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Effective medium approach to electron waves: Graphene superlattices
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We develop an effective medium approach to characterize the propagation of matter waves in periodic structures,
such as graphene or semiconductor superlattices. It is proven that the time evolution of the states that are not more
localized in space than the characteristic period of the structure can be described exactly through an effective
Hamiltonian, and that the electronic band structure of the system can be exactly determined from the effective
Hamiltonian. As an illustration of the application of the method, we characterize the mesoscopic response of
graphene superlattices. It is shown that these structures may be described using simply two effective parameters:
a dispersive potential, and an anisotropy tensor that characterizes the pseudospin. Our model predicts that a
graphene superlattice characterized by an indefinite anisotropy tensor—such that the eigenvalues of the tensor
have opposite signs—may permit the perfect tunneling of all the stationary states with a specific value of the
energy when it is paired with a dual graphene superlattice with a positive definite anisotropy tensor.
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I. INTRODUCTION

Effective medium semiempirical theories, such as the
k·p method1 or Bastard’s envelope function approximation,2

have become invaluable tools to characterize the electronic
properties of bulk semiconductors and related heterostructures,
and associated devices. Such treatments are made possible
by the fact that the most relevant physical phenomena in
semiconductors are determined by the form of the electronic
structure in the vicinity of some high-symmetry points in the
momentum space. The k·p methods are based on perturbation
theory,3 and enable the calculation of the band structure and
effective masses of different types of semiconductors (e.g.,
with zinc blende structure).

On the other hand, stimulated by the development of
electromagnetic metamaterials,4–6 recently there has been
intense research of methods that permit characterizing periodic
structures from an effective medium perspective, typically
through the introduction of an effective permittivity and
an effective permeability.7–13 It is thus natural to wonder
if some of these ideas and methods can be extended to
the characterization of matter waves, in the context of the
Schrödinger equation.

The objective of this work is precisely, by generaliz-
ing our previous studies in the context of electromagnetic
metamaterials,12,13 to bridge two fields and to develop from
first principles a systematic approach that enables the com-
putation of an effective Hamiltonian that describes within
some approximations the time evolution of a quantum system,
and that reduces drastically the complexity of the problem.
Our analysis neglects electron-electron interactions, and thus
many-body effects. In some cases, these effects may be
modeled by an effective potential.

We apply the developed theory to the case of one-
dimensional graphene superlattices. It is demonstrated that
the low-energy physics in these structures can be described
simply in terms of an energy-dependent effective potential
and an anisotropy tensor that characterizes the pseudospin.
Based on this effective medium model, we predict a unique
perfect tunneling effect in graphene superlattices, showing that

electron waves with a specific energy can be perfectly tunneled
through a nanomaterial with specific properties.

II. EFFECTIVE MEDIUM APPROACH

The starting point of our analysis is the one-body
Schrödinger equation for an electron in some periodic structure
(e.g., a crystalline material or a superlattice),

Ĥ |ψ〉 = ih̄
∂

∂t
|ψ〉. (1)

Let us suppose that the initial state is described by
ψ(r,t = 0), where ψσ (r,t) = 〈rσ |ψ(t)〉 and σ labels addi-
tional degrees of freedom associated, for example, with the
electron spin or (in the case of graphene) the pseudospin. Our
objective is—in the same spirit of the pseudopotential theory
used for calculating electronic band structures14—to obtain
an effective Schrödinger equation satisfied by the smooth
part of the wave function. To this end, it is convenient to
introduce some form of spatial averaging, represented by a
linear operator {}av. The operator {}av is completely determined
by the response function F (k) such that {eik·r}av = F (k)eik·r.
In this work, we suppose that Ĥ describes a spatially periodic
system (e.g., a periodic superlattice) and assume that {}av

corresponds to a low-pass spatial filter, such that F (k) = 0
for k outside the first Brillouin zone (B.Z.), and F (k) = 1
otherwise. For example, if ψσ (r,t) is a superposition of plane
waves, ψσ (r,t) = ∑

k bke
ik·r, then the macroscopic wave

function resulting from spatial averaging is

{ψσ }av(r,t) =
∑

k∈B.Z.

bke
ik·r. (2)

Thus, only the spatial harmonics with k within the first
Brillouin zone are retained after the spatial filtering. This
type of spatial filtering is usually designated by ideal low-pass
filtering.

By definition, a “macroscopic” state has the property
{ψ(r)}av = ψ(r), i.e., a macroscopic state is unaffected by the
spatial averaging. In particular, a “macroscopic state” cannot
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be more localized than the characteristic period of the material
(or superlattice). As proven in Appendix A, a macroscopic state
|ψ〉 is a superposition of states of the form |kσ 〉, with k in the
first Brillouin zone. Similar definitions can be introduced in
the context of electromagnetic metamaterials,12,13 where the
role of the macroscopic state is played by the macroscopic
electromagnetic fields.

In Appendix A, it is shown that provided the initial
state |ψ(0)〉 is macroscopic, then the smooth part of the
wave function in the |rσ 〉 representation, �(r,t) ≡ {ψ(r,t)}av,
satisfies exactly a homogenized Schrödinger equation of the
form

(Ĥef�)(r,t) = ih̄
∂

∂t
�(r,t), (3)

where Ĥef is the effective Hamiltonian of the system, de-
fined in such a way that (Ĥef�)(r,t) = {(Ĥψ)(r,t)}av, where
(Ĥψ)σ (r,t) = 〈rσ |Ĥ |ψ〉. The effective Hamiltonian can be
written explicitly in terms of matrix elements hσ,σ ′ , as follows:

