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Radiation from elementary sources in a uniaxial wire medium
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We investigate the radiation properties of two types of elementary sources embedded in a uniaxial wire medium:
a short dipole parallel to the wires and a lumped voltage source connected across a gap in a generic metallic wire.
It is demonstrated that the radiation pattern of these elementary sources may have quite anomalous and unusual
properties. Specifically, the radiation pattern of a short vertical dipole resembles that of an isotropic radiator close
to the effective plasma frequency of the wire medium, whereas the radiation from the lumped voltage generator
is characterized by an infinite directivity and a nondiffractive far-field distribution.
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I. INTRODUCTION

Wire media, generically defined as structured materials
formed by arrays of long metallic wires,1–3 are perhaps the
class of metamaterials whose effective response is better un-
derstood. Particularly, during the last decade a vast number of
theoretical methods and analytical tools have been developed
which enable characterizing the effective electromagnetic
response of wire-based materials in different scenarios with
great accuracy.4–18 However, a bit surprisingly, the problem of
radiation by localized external sources embedded within wire
media has only been cursorily discussed in the literature.19–23

In part, this gap can be explained by the peculiar electro-
magnetic response of wire media, which are typically charac-
terized by strong spatial dispersion in the long-wavelength
limit,6 and this property complicates analytical modeling.
In simple terms, a medium is spatially dispersive if the
polarization vector at some generic point in space depends
not only on the macroscopic electric field, but also on the
gradient of the field and, possibly, higher order derivatives.24

The objective of this work is to characterize the radiation
properties of elementary localized sources placed within a wire
medium using an effective medium approach. Specifically,
we are interested in the following two scenarios: (i) a short
vertical dipole is embedded in the wire medium [Fig. 1(a)],
and (ii) an external lumped voltage source is connected across
a gap in a generic metallic wire [Fig. 1(b)]. As detailed in
Sec. II, these sources are modeled in terms of the Dirac δ

function. It is, however, important to make clear at the outset
that, strictly speaking, an effective medium description of the
radiation problem is only possible if the source is localized
on a larger scale than the characteristic dimension of the
metamaterial (e.g., the lattice constant a; see Fig. 1). Hence,
the short vertical dipole considered here should be understood
as some external current distributed over a region of space
whose characteristic diameter in the xoy plane is larger than or
equal to a but much smaller than the wavelength. The simplest
way to visualize our macroscopic dipolar source inside the
wire medium is to consider a dense array of microscopic
(i.e., with the dimensions much smaller than the lattice period)
dipoles (all with the dipole moment oriented along the wires
and oscillating in phase), spread over several unit cells of the
structure. The radiation from such a cloud of dipolar particles
is equivalent to averaging the radiation field of a single particle

placed at random locations within a certain volume of the wire
medium. At microwaves, the macroscopic dipolar source may
be realized in practice with a single “structured” dipole-type
antenna that is flexible enough so that it can let the inclusions
of the wire medium go through it without much disturbance.

Similarly, even though, for the purposes of illustration
and discussion, we say that in case (ii) the voltage source
is connected across the gap of a single wire, it is more accurate
to imagine such a source as an array of voltage generators, dis-
tributed over a region of space whose characteristic diameter
is larger than a, with each voltage generator being connected
across a gap in a metallic wire lying within the mentioned
region. With the exception of the immediate vicinity of these
sources, the solution determined with our theory (based on
the Dirac-δ distribution) should describe the radiated fields
accurately.

One of the challenges in the characterization of the radiation
by a localized source within a wire medium is related to the
calculation of quantities such as the Poynting vector or the
radiation intensity (i.e., the power radiated per unit of solid
angle). Indeed, in general the usual form of the Poynting
vector, S = E × H, does not hold in the case of spatially
dispersive materials.24,25 Moreover, there is no known theory to
determine the Poynting vector in a general spatially dispersive
material, and the only case that is actually understood,
and for which closed analytical formulas are available, is
when the electromagnetic fields have a spatial variation of
the form e−jk·r (plane waves).24 In this work, we derive
closed analytical formulas that enable calculating explicitly
the Poynting vector and the electromagnetic energy density
in uniaxial wire media for arbitrary electromagnetic field
distributions. This is one of the key results of the paper.

