersion of the guided modes is determined with the
FDFD-SD method as follows: For each wavelength of op-
eration (λ0), the metamaterial slab is excited by an electric
line source placed within the waveguide. Then, the guided
wavelength λg is determined by inspection of the real part of
the electric field along the central line of the metamaterial slab
(i.e., in the direction of propagation) at a distance sufficiently
large (∼0.2λ0) from the source. The effective index of
refraction seen by the guided mode is neff = λ0/λg = kyc/ω.

Consistent with Ref. 21, Fig. 7(a), shows that the
metamaterial supports extremely subwavelength guided
modes characterized by a large effective index of refraction

075129-8



MACROSCOPIC ELECTROMAGNETIC RESPONSE OF . . . PHYSICAL REVIEW B 86, 075129 (2012)

)b()a(
FIG. 7. (Color online) (a) Normalized prop-

agation constant ky of the TE-guided modes as
a function of frequency for a fixed thickness L

of the metamaterial formed by PEC wires and
different lattice constants a. The radius of the
wires is rw = 0.05a, and the wires stand in air. The
solid (black) curve indicates the analytical model
(Ref. 21). Stars (orange) indicate the FDFD-SD
method. (b) Time snapshot of Ez (in arbitrary
unities) at the frequency ωL/c = 0.1 when a
waveguide with a = L/20 is excited by an electric
line source positioned at (0,−0.2λ0).

neff = kyc/ω. Moreover, the index of refraction of a guided
mode increases as the lattice constant a decreases, i.e., as the
density of wires increases for a fixed metal volume fraction.
Agreement between the results predicted by the numerical
method and those predicted by the analytical model of Ref. 21
is excellent. Figure 7(b) shows a snapshot in time of the
electric field in the xoy plane for a double wire medium
waveguide with lattice constant a = L/20 at the normalized
frequency of operation ωL/c = 0.1. As seen, the guided mode
is strongly confined to the waveguide, in agreement with the
effective index of refraction being neff = 6 [Fig. 7(a)].

How can this waveguide be tapered so that the guided
electromagnetic energy can be concentrated in an ultra-
subwavelength region? To answer this question, first we
consider two cascaded waveguides with thicknesses L and
L2 [Fig. 8(a)]. We want to obtain a matching condition for
two waveguides so that we can ensure a good transmission
at the junction. To this end, a transmission line analogy is
considered so that each waveguide is associated with a voltage
Vi , a current Ii , and an impedance Zi (i = 1,2). To a first
approximation, the field component Hy is proportional to
the microscopic current flowing in the metallic wires; thus,
it should vanish at the interfaces. Therefore, from the point
of view of the waves inside the waveguide, the interfaces
with air may be regarded as magnetic walls (perfect magnetic
conductor, or PMC). Hence, the guided mode is expected to
be quasitransverse electromagnetic (quasi-TEM) with respect
to the direction of propagation (y-direction), and the relevant
field components are Ez and Hx . Moreover, we can establish

the following correspondences:

V ∼ HxL, (15a)

I ∼ Ez, (15b)

Z ∼ Hx

Ez

L, (15c)

where L is the thickness of the metamaterial slab in the x-
direction. V was associated with Hx and I with Ez, because
a waveguide with PMC walls is the electromagnetic dual of a
standard waveguide with PEC walls. On the other hand, for a
TE mode, Hx ∼ ∂Ez

∂y
, and hence the fields inside the waveguide

also satisfy
Hx

Ez

∼ ky. (16)

From Eqs. (15c) and (16), it follows that to keep the impedance
constant in the two waveguides and thus ensure a good
matching at the transition, one should guarantee that

kyL = const. (17)