(Ĥef�)σ =
∑
σ ′

∫
dNr′

∫ t

0
dt ′ hσ,σ ′(r − r′,t − t ′)�σ ′(r′,t ′),

(4)

where N is the dimension of the system (e.g., N = 2
for a graphene sheet). Notice that the “microscopic” wave
function is denoted by ψ(r,t), whereas the macroscopic
wave function (after spatial averaging) is denoted by �(r,t).
The indicated properties of hσ,σ ′(r,t) imply that its Fourier
transform (unilateral in time and bilateral in space),

hσ,σ ′(k,ω) =
∫

dNr
∫ +∞

0
dt hσ,σ ′(r,t)eiωt e−ik·r, (5)

is such that

(Ĥef�)σ (k,ω) =
∑
σ ′

hσ,σ ′(k,ω)�σ ′(k,ω), (6)

where �σ (k,ω) = ∫
dNr

∫ +∞
0 dt �σ (r,t)eiωt e−ik·r and

(Ĥef�)σ (k,ω) is defined similarly (the convergence of the
Fourier transform is guaranteed for Im{ω} > 0). Hence, in the
Fourier domain the relation between (Ĥef�) and � is a simple
multiplication. It is interesting to mention that hσ,σ ′(k,ω)
vanishes identically when k is outside the first Brillouin
zone (see Appendix A), and this confirms that the effective
Hamiltonian is indeed a “smooth operator” as compared to
the original Hamiltonian.

Let us discuss how hσ,σ ′(k,ω) can be calculated in practice.
As mentioned previously, the key property of the effective
Hamiltonian is that if the initial state of the system is macro-
scopic, i.e., if {ψ(r,t = 0)}av = ψ(r,t = 0), then the result of
averaging (Ĥψ)σ = 〈rσ |Ĥ |ψ〉 (with |ψ〉 the exact solution
of the microscopic problem: Ĥ |ψ〉 = ih̄ ∂

∂t
|ψ〉) is exactly the

same as that of applying the effective Hamiltonian to the
averaged wave function �(r,t) = {ψ(r,t)}av. In particular,
suppose that the initial state is such that ψσ (r,t = 0) =
eik·rδσ,σ ′ and suppose that ψ(r,t) is the corresponding exact
solution of the Schrödinger equation (here k is fixed in the
first Brillouin zone and σ ′ is also fixed), and ψ(r,ω) is the
corresponding (unilateral) Fourier transform in time. Taking
into account that because of the assumed periodicity of the

system in the spatial domain both ψ(r,ω) and (Ĥψ)σ (r,ω)
must be Bloch modes associated with the wave vector k, it
is trivial to verify that {(Ĥψ)σ }av(r,ω) = (Ĥψ)σ,ave

ik·r and
{ψσ }av(r,ω) = ψσ,ave

ik·r, where

ψσ,av(ω) = 1

Vcell

∫
�

dNr ψσ (r,ω) e−ik·r, (7a)

(Ĥψ)σ,av(ω) = 1

Vcell

∫
�

dNr (Ĥψ)σ (r,ω) e−ik·r, (7b)

where Vcell is the volume of the unit cell. Substituting these
formulas into Eq. (4), we find that ψσ,av(ω) and (Ĥψ)σ,av are
linked by

(Ĥψ)σ,av =
∑
σ ′

hσ,σ ′(k,ω)ψσ ′,av. (8)

This demonstrates that hσ,σ ′(k,ω) can be calculated nu-
merically with the following algorithm: (i) Solve the exact
(time evolution) microscopic problem assuming an initial
state such that ψσ (r,t = 0) ∼ eik·rδσ,σ ′ . (ii) Determine ψ(r,ω)
and (Ĥψ)(r,ω), and afterwards ψav(ω) and (Ĥψ)av defined
consistently with Eq. (7). (iii) Determine hσ,σ ′(k,ω) such that
Eq. (8) is identically satisfied.

In general, to obtain every component of hσ,σ ′(k,ω), one
needs to solve several microscopic problems: as many as
the degrees of freedom associated with σ ′ in the initial time
boundary condition ψσ (r,t = 0) ∼ eik·rδσ,σ ′ . It can be verified
that the effective Hamiltonian [hσ,σ ′(k,ω)] considered here
in the context of matter waves is the analog of the spatially
dispersive effective dielectric function introduced in Refs. 12
and 13 in the context of electromagnetic metamaterials. The
explicit relation between the two formalisms is given in
Appendix B.

An important property of the effective Hamiltonian is that
the corresponding energy eigenstates En, which satisfy for
some nontrivial �,

(Ĥef�)ω=En/h̄ = En�, (9)

are exactly coincident with the energy eigenstates of the
microscopic Hamiltonian, if Ĥ is independent of time.
Therefore the electronic band structure of a time independent
microscopic Hamiltonian can be computed from the effective
Hamiltonian. Strictly speaking, it should be mentioned that
if an energy eigenvector of the microscopic Hamiltonian has
a trivial projection into the subspace of macroscopic states,
then the corresponding eigenvalue is not shared by Ĥef and
Ĥ . This can only occur in degenerate singular cases, and for
very specific forms of the microscopic Hamiltonian, and thus
typically the electronic band structures of the microscopic and
effective Hamiltonians are indeed the same. The enunciated
properties are demonstrated in Appendix C.

III. GRAPHENE SUPERLATTICES

In the rest of the paper, we illustrate the application of the
proposed homogenization method to the case of a graphene
superlattice. Graphene is a one-atom-thick material whose
low-energy excitations are massless, chiral, Dirac fermions.15

Its unusual electronic properties make it a unique platform
for the development of novel electronic devices with superior
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FIG. 1. (Color online) Sketch of the geometry of a graphene su-
perlattice characterized by a steplike periodic electrostatic potential.

characteristics16–18 and for flatland transformation optics.19

Here, we will obtain an effective medium model for a
graphene superlattice characterized by a one-dimensional (1D)
electrostatic periodic potential, whose geometry is sketched in
Fig. 1. Some recent works have shown that these graphene
superlattices may be used to collimate an electron beam
with virtually no spatial spreading or diffraction;20,21 quite
differently here we concentrate on the effective medium
description of electron waves in the superlattices, and highlight
how by tailoring the microscopic potential one can control the
macroscopic Hamiltonian of the quantum system.