To do this, we rely on the theory of our earlier works,17,26

where we have shown that the effective medium response of
the wire medium can be modeled using a quasistatic model,
based on the introduction of two additional variables, I and
ϕw. What is remarkable about such a model is that the material
response (e.g., the macroscopic polarization vector) can be
expressed through the macroscopic electromagnetic fields, and
the additional variables I and ϕw through local relations in
space. Therefore, such a formalism enables describing the
unconventional nonlocal electrodynamics of the wire medium
using local material relations, without requiring the definition
of an effective spatially dispersive dielectric function, which
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(a) (b)

FIG. 1. (Color online) Uniaxial wire medium formed by a square
lattice of metallic wires oriented along the z direction. (a) Excitation
based on a short vertical dipole embedded in the wire medium.
(b) Excitation based on a discrete voltage source connected directly
at the center of one of the wires.

would lead to nonlocal relations between the polarization
vector and the macroscopic electric field.6 It is important
to mention that the introduction of the additional variables
is not just a trick that simplifies the modeling of the wire
medium: it is actually full of physical significance and clarifies
the microscopic mechanisms that determine the macroscopic
response of the metamaterial. Indeed, the variable I can
be understood as the electric current that flows along the
metallic wires (interpolated in such a manner that it becomes a
continuous function defined in all space), whereas the variable
ϕw can be understood as the average potential drop from a
given wire to the boundary of the respective unit cell (the
potential is interpolated in the same manner as the current).
For more details, the reader is referred to Refs. 17 and 26.

This paper is organized as follows. In Sec. II, we briefly
review the quasistatic model of the wire medium and formulate
the radiation problem for the two excitations of interest. In
Sec. III we solve the pertinent radiation problem in the spectral
domain. First, we discuss the general case of a stratified (along
z) structure, and after this we analyze in detail the particular
case of an unbounded uniform structure. In Sec. IV, we show
that, for an unbounded uniform structure, the fields radiated by
the elementary external sources can also be directly determined
from the nonlocal dielectric function of the metamaterial. After
this, in Sec. V we derive a general Poynting theorem that
expresses the conservation of energy in wire media, and in
Sec. VI we use these results to obtain the asymptotic form of
the Poynting vector in the far field, as well as the directive
gain, directivity, and power radiated by a short vertical dipole.
Conclusions are drawn in Sec. VII. In this work, we assume
that in the case of a time harmonic regime, the time variation
is of the form ejωt .

II. FRAMEWORK BASED ON THE INTRODUCTION
OF ADDITIONAL VARIABLES

In Refs. 17 and 26 it was shown that the internal physical
processes that determine the macroscopic response of a
wide class of wire media are intrinsically related to the
dynamics of the electric current I along the wires and the
additional potential ϕw, whose physical meaning is discussed
in Sec. I. In particular, it was proven that for the case of
straight wires oriented along the z direction, the macroscopic

electromagnetic fields satisfy

∇ × E = −jωμ0H, (1)

∇ × H = Jext + I

Ac

ẑ + jωεhE, (2)

where εh is the permittivity of the host material, Ac = a2 is
the area of the unit cell, and a is the period of the wire medium
(Fig. 1). Note that, unlike in previous work,17,26 here we admit
the possibility of an external distributed current source Jext.
The electromagnetic fields are coupled to the current I and
additional potential ϕw via a set of transmission line-type
equations:

∂ϕw

∂z
= −(Zw + jωL)I + Ez + VextAcδ (x,y,z) , (3)

∂I

∂z
= −jωCϕw. (4)

In the above, C, L, and Zw represent the capacitance,
inductance, and self-impedance of a wire per unit of length,
respectively, and explicit formulas for these parameters can be
found in our previous papers. It should be noted that C and L

depend exclusively on the properties of the host medium and
on the geometry of the wire medium. The effects of the metal
are described by the self-impedance Zw. The real part of Zw

is determined by the ohmic loss in the metallic wires, whereas
its imaginary part is related to the kinetic inductance of the
electrons in the metal. Compared to Refs. 17 and 26, now we
allow for an external lumped voltage source (with amplitude
Vext) to be placed across a gap in the wire in the central unit cell.
It is simple to check, based on the theory of Ref. 17, that this
lumped voltage source is modeled by the term VextAcδ (x,y,z).
Note that, similarly to the current and additional potential, the
lumped generator is interpolated so that it becomes a function
defined over all space.

In the next section, we determine the solution of the
radiation problems sketched in Fig. 1, based on the system
of Eqs. (1)–(4). It should be mentioned that the present
framework provides a local description of the uniaxial wire
medium because the material response represented by the
expressions on the right-hand side of Eqs. (1)–(4) (without
the source terms) is independent of the gradient and higher
order derivatives of the electromagnetic fields, I , and ϕw.
More specifically, our system of equations may be rewritten
in the form L̂ · F = −jωM̂ · F, where L̂ is a linear differential
operator (fully independent of the medium response), F =
(E,H,ϕw,I )T is our eight-component state vector, and M̂
is a linear matrix operator that is determined by the wire
medium response and is written in terms of the constitutive
parameters εh, μ0, C, L, and Zw. In the present framework
the medium response is local because M̂ does not include
any integrodifferential operators. This contrasts with the
usual formulation based on the effective dielectric function,
which does not introduce any additional variables but in
which the dielectric function depends explicitly on the spatial
gradient.6,12 This is discussed further in Sec. IV.