Figure 8(a) shows a density plot of the normalized electric
field for a metamaterial waveguide similar to that of Fig. 7(a)
(a = L/20) in cascade with another waveguide with the
thickness L2 = 0.6L. The frequency of operation is ωL/c =
0.25. The lattice constant a2 of the second waveguide is
determined so that Eq. (17) is satisfied, i.e., that kyL = ky,2L2,
where ky and ky,2 represent the wave numbers in the waveguide
with thicknesses L and L2, respectively. This can be done
using the analytical model of Ref. 21, provided ky,2 and

)b()a( FIG. 8. (Color online) (a) Normalized |Ez|2
in the vicinity of two cascaded double wire
medium waveguides with thicknesses L and
L2 = 0.6L at the frequency of operation
ωL/c = 0.25. The fields were obtained using
the FDFD-SD full-wave simulator. (b) Profile
of the square normalized electric field along
the central line of the waveguide. Solid (blue)
curve: lattice constant in the second waveguide
region is tuned so that the impedance matching
condition Eq. (17) is satisfied. Dashed (green)
curve: lattice constant in the second waveguide
region is tuned so that ky = ky,2.
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FIG. 9. (Color online) (a) The y-component of the guided wave number ky,wg [calculated using Eq. (17)] as a function of the normalized
thickness of the tapered metamaterial waveguide. The geometry of the waveguide is shown in the inset. (b) Normalized lattice constant awg as a
function of the thickness of the waveguide. (c) Normalized |Ez|2, |Hx |2, and |Hy |2 in the vicinity of the tapered waveguide. (d) Profile of the nor-
malized electric field along the central line of the waveguide. The inset shows the profile of Hx/Hy along the central line of the waveguide (solid
black curve) and Hx normalized to the amplitude of the x-component of the magnetic field in a waveguide with the constant thickness L = Li .

L2 are known. The density plot of Fig. 8(a) shows that the
electric field amplitude is kept nearly constant across the
junction of the two waveguides, indicating good matching.
This result is confirmed in Fig. 8(b), where the profile of
the normalized electric field along the central line of the
waveguide is depicted (solid blue curve). It can be seen that
despite the abrupt transition, the wave is barely reflected. In
contrast, the green dashed curve is obtained without ensuring
the impedance match (specifically, the lattice constant a2 is
tuned so that ky = ky,2); in this case, a standing wave pattern
with a much stronger modulation is obtained.

Next, we apply this theory to investigate waveguiding by a
tapered metamaterial slab formed by PEC wires with the initial
thickness Li , that is first tapered toward a tip with thickness
Lf = 0.2Li and then expanded toward its original thickness Li

[inset of Fig. 9(a)]. The taper profile is linear and the distance
between the points with thickness Li and Lf is 0.45λ0. We
define Lwg ≡ Lwg(y) as the thickness of the waveguide as a
function of position. The frequency of operation is ωLi/c =
0.25, and the lattice constant at the beginning of the waveguide
is ai = Li/13.

Figure 9(a) shows the effective index of refraction nwg ≡
ky,wgc/ω seen by the guided mode toward the tip of the
waveguide, where ky,wg ≡ ky,wg(Lwg) is the wave number

in the y-direction determined so that Eq. (17) is satisfied
for each Lwg . As expected, nwg increases significantly as
the tip is approached. In Fig. 9(b), we depict the required
lattice constant awg as a function of the thickness of the
waveguide. Figure 9(c) shows a density plot of the normalized
electromagnetic fields along the waveguide. Consistent with
the results reported in Fig. 8, the electric field remains
essentially constant along the waveguide, despite the tapering.
This is supported by Fig. 9(d), which shows the normalized
electric field profile (blue solid curve) along the axis of the
waveguide. The ripple observed in the electric field profile in
the vicinity of the tip may be related to numerical imprecision,
because near the tip the guided wavelength is extremely small;
thus, a refined mesh is required to obtain fully converged
results. In contrast, both components of the magnetic field
are strongly enhanced as the tip is approached, indicating that
tapering the metamaterial waveguide permits concentration
of the magnetic field into a subwavelength spot [Fig. 9(c)].
This also shown in the inset of Fig. 9(d), which depicts
Hx/Hy (black solid curve) and Hx/Hx,1 (green dashed curve)
along the axis of the waveguide, where Hx,1 is the amplitude
of the x-component of the magnetic field in a waveguide with
the constant thickness L = Li . It is evident that Hy is nearly
negligible compared to Hx (black solid curve), indicating that
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FIG. 10. (Color online) (a) Normalized |Ez|2, |Hx |2, and |Hy |2 in the vicinity of a tapered double wire medium waveguide, with initial and
final thicknesses Li = 15ai and Lf = 0.03Li , respectively. The frequency of operation is ωLi/c = 0.15. (b) Profile of the magnetic field along
the central line of the waveguide. Hx is normalized to the amplitude of the x-component of the magnetic field in a waveguide with the constant
thickness L = Li .