The charge carriers in a graphene superlattice are described
by the massless Dirac-type equation,

−ih̄vF (σ · ∇)ψ + V (r)ψ = ih̄
∂ψ

∂t
, (10)

where vF ∼ 106 m/s, σ = (σ x,σ y), σ x,σ y are the Pauli matri-
ces, and V is the external periodic electrostatic potential. Here,
without loss of generality, we restrict the analysis to the study
of electrons whose transport properties are determined by the
Dirac K point.15 The wave function ψ has two components (it
is a pseudospinor), each component, ψm with m = 1,2, being
associated with a different trigonal sublattice of graphene. To
obtain the effective Hamiltonian hm,n(k,ω), m,n = 1,2, it is
sufficient to determine ψ (l)(r,ω), i.e., the (unilateral) Fourier
transform of the wave function ψ (l)(r,t) associated with an
initial state of the form ψ (l)

m (r,t = 0) = eik·rδm,l where k is
measured with respect to the Dirac K point and l = 1,2. It
should be noted that the electron spin plays no role in the
absence of an external magnetic field, and hence hm,n(k,ω)
can be regarded as a 2 × 2 matrix. As mentioned previously,
the effective medium description is valid provided the initial
electron state is not more localized than the characteristic
period a of the superlattice, i.e., provided k is inside the first
Brillouin minizone of the superlattice.

From the properties of the (unilateral) Fourier transform,
using (∂ψ/∂t)(r,t) ↔ −iωψ(r,ω) − ψt=0(r), it is evident that
ψ (l)(r,ω) satisfies the time-independent equation:

[−ih̄vF (σ · ∇) + V (r) − h̄ω]ψ (l) = −ih̄ψ (l)(r,t = 0). (11)

Notice that Eq. (11) is a nonhomogeneous equation, where
the initial time boundary condition −ih̄ψ (l)(r,t = 0) plays the
role of a “source.” On the other hand, it is straightforward to
verify from Eq. (10) that (Ĥψ)av = h̄vF (σ · k)ψav + (V ψ)av,
where (V ψ)av is defined as ψav in Eq. (7a), with ψ replaced

by V ψ . Hence, hm,n(k,ω) is of the form

hm,n(k,ω) = [ h̄vF (σ · k)]m,n + Vef,mn(k,ω), (12)

Vef,mn(k,ω) being such that

(V ψ)m,av =
∑

n

Vef,mn(k,ω)ψn,av. (13)

Hence, for fixed (k,ω) the simplest way to determine the
effective Hamiltonian is to solve Eq. (11) for l = 1,2, and after
this to compute the matrix Vef(k,ω) such that

Vef(k,ω) = [
(V ψ)(1)

av ; (V ψ)(2)
av

] · [
ψ (1)

av ; ψ (2)
av

]−1
, (14)

where the symbol “;” separates the columns of the 2 × 2
matrices. Evidently, in general, Eq. (11) needs to be solved
numerically.

It is clear from the previous discussions that in general
Vef exhibits spatial dispersion (dependence on k ↔ −i∇)
and time dispersion (dependence on ω, or equivalently on
the energy E = h̄ω), and this introduces some complexity
in the effective medium model. This is fully analogous
to electromagnetic metamaterials, where in general the ef-
fective dielectric response depends on frequency and wave
vector.12,13 In order to further simplify the model, we
consider the case where the spatial dispersion is weak so
that it is possible to approximate Vef by its Taylor series
of first order in k, Vef(k,ω) ≈ Vef(ω) + (dVef/dkx)|(0,ω)kx +
(dVef/dky)|(0,ω)ky with Vef(ω) ≡ Vef(0,ω). Taking into account
the symmetries of the microscopic Hamiltonian, it is simple to
verify that Vef(ω) is a scalar. Within this approximation, using
Eqs. (4) and (12), it is seen that the effective Hamiltonian of
the superlattice is such that

(Ĥef�)(r,ω) = [−ih̄vF σ ef(ω) · ∇ + Vef(ω)] · �(r,ω), (15)

where � is a pseudospinor and σ ef(ω) ≡ (σ x,ef,σ y,ef), with

σ ef,x = σ x + 1

h̄vF

dVef

dkx

∣∣∣∣
(0,ω)

and

(16)

σ ef,y = σ y + 1

h̄vF

dVef

dky

∣∣∣∣
(0,ω)

.

In order to understand how the effective parameters vary
with the energy, so that the model can be further simplified, in
the next section we consider a numerical example.

IV. NUMERICAL EXAMPLE

In Fig. 2, we depict the numerically calculated effective
parameters as a function of E = h̄ω, for a superlattice
characterized by a Krönig–Penney-type electrostatic potential
with V1 = −V2, d1 = d2 = a/2, and for the normalized poten-
tial amplitude V1a/h̄vF = 6.0. The effective potential tensor
Vef(k,ω) was calculated semianalytically by solving Eq. (11)
by matching plane wave modes at the interfaces between
different regions, analogous to what is done when solving a
scattering problem.22 Very interestingly, the numerical results
show that to an excellent approximation [Fig. 2(b)],

σ ef ≈ vr,xx (E) σ x x̂ + vr,yy (E) σ y ŷ, (17)

where vr,ii(E) are some scalars weakly dependent on E and
σ i are the Pauli matrices. The pseudospin is characterized
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FIG. 2. (Color online) (a) and (b) Effective parameters as a function of the normalized energy (E) for a graphene superlattice with d1 = d2,
V1a/h̄vF = 6.0, V2 = −V1. (a) Effective potential. (b) Parameters vr,ii (solid curves); the dashed curves represent the diagonal components of
σ ef · x̂ and σ ef · ŷ, which are very close to zero. (c) Parameters vr,ii as a function of V1 for E = 0 and V1 = −V2 and d1 = d2. (d) Anisotropy ratio
1/χ = vr,xx/vr,yy for (i) (solid curve) a Krönig–Penney electrostatic potential with V1 = −V2 and d1 = d2; (ii) (dashed curve) an electrostatic
potential of the form V = V1 sin(2πx/a).

by σ ef which can be written as σ ef = σ · vr with vr =
vr,xx x̂x̂ + vr,yy ŷŷ. We shall refer to vr as the anisotropy tensor
of the superlattice, and neglect its dependence on E (due
to its weak dependence on energy). On the other hand, the
effective potential Vef (at k = 0) for low-energy excitations
varies linearly with E so that

Vef ≈ −αE, (18)

where α is a dimensionless positive constant. Notice that in
pristine graphene vr,ii(E) = 1 and α = 0.