For future reference, we note that from Eqs. (3) and (4) it
follows that

∂

∂z

1

C

∂I

∂z
+ (ω2L − jωZw)I

= −jω[Ez + VextAcδ(x,y,z)]. (5)
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In the above, it was supposed that L, C, and Zw may depend
on z (but not on x and y), which can happen in the case of
a stratified wire medium (with the direction of stratification
along z), such that either the permittivity of the host medium
or the radii of the wires vary with z.

III. THE RADIATION PROBLEM

Next, we derive the solution of the radiation problem
in terms of two potential functions. We admit that the
external current density describes a short vertical dipole, so
that Jext = jωpeδ (x,y,z) ẑ, where pe represents the electric
dipole moment. Since the Maxwell equations are linear it is
possible to solve the two radiation problems sketched in Fig. 1
simultaneously. This is done in what follows.

A. Solution in terms of two potential functions for the
general case of a stratified structure

For generality, in this subsection, we admit that L, C, Zw,
and εh may depend on z, which, as discussed previously,
may be useful to study problems of radiation in stratified
media. We look for a solution of Eqs. (1)–(4) such that the
macroscopic electromagnetic fields are written in terms of a
potential function � so that

H = ∇ × {jω�ẑ}, (6)

E = ω2μ0� ẑ + ∇
(

1

εh

∂�

∂z

)
. (7)

The usual Hertz potential is written in terms of � as �e =
ẑ�/εh. The above representation of the fields in terms of a
potential function is applicable for the excitations considered
in Fig. 1 but would not be valid if the short dipole was
perpendicular to the wires. It can be easily verified that Eqs. (6)
and (7) satisfy the Maxwell equations, (1) and (2), provided
that

εh

∂

∂z

1

εh

∂�

∂z
+ ∇2

t � + ω2μ0εh� + I

jωAc

= −peδ (x,y,z) , (8)

where ∇2
t = ∂2

∂x2 + ∂2

∂y2 . Hence, substituting Eq. (7) into Eq. (5)
and using the above result, it follows that

C
∂

∂z

1

C

∂

∂z

(
I

jωAc

)
+ (ω2LC − jωZwC)

(
I

jωAc

)

= − C

Acεh

[εhEz + εhVextAcδ (x,y,z)]

= − C

Acεh

[
−∇2

t � − pefδ (x,y,z) − I

jωAc

]
, (9)

where we defined the effective dipole moment for the com-
bined excitations:

pef = pe − εhAcVext. (10)

Note that pef depends on both pe and Vext, because we allow
for the simultaneous excitation of the wire medium with the
two pertinent types of elementary sources.

For convenience, let us introduce the auxiliary potential
function

ψ = 1

k2
p

I

jωAc

, (11)

where kp = √
μ0/(LAc) is the so-called plasma wave

number of the wire medium,6,12,17 which may be calcu-
lated using, for example, the approximate formula appli-
cable to both square and hexagonal wire lattices kp ≈
(1/a)

√
2π/ log[a2/4rw(a − rw)], where rw is the radius of the

metallic wires. Using the fact that for straight unloaded wires
LC = μ0εh, it follows that Eqs. (8) and (9) are equivalent to

εh

∂

∂z

1

εh

∂�

∂z
+ ∇2

t � + k2
h� + k2

pψ = −peδ (x,y,z) , (12)

C
∂

∂z

1

C

∂

∂z
ψ + (

k2
h + β2

c − k2
p

)
ψ − ∇2

t � = pefδ (x,y,z) ,

(13)

where we put k2
h = ω2μ0εh and β2

c = −jωZwC. Hence, to
determine the solution of our problem, we need to solve this
coupled system of partial differential equations with unknowns
� and ψ .

To do this, it is most convenient to work in the Fourier
domain. Defining �̃ and ψ̃ as the Fourier transform of � and
ψ in the xy plane, respectively, so that

�̃ =
∫∫

�ej (kxx+kyy)dxdy, (14)

and ψ̃ is defined similarly, it follows that

εh

∂

∂z

1

εh

∂�̃

∂z
+ (

k2
h − k2

t

)
�̃ + k2

pψ̃ = −peδ (z) , (15)

C
∂

∂z

1

C

∂

∂z
ψ̃ + (

k2
h + β2

c − k2
p

)
ψ̃ + k2

t �̃ = pefδ (z) , (16)

where k2
t = k2

x + k2
y . Thus, we have reduced the radiation

problem to the solution of a system of linear ordinary
differential equations.