we indeed have quasi-TEM propagation, in agreement with
our initial assumption. Moreover, Hx is enhanced about five
times with respect to a waveguide with the constant thick-
ness L = Li (green dashed curve), which is consistent with
Lf /Li = 5.

We also studied a case where the waveguide is tapered
and severed at the tip. In this example, the parameters of
the waveguide are ai = Li/15 and Lf = 0.03Li and the
frequency of operation is ωLi/c = 0.15. Figure 10(a) shows
a density plot of the normalized electromagnetic fields in the
vicinity of the tapered waveguide. The results are consistent
with the previous example, because the electric field is
nearly constant along the waveguide and both components
of the magnetic field are greatly enhanced. Figure 10(b)
represents the x-component of the magnetic field along the axis
of the waveguide. In agreement with the results of Fig. 9(d),
the enhancement of the magnetic field is roughly inversely
proportional to the compression of the waveguide, confirming
that this is an exciting possibility to enhance the magnetic
fields in an ultra-subwavelength region.

VI. CONCLUSIONS

It was argued that knowledge of the bulk electromagnetic
response of a spatially dispersive material is insufficient to
characterize the response to a macroscopic external excitation
in the presence of interfaces, even in simple scenarios where
the geometry of the interfaces is trivial. The partial differential
equations that link D and E, obtained by inverse Fourier
transforming the constitutive relations in the spectral domain,
may not hold across a boundary between two materials.
Moreover, it is possible to link D and E through inequivalent
differential equations over the interfaces, even though they
are consistent in the bulk regions. The correct form of
the differential equations across the boundary can only be
determined based on knowledge of the internal structure of the
metamaterial. It was illustrated how this can be done in practice
for the particular case of a double wire medium, and a general

FDFD-SD approach was developed to accurately characterize
the electromagnetic response of spatially dispersive wire
medium bodies with arbitrary geometries. As an application
of the developed methods, we investigated the possibility
of concentrating the electromagnetic fields at the tip of
an ultracompact tapered waveguide formed by wire media,
showing that this may be an exciting route for enhancing and
focusing the magnetic field in a subwavelength spot.
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APPENDIX A

In this Appendix, it is shown that the differential system
in Eq. (12) can be written exclusively in terms of the
electromagnetic fields Ez, Dz, Hx , and Hy .

First, from the theory of Refs. 13 and 27, the macroscopic
response of the wire medium can be described by [this set of
equations is represented in a compact manner by Eq. (12)]:

∇ × E = iωμ0H (A1)

∇ × H = jext − iωD (A2)
∂

∂xα

ϕα = −(Zw − iωLw)Iα + Eα (A3)

∂

∂xα

Iα = iωCwϕα (A4)

D = ε0εhE + 1

−iω

∑
α

Iα

Acell
ûα (A5)

Here, Acell = a2, ûα is a unit vector that defines the orientation
of the αth set of wires (α = 1,2); Cw, Lw, and Zw are the
effective capacitance, inductance, and self-impedance of
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the wires per unit length of a wire, respectively;13,27 jext

represents an external excitation; and the second term on the
right-hand side of Eq. (A5) is the macroscopic density of
current associated with flow of charges along the metallic
wires, Jw = ∑