As discussed in Sec. II, the stationary states of the energy
operator can be characterized using the developed effective
medium approach, and the eigenvalues E of the microscopic
Ĥ Hamiltonian are the same as the eigenvalues of the exact
effective Hamiltonian Ĥef . In particular, within the validity of
Eq. (15), the energy dispersion of the graphene superlattice at
the Dirac K point can be obtained by solving the eigenvalue
problem

[−ih̄vF σ ef · ∇ + Vef(ω)] · � = E�. (19)

For a spatial variation of the type eik·r, this yields the dis-
persion |E − Vef| = h̄vF

√
(vr,xxkx)2 + (vr,yyky)2 . In the case

where vr,ii are independent of the energy and Vef ≈ −αE, it is
simple to check that the group energy velocity for propagation
in the x direction is vg,x = h̄−1∂kx

E = vF vr,xx/(1 + α). On
the other hand, because of the Klein tunneling effect,15 it is
evident that vg,x = vF . This indicates that for this particular
superlattice the effective parameters vr,xx and α are such that

vr,xx = 1 + α. (20)

We have indeed verified that the numerically calculated
effective parameters satisfy exactly this relation. In particular,
it follows that energy dispersion of the superlattice may be
written simply as

|E| = h̄vF

√
k2
x + χ2k2

y, (21)

where χ = vr,yy/vr,xx is by definition the anisotropy ratio.
The “exact” energy dispersion of a graphene superlattice with
V1a/h̄vF = 6.0 is depicted in Fig. 3(a), and is compared with
our effective medium theory in Fig. 3(b), revealing a very
good agreement between both theories. As seen in Fig. 3(a),
consistent with the results of Ref. 21, the graphene superlattice
is strongly anisotropic, and the usual Dirac cone of pristine
graphene is stretched along the y direction.

The pseudospinor associated with a state of energy E and
wave vector k is

� = 1√
2

(
1

seiθq

)
eik·r, (22)

where θq is the angle between the vector (vr,xxkx,vr,yyky) and
the x axis and s = sgn(E − Vef) [within the approximation
Vef ≈ −αE, we may also write that s = sgn(E)]. Thus, the
pseudospin of the averaged wave function is determined by
θq, and hence by the parameters vr,ii . Since vr,xx = 1 + α >

1, the angle θq may also be defined as the angle between
q ≡ (kx,χky) and the x axis [Fig. 4(b)]. Thus, in the case
where the superlattice is characterized by strong anisotropy
with χ  1 the pseudospin is such that either θq ≈ 0 or θq ≈
π . A similar result was reported in Ref. 21, based on direct
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FIG. 3. (Color online) (a) Exact energy dispersion of a graphene superlattice such that d1 = d2, V2 = −V1, and V1a/h̄vF = 6.0.
(b) Dispersion of the energy eigenstates for k = k(cos θ, sin θ ) and V1a/h̄vF = 6.0 calculated with (i) (solid curves) the “exact” energy
dispersion characteristic of the superlattice. (ii) (dashed curves) The effective medium model based on the parameters Vef and σ ef .

band structure calculations. It should be noted that, unlike in
pristine graphene, θq �= θk, where θk is the angle between k
and the x axis [Fig. 4(b)]. Evidently, the angle θq determines
the relative phase of the wave function in the two sublattices
of graphene.

In Figs. 2(c) and 2(d) we plot vr,ii and χ (evaluated for E ≈
0), respectively, as a function of the normalized potential V1. As
seen, the anisotropy ratio can be quite large if V1a/h̄vF ∼ 2π ,
which is when the parameter vr,yy crosses zero. This extreme
regime of operation may permit a supercollimation of an
electron beam.21

V. PERFECT TUNNELING

One of the most striking features of Fig. 2(d) is the fact that
χ can be negative for an applied potential with normalized am-
plitude V1a/h̄vF > 6.3. What are the physical consequences of
a reversed sign for the anisotropy ratio? To answer this question
we consider two graphene-based nanomaterials described by
the effective parameters χ1 and χ2 such that χ1 = −χ2 ≡
χ and χ1 > 0, where χi = (vr,yy/vr,xx)i . At a microscopic
level these nanomaterials may be regarded as superlattices
characterized by a suitable microscopic potential, consistent
with the previous discussions. Moreover, we assume that there
is a static potential offset δV between the nanomaterials, so
that the energy dispersion of the stationary modes in the first
material is |E| = h̄vF

√
k2
x + χ2k2

y , whereas the dispersion in
the second material is |E − δV | = h̄vF

√
k2
x + χ2k2

y . We say
that the pseudospin of a material is positive when χi > 0 and
that the pseudospin is negative if χi < 0. Consider now the
geometry depicted in Fig. 4(d), which shows a rectangular slab
of the second material embedded in the first material. Using
the developed effective medium theory, it is straightforward
to compute the transmissivity for a stationary state (plane
wave) that describes an electron incident from the left region,
x < 0, on the slab of the material with negative pseudospin.
This is done by expanding the wave function in the different
regions into plane wave modes, and ensuring the continuity
of the pseudospinors at the interfaces (see Appendix D). In
Fig. 4(c) the transmissivity is shown as a function of the
transverse wave number (ky) of the incoming particle, for
different values of the energy. Quite interestingly, it is seen

that there is a perfect tunneling—independent of the direction
of incidence of the incoming particle—when the energy is
E = δV/2 [green (light gray) curve]. This is distinctively
different from Klein tunneling,15 which only occurs for ky = 0,
whereas in our case the incident electron tunnels through the
second material, independent of the angle of incidence! The
tunneling phenomenon at E = δV/2 can be easily understood
on the basis of the effective medium theory. Indeed, taking into
account that the energy level E = δV/2 is in the conduction
band of the first material and in the valence band of the
second material [Fig. 4(a)], and that for such a value of
E the energy dispersions of both materials are coincident,
it follows that if the pseudospinor of the incident wave is