B. The case of a homogeneous medium

Hereafter, we restrict our attention to the particular case of
a homogeneous and uniform medium, for which the structural
parameters εh, C, L, and Zw can be assumed to be independent
of z. In such a case, the system of Eqs. (15) and (16) can be
rewritten in a compact matrix notation as follows:

∂2

∂z2

(
�̃

ψ̃

)
=

(
k2
t − k2

h −k2
p

−k2
t k2

p − k2
h − β2

c

)
·
(

�̃

ψ̃

)

+ δ (z)

(−pe

pef

)
. (17)

The general solution of the homogeneous problem, when pe =
pef = 0, can be easily found using standard methods and is
given by(

�̃

ψ̃

)
= (C+

1 e−γTMz + C−
1 e+γTMz)

(
k2
p

γ 2
h − γ 2

TM

)

+ (C+
2 e−γqTz + C−

2 e+γqTz)

(
k2
p

γ 2
h − γ 2

qT

)
, (18)
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where γ 2
h = k2

t − k2
h, C±

i with i = 1,2 are integration con-
stants, and γqT and γTM are the propagation constants along
the z direction of the so-called quasitransverse electromagnetic
(qT) and transverse magnetic (TM) modes supported by the
bulk wire medium. These parameters are defined consistently
with Refs. 12 and 27 and satisfy

γTM = j
[
k2
h − 1

2

(
k2
p + k2

t − β2
c

+
√(

k2
p + k2

t − β2
c

)2 + 4k2
t β

2
c

)] 1
2 , (19)

γqT = j
[
k2
h − 1

2

(
k2
p + k2

t − β2
c

−
√(

k2
p + k2

t − β2
c

)2 + 4k2
t β

2
c

)] 1
2 . (20)

In the case of perfectly conducting wires, we have Zw = 0, and
thus βc = 0. In such a case the propagation constants of the
qT and TM modes reduce to the well-known forms, γqT = jkh

and γTM = √
k2
p + k2

t − k2
h, respectively.6

Since the solution of Eq. (17) is obviously an even function
of z, we may try a solution of the form(

�̃

ψ̃

)
= CqTe−γqT|z|

(
k2
p

γ 2
h − γ 2

qT

)

+CTMe−γTM|z|
(

k2
p

γ 2
h − γ 2

TM

)
. (21)

By direct substitution into Eq. (17), it is readily found that the
unknown constants CqT and CTM are required to satisfy

γqTCqT

(
k2
p

γ 2
h − γ 2

qT

)
+ γTMCTM

(
k2
p

γ 2
h − γ 2

TM

)

= −1

2

(−pe

pef

)
. (22)

This yields

CqT = 1

2γqT

(
γ 2

h − γ 2
TM

)
pe + k2

ppef

γ 2
qT − γ 2

TM

1

k2
p

, (23)

CTM = 1

2γTM

(
γ 2

h − γ 2
qT

)
pe + k2

ppef

γ 2
TM − γ 2

qT

1

k2
p

. (24)

Substituting this result into Eq. (21), we finally obtain the
desired solution:(

�̃

ψ̃

)
= 1

2γqT

(
γ 2

h − γ 2
TM

)
pe + k2

ppef

γ 2
qT − γ 2

TM

e−γqT|z|
(

1
γ 2

h −γ 2
qT

k2
p

)

+ 1

2γTM

(
γ 2

h − γ 2
qT

)
pe + k2

ppef

γ 2
TM − γ 2

qT

e−γTM|z|
(

1
γ 2

h −γ 2
TM

k2
p

)
.

(25)

The inverse Fourier transform of �̃ is given by

� = 1

(2π )2

∫ ∫
�̃e−j (kxx+kyy)dkxdky

= 1

2π

∫ +∞

0
�̃ J0(ktρ)ktdkt , (26)

where J0 is the zero-order Bessel function of the first kind,
ρ =

√
x2 + y2, and in the second identity we used the fact that

�̃ is a function of kt . In general, this Sommerfeld-type integral
can only be evaluated using numerical methods. Obviously, it
is possible to write a similar formula for ψ .

C. Perfectly electric conducting wires

Let us now study what happens when, to a first approxima-
tion, the metal can be modeled as a perfect electric conductor
(PEC), so that Zw ≈ 0. In this situation, Eq. (25) simplifies to

(
�̃

ψ̃

)
= 1

2γqT
k2
p

pe − pef

k2
p + k2

t

e−γqT|z|
(

1
k2
t

k2
p

)

+ 1

2γTM

k2
t pe + k2

ppef

k2
p + k2

t

e−γTM|z|
(

1

−1

)
. (27)

We discuss the two scenarios of interest separately. Let us
consider first that Vext = 0, so that the metamaterial is excited
solely with the short vertical dipole. In this case, pef = pe, and
thus we obtain simply

(
�̃

ψ̃

)
= pe

1

2γTM
e−γTM|z|

(
1

−1

)
. (28)

The corresponding inverse Fourier transforms can be evaluated
analytically in a trivial manner. This yields