α
Iα

Acell
ûα . In the above, Iα and ϕα are the current

and additional potential, respectively, associated with the αth
set of wires, and Eα = ûα · E xα = ûα · r, with r = (x,y,z).
Thus, substituting Eq. (A3) into Eq. (A4), we find that

Cw

∂

∂xα

(
1

Cw

∂Iα

∂xα

)
+

(
ω

c

)2

εhIα + iωCwZwIα = iωCwEα,

(A6)

where we used CwLw = ε0εhμ0, which holds for the case
of straight wires.27 For the configuration of interest in this
work, we know that both the electric displacement vector
and the electric field only have a z-component. Therefore, for
propagation in the xoy plane, we may write

Eα = E · ûα = Ezẑ · ûα = Ez

1√
2

(α = 1,2) (A7)

Iα

Acell
= Jw · ûα = Jw,zẑ · ûα = Jw,z

1√
2

(α = 1,2), (A8)

and by substituting Eqs. (A7) and (A8) into Eq. (A6), we obtain

Cw

∂

∂xα

(
1

Cw

∂Jw,z

∂xα

)
+

(
ω

c

)2

εhJw,z + iωCwZwJw,z

= 1

Acell
iωCwEz. (A9)

On the other hand, ∂
∂xα

= ûα · ∇, and because we assume
∂
∂z

= 0, this implies that ∂
∂xα

= ± 1√
2

∂
∂x

. Hence, we finally
obtain the result:

1

2
Cw

∂

∂x

(
1

Cw

∂Jw,z

∂x

)
+

(
ω

c

)2

εhJw,z + iωCwZwJw,z

= 1

Acell
iωCwEz (A10)

Using Eq. (A5) and the definition of Jw, it follows that
Dz = ε0εhEz − Jw,z

iω
; hence:

Cw

2

∂

∂x

[
1

Cw

∂

∂x

(
εhEz − Dz

ε0

)]
+ εh

(
ω

c

)2 (
εhEz − Dz

ε0

)

+ iωCwZw

(
εhEz − Dz

ε0

)
= Cw

Acellε0
Ez (A11)

Finally, we use β2
p = Cw

ε0εhAcell
and Zw =

− 1
iωπr2

wε0εh(εm/εh−1) = β2
c

iωCw
, where β2

c = − β2
p

(εm/εh−1)fV
,13,27

to rewrite Eq. (A11) as in Eq. (13a) of the main text. On the

other hand, Eq. (13b) follows directly from Eqs. (A1) and (A2).

APPENDIX B

Here, we provide explicit formulas for the discretized
system in Eqs. (13a) and (13b):

εh(i,j )β2
p(i,j )

2

[
ε−1
h (i,j )β−2

p (i,j ) + ε−1
h (i + 1,j )β−2

p (i + 1,j )

2�x2
Pc,z(i + 1,j )

−2ε−1
h (i,j )β−2

p (i,j ) + ε−1
h (i + 1,j )β−2

p (i + 1,j ) + ε−1
h (i − 1,j )β−2

p (i − 1,j )

2�x2
Pc,z(i,j )

+ ε−1
h (i,j )β−2

p (i,j ) + ε−1
h (i − 1,j )β−2

p (i − 1,j )

2�x2
Pc,z(i − 1,j )

]
+

[
εh(i,j )

(
ω

c

)2

+ β2
c (i,j )

]
Pc,z(i,j )

+ ε0εh(i,j )β2
p(i,j )Ez(i,j ) = 0 (B1)

Ez(i + 1,j ) − 2Ez(i,j ) + Ez(i − 1,j )

�x2
+ Ez(i,j + 1) − 2Ez(i,j ) + Ez(i,j − 1)

�y2
+

(
ω

c

)2
Dz(i,j )

ε0
= −iωμ0js,z(i,j ) (B2)
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