�1 ∼ ( 1
e
iθq,1 )eikyyeikxx then the pseudospinor of the wave that

propagates in the second material along the positive x direction

is �2 ∼ ( 1
−e

iθq,2 )eikyye−ikxx . But since χ1 = −χ2 ≡ χ it is

evident that θq,1 = θq,2 + π , and hence ( 1
e
iθq,1 ) and ( 1

−e
iθq,2 )

are equal [see Fig. 4(b)]. This implies perfect matching at
the interfaces, and hence perfect transmission independent
of the angle of incidence. It is interesting to point out
that there is an evident parallelism between our graphene-
based nanomaterial with negative pseudospin and double
negative (DNG) electromagnetic metamaterials, as proposed in
Ref. 4. Indeed, similar to electromagnetic metamaterials, our
graphene-based nanomaterial may provide perfect focusing
and negative refraction of electrons with the energy E = δV/2,
when the source of electrons is at a distance W/2 from the
slab of the second material [Fig. 4(d)]. A graphene analog
of Veselago-Pendry’s lens has been proposed in an earlier
publication;17 however, very different from the configuration
considered here, a p-n graphene junction can only mimic
Veselago-Pendry’s lens under a semiclassical approximation
because the electron transmissivity is very different from unity
for wide incident angles. Moreover, our solution behaves as a
perfect lens even for incoming electron waves characterized
by a complex wave vector k1 = (kx1,ky), i.e., for states such
that ky > ky, max where ky, max = E/(χ1h̄vF ) is the transverse
wave vector for grazing incidence. For such complex states,
which strictly speaking are non-normalizable, kx1 is purely
imaginary, and the transmissivity of the structure is exactly
|T |2 = |e−i2kx1W | > 1 [growing exponential: see Fig. 4(c)],
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FIG. 4. (Color online) Perfect tunneling through two complementary graphene nanomaterials. (a) Energy diagrams in the different regions.
An electron with energy E = δV/2 can tunnel perfectly through the structure formed when two nanomaterials with symmetric anisotropy
ratio (χ1 = −χ2) are paired. In material 1 the electron propagates in the conduction band (s1 > 0), whereas in material 2 it propagates in the
valence band (s2 < 0). (b) Illustration of the property θq2 = θq1 + π for χ ≡ χ1 = −χ2 and E = δV/2. (c) Transmissivity as a function of the
normalized wave vector component ky in material 1, for electrons with energy E (traveling in material 1) that impinge on a slab of thickness W

of the material 2 [see panel (d)]. The small text insets indicate the value of the normalized energy E/δV . It is assumed that χ1 = −χ2 = 1/4.6
and that the potential offset is such that δV W/h̄vF = 1.0. The normalization factor ky, max is defined as the maximum value of the transverse
momentum ky : ky, max = E/(χ1h̄vF ). For ky > ky, max the wave function decays exponentially and thus cannot be normalized (see the main text
for a discussion). (d) Semiclassical picture of the electron trajectories in the nanostructure when χ1 = |χ2| and E = δV/2. The electrons are
refracted at the interfaces with θt = −θi , analogous to Veselago-Pendry lens for photons.

which similarly to Pendry’s lens compensates for the exponen-
tial decay in the outside regions.4 Even though the mentioned
complex states are non-normalizable this result is full of
physical significance. For example, consider the stationary
states in the scenario where an arbitrary localized external
perturbation (e.g., a potential well or barrier somewhere in
the region x < 0) is introduced in the first material. Since
two materials with opposite pseudospin completely annihilate
one another when E = δV/2, this means that a pair of such
materials may be “inserted” into the considered structure in the
region x > 0 without changing in any manner the stationary
states associated with E = δV/2 in the region x < 0.

It is natural to wonder if the material with positive
pseudospin in the scenario of Fig. 4 may be chosen as
pristine graphene. This requires that χ1 = 1 and thus χ2 = −1.
Unfortunately, it can be checked in Fig. 2(c) that the minimum
value for 1/|χ |, with χ < 0, for a superlattice characterized
by a Krönig–Penney-type potential is about 4.6. However, this
does not preclude that for a different profile of the microscopic
potential, 1/|χ | cannot be made smaller. For example, by
solving the effective medium problem numerically using a
finite-difference method, we calculated 1/χ as a function of
V1 for a microscopic potential of the form V (x) = V1 sin( 2π

a
x)

(the unit cell is discretized as N × N array of nodes and the

derivatives are replaced by finite differences; then the problem
is reduced to the solution of a linear system). The obtained
result is represented in Fig. 2(d) with a dashed line. As seen,
for this alternative potential the minimum value of 1/|χ | (with
χ < 0) is reduced to 2.5. This is still far from χ2 = −1,
but indicates that by tailoring the shape of the microscopic
potential it may at least be possible to better approximate the
value χ2 = −1.

VI. CONCLUSION

In conclusion, we have described a completely general
self-consistent approach (many-body effects are, however,
neglected) to characterize electron waves in periodic systems
from an effective medium perspective, which extends our
previous work on electromagnetic metamaterials to matter
waves.12,13 The proposed theory may be instrumental in
establishing novel analogies between electromagnetics and
electronics, as further pursued in Ref. 23 in case of semi-
conductor superlattices. Here, we applied the formalism to the
case of a graphene superlattice characterized by a 1D-periodic
potential, showing that the low-energy excitations can be
described in terms of an effective scalar potential and an
anisotropy tensor vr = vr,xx x̂x̂ + vr,yy ŷŷ. In particular, based
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on our effective medium model we predict a regime of perfect
tunneling between nanomaterials with symmetric values of
the anisotropy ratio vr,yy/vr,xx and for a specific value of the
electron energy, completely analogous to Pendry’s perfect lens
in the context of electromagnetic metamaterials.
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APPENDIX A: THE EFFECTIVE
SCHRÖDINGER EQUATION

The spatial averaging operator defined in the main text
in the coordinate representation, {}av, can more generally be
described by the projection operator:

Ôav = 1

(2π )N
∑

σ

∫
B.Z.

|kσ 〉〈kσ | dNk, (A1)

where B.Z. represents the first Brillouin zone, and the nor-
malization 〈k′|k〉 = (2π )Nδ(k′ − k) is implicit (here, |k〉 rep-
resents a state such that 〈r|k〉 = eik·r). The label σ represents
additional degrees of freedom of the wave function, such as
the electron spin and/or (in case of graphene) the pseudospin.
Indeed it is simple to check that {ψσ (r,t)}av = 〈rσ |Ôav|ψ(t)〉.