(
�

ψ

)
= pe

1

4πr
e−jkefr

(
1

−1

)
, (29)

with kef = √
k2
h − k2

p and r =
√

x2 + y2 + z2.
The result, Eq. (29), implies two unexpected things. First,

despite the anisotropy of the wire medium, the wave fronts
are spherical surfaces! Second, the emission of radiation is
possible only above the effective plasma frequency of the
metamaterial, ωp = kp/

√
εhμ0. These two properties result

from the surprising fact that the qT mode does not contribute
to the radiation field of the short vertical dipole. To explain
this, we start by noting that in the PEC case the qT mode
is exactly the transverse electromagnetic (TEM) mode with
respect to the z direction.6 On the other hand, the electric
Green dyadic in a periodic structure (e.g., a photonic crystal
or a metamaterial) can be written as a weighted summation of
terms such as En ⊗ En, where En stands for a generic natural
mode of the system and ⊗ represents the tensor product.28

In particular, this implies that a TEM mode (with respect
to the z direction) cannot contribute to the field radiated by
a short vertical dipole, because its contribution would be
proportional to ETEM (ETEM · ẑ), whereas for a TEM mode
ETEM · ẑ = 0. Even though this discussion applies to the
microscopic electromagnetic fields (before homogenization on
the scale of the lattice constant), it clearly indicates that the
TEM mode cannot contribute as well to the radiated field in
the framework of a macroscopic theory, in agreement with
Eq. (29). It is interesting to note that in the presence of
loss the contribution of the qT mode to the radiation field
does not vanish [the first addend in Eq. (25) does not vanish
when pe = pef], which is fully consistent with the microscopic
theory, because in the case of loss the electric field associated
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(a) (b)

FIG. 2. (Color online) Contour plots of the amplitude of the potential � (arbitrary logarithmic unities). (a) ωa/c = 0.5. (b) ωa/c = 1.5.
The wire medium is formed by PEC wires with rw = 0.01a standing in a vacuum and is excited by a short vertical dipole.

with the qT mode has a small longitudinal component along
the z direction.

To illustrate variation in space of the potential �, we plot
in Fig. 2 the contour plots of � for two different frequencies
of operation. The wire medium is formed by PEC wires with
rw = 0.01a standing in a vacuum. The plasma wave number
of the effective medium is kp = 1.38/a. Thus, the example
in Fig. 2(a) corresponds to a frequency below ωp, whereas
the example in Fig. 2(b) corresponds to a frequency above
ωp. This explains that in the former case the potential is
strongly localized in the vicinity of the dipole, whereas in
the latter case the potential decays much more slowly as 1/r .
At first glance, the result, Eq. (29), could suggest that the
electric-field radiation pattern should be similar to that of
a Hertz dipole standing in a homogeneous isotropic plasma
with a Drude dispersion. As shown in Sec. VI, this is not
true.

Next, we consider the case pe = 0, so that the wire medium
is excited by a lumped voltage source [Fig. 1(b)]. In this
scenario, the contribution of the TEM mode to the radiation
field does not vanish. Indeed, the inverse Fourier transform of
the first term on the right-hand side of Eq. (27) can be readily
calculated and is equal to

�qT = −pef
1

2γqT
e−γqT|z| k2

p

2π
K0(kpρ), (30)

where K0 is the modified Bessel function of the second kind.
On the other hand, the auxiliary potential, Eq. (11), associated
with the wire current satisfies ψqT = − 1

k2
p
∇2

t �qT.

The result, Eq. (30), is quite remarkable, because it predicts
that the Hertz potential, and hence the electromagnetic fields,
varies with z simply as e−γqT|z| = e−jkh|z|, and hence the
radiated field is simply guided along z, without any form
of decay or diffraction. Moreover, �qT is strongly localized
in the vicinity of the z axis, within a spatial region whose
characteristic diameter is determined by λp = 2π/kp. It
should be mentioned that �qT is actually singular over the
z axis (it has a logarithmic singularity). Such a singularity

occurs because of the adopted δ-function model for the lumped
voltage generator. The singularity disappears if one considers
a less localized model for the discrete source, e.g., if δ (x,y,z)
is replaced by g (ρ) δ (z), where g is some function of ρ

concentrated near the origin. Even for such a source, the
electromagnetic fields are characterized by a diffraction-free
pattern. This is related to the “canalization” properties of the
wire medium, which enable the transport of the near field with
no diffraction.27,29 It should be mentioned that local indefinite
(hyperbolic) materials30 may also enable a “canalization”
effect, however, unlike PEC wire media, they do not support
diffraction-free beam propagation. As far as we could check,
the inverse Fourier transform of the second addend in Eq. (27),
i.e., the contribution of the TM mode when pe = 0, cannot be
written in terms of the standard special functions, and hence it
needs to be calculated numerically using Eq. (26). In Fig. 3, we
plot the contour plots of �, for the same example as in Fig. 2.
It is shown that when ωa/c = 0.5 [Fig. 3(a)], i.e., below the
effective plasma frequency, the fields are strongly concentrated
close to the z axis and are guided away from the source with
no diffraction. The contribution from the TM mode appears
to be residual. On the other hand, above the plasma frequency
[Fig. 3(b)], there are clearly two distinct emission channels,
one associated with the TEM mode and the other with the TM
mode.

The results of this section reveal that the spatially dispersive
properties of wire media imply a dual behavior of the
electromagnetic response. For some excitations, the wire
medium has a response that is more close to that of a plasma
with negative permittivity. For example, if the source is a
short vertical dipole, the emission of radiation is only possible
above an effective plasma frequency. On the other hand,
for other excitations (e.g., lumped voltage source) the wire
medium behaves as a material with extreme anisotropy, with
εzz = −∞, and enables diffraction-free wave propagation.
Thus, depending on the excitation, the metamaterial reveals
different electromagnetic characteristics. This dual behavior
makes the metamaterial response quite unique and totally
different from that of any local material.
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(a) (b)

FIG. 3. (Color online) Contour plots of the amplitude of the potential � (arbitrary logarithmic unities). (a) ωa/c = 0.5. (b) ωa/c = 1.5.
The wire medium is formed by PEC wires with rw = 0.01a standing in a vacuum and is excited by a lumped voltage generator. In (b) an
interference pattern of the TEM and TM modes is observed.

IV. NONLOCAL DIELECTRIC FUNCTION APPROACH

The objective of this section is to prove that the radia-
tion problem in an unbounded uniform structure can be as
well solved using the standard nonlocal dielectric function
formalism.6,12,17 The case of a stratified structure, which can
be easily handled with the theory of Sec. III, is out of reach
of the nonlocal framework (it could, however, be handled with
a combination of mode matching and additional boundary
conditions,11,26 but a detailed discussion of it is out of the
scope of this paper).

In a spatially dispersive medium, the Maxwell equations
may be written in a compact form in the space domain as
follows:

∇ × E = −jωμ0H, (31)

∇ × H = Jext + jωε (ω,j∇) · E, (32)

where the dyadic operator ε(ω,j∇) represents the effective
dielectric function of the material. Note that in the space
domain the effective dielectric function should be regarded as a
function of the gradient ∇. This contrasts with the formulation
in Sec. II, where all the constitutive parameters are independent
of ∇. It is also possible to write the term ε (ω,j∇) · E as
a spatial convolution.24 In the spectral (Fourier) domain, in
which j∇ ↔ k, in the particular case of a uniaxial wire
medium formed by straight wires, the effective dielectric
function is6,12,17

ε(ω,k)

εh

= I − k2
p ẑẑ

k2
h − jξkh − k2

z

, (33)

where ξ = (Zw/L)
√

εhμ0, and the rest of the symbols are
defined as in Sec. II. Note that the effective dielectric function
depends explicitly on kz ↔ j ∂

∂z
.

Despite the apparently complicated form of Eqs. (31)
and (32), the radiation problem can be readily solved in the
spectral domain in the case of an unbounded uniform structure.

Indeed, by calculating the Fourier transform of both sides of
Eqs. (31) and (32) with respect to all the space coordinates, so
that j∇ ↔ k, it is readily found that

k × E(ω,k) = ωμ0H(ω,k), (34)

k × H(ω,k) = −ωε(ω,k) · E(ω,k) − ωPext(ω,k), (35)

where jωPext (ω,k) = Jext (ω,k) is the Fourier-transformed
source term. After some straightforward manipulations, we
find that the Fourier transform of the electric field is

E = jωμ0[ω2μ0ε (ω,k) + kk − k2I]−1 · Jext, (36)

and hence the electric field in the space domain can be formally
written as

E(r) = jωμ0

(2π )3

∫
[ω2μ0ε (ω,k) + kk − k2I]−1

· Jext(k)e−jk·rd3k. (37)

Note that, at least a priori, in the nonlocal dielectric function
framework we can only consider excitations based on an
external density of current [Fig. 1(a)]. The characterization
of the excitation based on a lumped voltage source requires
the knowledge of internal degrees of freedom of the wire
medium (e.g., the current along the wires and the additional
potential), which are not described by the effective medium
model. Nevertheless, in the following we show that a lumped
source Vext can also be modeled by a suitable equivalent Jext.