It is also useful to introduce the (unilateral) Fourier
transform of |ψ(t)〉 given by

|ψ(ω)〉 =
∫ +∞

0
dt |ψ(t)〉e+iωtdt. (A2)

The Fourier transform is defined for Im(ω) > 0. The Fourier
transform of other state vectors or time-dependent operators is
defined similarly.

We denote the averaged state vector of the sys-
tem as |ψav(t)〉 ≡ Ôav|ψ(t)〉, and we define |(Ĥψ)av(t)〉 ≡
ÔavĤ |ψ(t)〉. Here, the objective is to find an effective
Hamiltonian that links |(Ĥψ)av(t)〉 and |ψav(t)〉, in such a way
that Ĥef(ω)|ψav(ω)〉 = |(Ĥψ)av(ω)〉 in the frequency domain,
when the initial state of the system is macroscopic, i.e., when
|ψt=0〉 = |(ψt=0)av〉.

Denoting the propagator of the system by Û (t), we can
write

|ψav(t)〉 = ÔavÛ (t)|ψt=0〉; |(Ĥψ)av(t)〉 = ÔavĜ(t)|ψt=0〉,
(A3)

where Ĝ = Ĥ Û . In the Fourier domain these relations are
equivalent to

|ψav(ω)〉= ÔavÛ (ω)|ψt=0〉; |(Ĥψ)av(ω)〉= ÔavĜ(ω)|ψt=0〉.
(A4)

If the initial state is macroscopic, i.e., |ψt=0〉 = |(ψt=0)av〉,
it is evident that

|ψav(ω)〉 = ÔavÛ (ω)Ôav|ψt=0〉. (A5)

The operator ÔavÛ (ω)Ôav maps the subspace of “macro-
scopic” wave functions onto itself. Let [ÔavÛ (ω)Ôav]−1

represent its inverse in this subspace. Then we have

|(Ĥψ)av(ω)〉 = Ĥef(ω)|ψav(ω)〉, (A6)

where Ĥef(ω) = ÔavĜ(ω)[ÔavÛ (ω)Ôav]−1Ôav. Thus, Ĥef(ω)
is the desired effective Hamiltonian of the quantum system.
It should be underlined that the above formula holds exactly,
provided the initial state of the system (at t = 0) is macroscopic.

If Ĥef(t) is the inverse Fourier transform of Ĥef(ω) [with
Ĥef(t) = 0 for t < 0], i.e., if

Ĥef(ω) =
∫ +∞

0
dt Ĥef(t)e

+iωtdt, (A7)

it is possible to write in the time domain

|(Ĥψ)av(t)〉 =
∫ t

0
dt ′Ĥef(t − t ′)|ψav(t ′)〉. (A8)

It is worth mentioning that if the integration region in the
right-hand side of Eq. (A1) were taken as the entire momentum
space, then Ôav = Î . In that case, if Ĥ is independent of
time, we would obtain Ĥef(t) = δ(t)Ĥ . The role of Ôav in the
definition of Ĥef is thus to “smooth” the exact “microscopic”
Hamiltonian.

Since the microscopic wave function satisfies the
Schrödinger equation, Ĥ |ψ〉 = ih̄ ∂

∂t
|ψ〉, it is evident that

provided the initial state (at t = 0) is macroscopic, then the
average state vector |ψav(t)〉 satisfies exactly:∫ t

0
dt ′Ĥef(t − t ′)|ψav(t ′)〉 = ih̄

∂

∂t
|ψav(t)〉. (A9)

Notice that in this effective medium description the action
of the Hamiltonian at time t depends explicitly on the past
history of the state vector, i.e., on the values of |ψav(t ′)〉 for
t ′ < t [note, however, that the past history can be traced back
to the value of the wave function at time t = 0, using Eq. (A9)].
This intrinsic “time dispersion” in the response is the price that
is paid for the effective medium description of the system.

Now that we have a formal definition for the effective
Hamiltonian Ĥef(ω), we want to obtain its representation in
the momentum space. To this end, we calculate

Hef(kσ,k′σ ′; ω) = 〈kσ |Ĥef(ω)|k′σ ′〉, (A10)

being Ĥef(ω) = ÔavĜ(ω)[ÔavÛ (ω)Ôav]−1Ôav. Now the key
point is that because the quantum system is assumed invariant
to translations along the basis vectors of the direct lattice, it
follows that 〈kσ |Ĝ(ω)|qs〉 and 〈kσ |Û (ω)|qs〉 vanish except
if k − q is a primitive vector of the reciprocal lattice. In
particular, it is evident that ÔavÛ (ω)Ôav maps the state |kσ 〉
into a state of the form

∑
s cs |ks〉, and hence the inverse

function has the same property. This implies that Ĥef(ω) also
maps the state |kσ 〉 into a state of the form

∑
s cs |ks〉, and thus

it follows that

Hef(kσ,k′σ ′; ω) = hσ,σ ′(k,ω)(2π )Nδ(k − k′), (A11)
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where hσ,σ ′(k,ω) = ∫
dN k′
(2π )N 〈kσ |Ĥef(ω)|k′σ ′〉. In particular,

this result implies that

Ĥef(ω) =
∑
σ,σ ′

∫
dNk′

(2π )N
dNk

(2π )N
|kσ 〉〈kσ |Ĥef(ω)|k′σ ′〉〈k′σ ′|

=
∑
σ,σ ′

∫
dNk

(2π )N
hσ,σ ′(k,ω)|kσ 〉〈kσ ′|. (A12)