Next, we obtain the solution of the radiation problem when
Jext (r) = jωpeẑδ (r) or, equivalently, when Pext(ω,k) = peẑ.
Instead of attempting to calculate integral (37) directly, we
instead solve Eqs. (34) and (35) by introducing the Hertz
potential �e. In this manner, we write the Fourier-transformed
fields as follows:

E = ω2εhμ0�e − k(k · �e), (38)

H = ωεhk × �e. (39)
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This form immediately satisfies Eq. (34). From Eq. (35) we
find

k × (k × �e) = − ε

εh

· [
k2
h�e − k(k · �e)

] − peẑ
εh

. (40)

Using Eq. (33), after some trivial vector algebra, we obtain(
k2
h − k2)�e = −χzzẑẑ · [

k2
h�e − k(k · �e)

] − peẑ
εh

, (41)

where

χzz = − k2
p

k2
h − jξkh − k2

z

. (42)

Calculating the vector product of Eq. (41) by ẑ we find that

ẑ × �e = 0, (43)

and therefore, �e = �zẑ ≡ ẑ�/εh. From this and Eq. (41),[
k2
h − k2 + χzz

(
k2
h − k2

z

)]
� = −pe. (44)

For PEC wires ξ = 0, and thus from Eq. (42) we have(
k2
h − k2

p − k2
)
� = −pe, (45)

from which

�(ω,k) = − pe(
k2
h − k2

p − k2
) , (46)

and thus,

�(ω,r) = pe

e−j
√

k2
h−k2

pr

4πr
, (47)

which is the same as Eq. (29).
In the general case in which the metal has a plasmonic-type

response, ξ 	= 0. Introducing the notation β2
c = −jξkh, we

obtain from Eq. (44)

�(ω,k)

= −pe

k2
h + β2

c − k2
z(

k2
h − k2

)(
k2
h + β2

c − k2
z

) − k2
p

(
k2
h − k2

z

)
= −pe

k2
h + β2

c − k2
z(

k2
z + γ 2

TM

)(
k2
z + γ 2

qT

) , (48)

where γTM and γqT are given by Eqs. (19) and (20).
Calculating the inverse Fourier transform with respect to

kz, we find

�(ω,kt ,z) = pe

2

(
k2
h + β2

c + γ 2
qT

γqT
(
γ 2

qT − γ 2
TM

)e−γqT|z|

+ k2
h + β2

c + γ 2
TM

γTM
(
γ 2

TM − γ 2
qT

)e−γTM|z|
)

. (49)

At first glance, this result looks different from Eq. (25),
but one may verify that k2

h + β2
c + γ 2

qT = (γ 2
h − γ 2

TM) + k2
p,

and, similarly, k2
h + β2

c + γ 2
TM = (γ 2

h − γ 2
qT) + k2

p. Thus, we
recover Eq. (25) with pe = pef , which corresponds to the case
Vext = 0, consistent with our assumptions at the beginning of
this section.

Surprisingly, the lumped voltage source Vext in Eqs. (3)
and (4) can be equivalently represented within the nonlo-
cal dielectric function model with some distributed current

density Jext,V in the unbounded wire medium. To show this,
we consider the Fourier-transformed equations, (3) and (4)
(for simplicity, we let Zw = 0), from which the Fourier-
transformed current I (ω,k) can be expressed as

I (ω,k) = −jωεhAc

k2
p

k2
h − k2

z

[Ez(ω,k) + VextAc]. (50)

When this expression is substituted into the Fourier-
transformed equations (1) and (2), the Ez-proportional term in
Eq. (50) is combined with the term jωεhE, which results in the
spatially dispersive permittivity (33), and the Vext-proportional
term occurs as an additional external current density,

Jext,V (ω,k) = −jωεhVext
k2
pAc

k2
h − k2

z

ẑ. (51)

Therefore, applying the inverse Fourier transform, we find that

Jext,V (ω,r) = k2
pAcVexte

−jkh|z|

2ηh

δ(x,y)ẑ, (52)

where ηh = √
μ0/εh. Thus, a lumped voltage source inserted

into a wire of the unbounded uniaxial wire medium (with PEC
wires, Zw = 0) may be equivalently represented with a line
of z-directed wave-like current, Eq. (52). It is curious to note
that while the lumped voltage source excitation is localized
at the origin, the equivalent current density is distributed over
the entire z axis. At first sight, this may look inconsistent
with causality. However, it is simple to verify that such
a current is just a wave emerging from the discontinuity
point at z = 0. Indeed, if one calculates the inverse Fourier
transform of Eq. (52) with respect to time, it is found
that

Jext,V (t,r) = k2
p

Ac

2ηh

Ṽext

(
t − |z|

vh

)
ẑδ (x,y) , (53)

with vh = 1/
√

εhμ0 the velocity of propagation in the host
material and Ṽext (t) the inverse Fourier transform of Vext (ω).
The above formula is manifestly consistent with causality,
because the excitation at a given point z only depends on the
excitation at the origin with a delay |z|/vh.