It is worth noting that hσ,σ ′(k,ω) vanishes for k outside
the Brillouin zone. The above formula gives the desired
representation of Ĥef(ω) in the momentum basis. Substituting
this result into Eq. (A6), it is found that

〈kσ |(Ĥψ)av(ω)〉 =
∑
σ ′

hσ,σ ′(k,ω)〈kσ ′|ψav(ω)〉, (A13)

i.e., in the momentum coordinates the application of Ĥef(ω)
reduces to a simple matrix multiplication. Equivalently, we
can also write

〈(Ĥψ)σ 〉(r,t) =
∑
σ ′

∫
dNr′

∫ t

0
dt ′ hσ,σ ′(r − r′,t − t ′)

×�σ ′(r′,t ′), (A14)

where hσ,σ ′(r,t) is the inverse transform of hσ,σ ′(k,ω),
i.e., hσ,σ ′(k,ω) = ∫

dN r
∫ +∞

0 dt hσ,σ ′(r,t)eiωt e−ik·r, and
by definition �σ (r,t) = 〈rσ |ψav(t)〉 and 〈(Ĥψ)σ 〉(r,t) =
〈rσ |(Ĥψ)av(t)〉.

From Eq. (A9) it is thus evident that if the initial state (at
t = 0) is macroscopic, then the “macroscopic” wave function
�σ (r,t) satisfies exactly:

∑
σ ′

∫
dNr′

∫ t

0
dt ′ hσ,σ ′(r − r′,t − t ′)�σ ′(r′,t ′)

= ih̄
∂

∂t
�σ (r,t). (A15)

In other words, provided the initial state is macroscopic the
time evolution of the macroscopic wave function [|ψav(t)〉 =
Ôav|ψ(t)〉] is fully determined by the effective Hamiltonian
Ĥef(ω), through a modified Schrödinger-type equation, as in
Eq. (A15).

APPENDIX B: EFFECTIVE MEDIUM DESCRIPTION
OF ELECTROMAGNETIC METAMATERIALS

In this Appendix, we discuss the connection between
the formalism developed in the main text and that of our
previous work on electromagnetic metamaterials, highlighting
the equivalence between the two.12,13 The starting point is to
note that the Maxwell’s equations in a continuous medium can
be written as (

0 i∇×
−i∇× 0

)
f = i

∂g
∂t

, (B1)

with f = ( e
h ) and g = ( d

b ). For standard isotropic nondispersive
magnetodielectrics, the electric and magnetic fields, e and h,
are linked to the electric displacement and magnetic induction
fields, d and b, by the standard constitutive relations g = M · f

with M = ( ε 0
0 μ ). For simplicity, in the following discussion

we neglect material dispersion.
In a periodic metamaterial the permittivity and permeability

are periodic functions of space: ε = ε(r) and μ = μ(r). Hence,
the dynamics of the “microscopic” electromagnetic fields (i.e.,
before any form of averaging on the scale of the unit cell of the
metamaterial) can be described by a Schrödinger-type equation
of the form Ĥψ = ih̄ ∂

∂t
ψ where ψ ↔ g is a six-component

vector, and the operator Ĥ is given by

Ĥ = h̄

(
0 i∇×

−i∇× 0

)
· M−1. (B2)

Obviously, the above Hamiltonian does not represent the
energy of the system, but it is rather an operator that describes
the dynamics of the classical electromagnetic field. For
simplicity, from now on in this Appendix we set h̄ = 1. It
is interesting to notice that Ĥ is Hermitian with respect to the
inner product,

〈g2|g1〉 = 1

2

∫
d3r g∗

2 · M−1(r) · g1, (B3)

being implicit that the six-vector fields satisfy suitable (e.g., pe-
riodic) boundary conditions at the boundary of the integration
region. We also note that 〈g|g〉 is the stored electromagnetic
energy.

For a given initial state of the electromagnetic field gt=0,
the unilateral Fourier transform in time of g, defined by g̃ =∫ +∞

0 g eiωtdt , satisfies

Ĥ g̃ = ωg̃ − i gt=0. (B4)

The above result implies that for initial macroscopic
states of the form gt=0 = g0e

ik·r, with g0 being an arbitrary
constant vector, the macroscopic fields satisfy (Ĥ g̃)av =
ωG − ig0, where G = g̃av = 1

Vcell

∫
�

g̃e−ik·rd3r represents the
macroscopic electric displacement and macroscopic induction
fields G = ( D

B ), (Ĥ g̃)av = 1
Vcell

∫
�

(Ĥ g̃)e−ik·rd3r, � is the unit
cell, and Vcell is the corresponding volume. From the theory
of the main text, the effective medium operator Ĥef(ω,k) is
determined by imposing that for arbitrary g0 one has

ĤefG = (Ĥ g̃)av. (B5)

It is easy to check from the definition of Ĥ that

(Ĥ g̃)av =
(

0 −k×
k× 0

)
· F, (B6)

where F = ( E
H ) represents the macroscopic electric and mag-

netic fields, defined so that F = 1
Vcell

∫
�

(M−1 · g̃)e−ik·rd3r. Let
the matrix Mef(ω,k) be such that for arbitrary g0 (i.e., for an
arbitrary initial macroscopic state), one has

G = Mef(ω,k) · F. (B7)

It is easy to check that such a matrix exists and is uniquely
defined, and the above equation is actually the basis of the
homogenization approach of Refs 12 and 13.
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From Eqs. (B5) and (B7), the effective medium operator
can be expressed as

Ĥef =
(

0 −k×
k× 0

)
· M−1

ef (ω,k). (B8)

The matrix Mef(ω,k) gives the effective medium parame-
ters of the metamaterial, and is consistent with the definition
of Ref. 10. In the particular case of a metamaterial formed by
nonmagnetic particles (μ = μ0) it can be shown that Mef(ω,k)

assumes the simple form Mef(ω,k) = ( εef 0
0 μ0

) where εef =
εef(ω,k) is the nonlocal effective dielectric function, defined
exactly as in our previous works.12,13 This confirms that the
theory of this work generalizes the previous studies.12,13

It is important to mention, as already discussed in Ref. 13,
that defining Mef(ω,k) such that Eq. (B7) holds for an arbitrary
initial macroscopic state, as considered here, is fully equivalent
to define Mef(ω,k) in such a way that Eq. (B7) holds for an
arbitrary external macroscopic harmonic current excitation,
which is the original framework of Ref. 12.

APPENDIX C: THE STATIONARY STATES

The energy eigenstates of a microscopic Hamiltonian Ĥ

(with Ĥ independent of time) are exactly the same as those
of the corresponding homogenized system described by Ĥef ,
except for some possible degenerate cases that are discussed
below. This result can be proven by noting that the time
evolution of the wave function for a given initial state |ψt=0〉
is evidently |ψ(t)〉 = ∑

n cn|n〉e−i(En/h̄)t with cn = 〈n|ψt=0〉,
with |n〉, n = 1,2,. . ., being the energy eigenstates of the
microscopic system and En the corresponding eigen-energies.
In particular it is evident that |ψ(ω)〉, defined as in Eq. (A2) for
Im ω > 0, is |ψ(ω)〉 = ∑

n cn|n〉 1
i(ωn−ω) , with ωn = En/h̄. On

the other hand, from the definition of Ĥef(ω) [see Eq. (A6)],
we know that if |ψt=0〉 is a macroscopic state, then

ÔavĤ |ψ(ω)〉 = Ĥef(ω)Ôav|ψ(ω)〉. (C1)

Hence, this implies that

∑
n

cnEn|nav〉 1

i(ωn − ω)
=

∑
n

cnĤef(ω)|nav〉 1

i(ωn − ω)

(C2)

where we put |nav〉 = Ôav|n〉. In order to have an identity, it
is necessary that the residues of both sides of the equation
calculated at a generic pole, ω = ωn, are equal. Hence, it
follows that

Ĥef(ωn)|nav〉 = En|nav〉, with ωn = En/h̄. (C3)

This confirms that the energy eigenstates of a microscopic
Hamiltonian Ĥ , should be precisely the same as those of
the homogenized system. The eigenstates of the homogenized
system are evidently |nav〉 = Ôav|n〉. Strictly speaking, some
degenerate cases for which this property does not hold may
occur. This may happen only if |nav〉 = 0, i.e., in case of
microscopic states that have a trivial projection into the
subspace of macroscopic states. In such a case Eq. (C3) is
equivalent to 0 = 0 and hence Ĥef(ωn) is not required to have
a nontrivial null space. In such circumstances the spectra of

the microscopic and macroscopic Hamiltonians may not be
exactly coincident at a few isolated points. The states for
which |nav〉 = 0, if there are any, cannot be excited with an
initial state |ψt=0〉 that is macroscopic.

It is important to mention that the eigenstates of the
homogenized system are not, in general, mutually orthogonal
with respect to the scalar product of the original Hilbert
space. In fact, we have 〈mav|nav〉 = 〈m|Ôav|n〉, and in general
〈m|Ôav|n〉 �= 〈m|n〉 = δm,n. Moreover, if |ψav(t)〉 is a solution
of the macroscopic Schrödinger equation [Eq. (A15)] (for
a given initial time macroscopic state |ψt=0〉), then in gen-
eral 〈ψav(t)|ψav(t)〉 = 〈ψ(t)|Ôav|ψ(t)〉 may be different from
〈ψ(t)|ψ(t)〉 = 1. In other words, the standard normalization of
the wave function does not apply to the averaged state vector.

APPENDIX D: ELECTRON TUNNELING THROUGH
A NANOMATERIAL WITH A NEGATIVE PSEUDOSPIN

Here, we describe the model used to compute the transmis-
sion coefficient when an electron with energy E propagating
on a graphene-based nanomaterial with the energy dispersion
E = +h̄vF

√
k2
x + χ2

1 k2
y (conduction band), impinges on an-

other graphene nanomaterial (with thickness W along x) with
the energy dispersion E = δV − h̄vF

√
k2
x + χ2

2 k2
y (valence

band). The anisotropy ratio is χi = (vr,yy/vr,xx)i .
We assume that the Dirac points in the nanomaterials (K and

K ′ in case of pristine graphene; in a graphene superlattice extra
Dirac points may emerge)22,24 may be regarded as independent
and associated with different physical channels. We are only
interested in the scattering of electrons with wave vector close
to the Dirac K point. Thus, the electron pseudospinor in the
nanomaterials may be written as (the wave vector is measured
with respect to the K point)

� =
(

1

eiθq,1

)
eikyyeikx1x + R

(
1

−e−iθq,1

)
eikyye−ikx1x, x < 0,

(D1)

� = A

(
1

−eiθq,2

)
eikyyeikx2x + B

(
1

e−iθq,2

)
eikyye−ikx2x,

0 < x < W, (D2)

� = T

(
1

eiθq,1

)
eikyyeikx1x, x > W, (D3)

where R and T are the reflection and transmission co-
efficients, respectively, A and B represent the amplitudes
of the pseudospinors in the nanomaterial with negative
pseudospin parameter, kx1 = +

√
(E/h̄vF )2 − χ2

1 k2
y , kx2 =

+
√

[(E − δV )/h̄vF ]2 − χ2
2 k2

y , eiθq1 = h̄vF (kx1 + iχ1ky)/|E|
and eiθq2 = h̄vF (kx2 + iχ2ky)/|E − δV |. We have assumed
that the interfaces of nanomaterials are at x = 0 and x = W ,
and, for simplicity, that the energy is such that 0 < E < δV .
The angle of incidence θi can be determined from the electron
velocity, v = ∇kE/h̄, and thus determines the transverse wave
vector ky [e.g., for pristine graphene ky = (E/h̄vF ) sin θi]. The
unknown coefficients (R, T , A, and B) are determined by
matching the pseudospinors at the interfaces �|x=0− = �|x=0+

and �|x=L− = �|x=L+ .
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