V. ENERGY CONSERVATION IN THE UNIAXIAL WIRE
MEDIUM AND POYNTING THEOREM

In what follows, we prove that the framework in Sec. II
based on the introduction of additional variables enables
formulating an energy conservation theorem and defining
a Poynting vector in the uniaxial wire medium. We start
with Eqs. (1)–(4) written in the time domain. The host
permittivity εh is assumed to be dispersionless and lossless,
and the wires are modeled by a self-impedance of the form
Zw(ω) = jωLkin + R, where the parameters Lkin and R are
independent of frequency. For metallic wires with radius rw

standing in air and described by the Drude model with plasma
frequency ωm and collision frequency �, these parameters may
be estimated as Lkin = 1/(ε0πr2

wω2
m) and R = �/(ε0πr2

wω2
m)

when εh = ε0.
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Thus, in the time domain Eqs. (1)–(4) may be written as

∇ × E = −μ0
∂H
∂t

, (54)

∇ × H = εh

∂E
∂t

+ I

Ac

ẑ + Jext, (55)

and

∂ϕw

∂z
= −(L + Lkin)

∂I

∂t
− RI + Ez + Eext, (56)

∂I

∂z
= −C

∂ϕw

∂t
, (57)

where Eext is the effective EMF of the voltage sources inserted
into the wires, per unit length of the wires [e.g., for a lumped
source Vext inserted into a wire at r = 0, Eext = VextAcδ(r)].

Following a standard procedure, we obtain from Eqs. (54)
and (55)

∇ · [E × H] = − ∂

∂t

[
εhE2

2
+ μ0H2

2

]
− E · Jext − EzI

Ac

.

(58)

On the other hand, from Eqs. (56) and (57) we have

∂(ϕwI )

∂z
= − ∂

∂t

[
Cϕ2

w

2
+ LtotI

2

2

]
− RI 2 + EzI + EextI,

(59)

where Ltot = L + Lkin.
Diving the last relation by Ac and adding it to Eq. (58), we

obtain the conservation law

∇ · S = −∂W

∂t
− Ploss + Pext, (60)

where

S = E × H + ϕwI

Ac

ẑ, (61)

W = εhE2

2
+ μ0H2

2
+ Cϕ2

w

2Ac

+ LtotI
2

2Ac

, (62)

Ploss = RI 2

Ac

, (63)

Pext = EextI

Ac

− E · Jext . (64)

The vectorial quantity S in Eqs. (60) and (61) may be
understood as the Poynting vector in the uniaxial wire medium,
and Pext as the volume density of the power transferred by the
external sources to the medium. In the absence of loss, i.e.,
when R = 0, the term W is univocally identified with the
density of stored energy. In contrast, if loss is present, then
it is generally impossible to separate the energy storage rate
from the energy loss rate when a metamaterial is considered
macroscopically.

However, if the microstructure of a metamaterial is known,
the stored energy can be found from a consistent physical
model that fully describes the processes within a unit volume
of the metamaterial. Thus, if we assume that the Drude model
is such a consistent model for the dynamics of the free electron
plasma in metals, then Eq. (62) preserves the meaning of the
stored energy density even when R > 0. In this case, the

quantity Ploss has the physical meaning of an instantaneous
power loss density.

Evidently, in a time-harmonic regime the time-averaged
Poynting vector is given by

Sav = 1

2
Re

{
E × H∗ + ϕwI ∗

Ac

ẑ
}

. (65)

It can be checked that in the lossless case (Re {Zw} = 0), and
for the case of fields with a spatial dependence of the form
e−jk·r with k real-valued, this reduces to the formula

Sav,l = 1

2
Re{(E × H∗)l} − ω

4
E∗ · ∂ε

∂kl

(ω,k) · E, (66)

with l = x,y,z and ε defined as in Eq. (33), which is appli-
cable to plane waves in general lossless spatially dispersive
media.24,25,31 The application of the above formula to wire
media has been considered in several works.10,32

VI. RADIATION PATTERN IN THE PEC CASE

Next, we obtain the radiation pattern, directive gain,
directivity, and radiation resistance for the case of a short
vertical dipole radiating in a wire medium formed by PEC
wires [Fig. 1(a)]. We do not discuss in detail the case wherein
the metamaterial is excited by a lumped voltage source
because, as discussed in Sec. III C, in such a scenario the
radiated field is guided along the z axis with no decay. In
particular, this implies immediately that the directivity in such
a configuration is infinite.

A. Asymptotic form of the radiated fields

To begin with, we obtain the asymptotic form of the field
radiated by a short vertical dipole (Vext = 0) embedded in a
wire medium formed by PEC wires when r → ∞. Evidently,
from the results in Sec. III C, unless the frequency of operation
is higher than the plasma frequency of the effective medium,
the radiated fields will decay exponentially away from the
source. Hence, in what follows we assume that ω > ωp =
kp/

√
μ0εh, so that kef > 0 in Eq. (29). Substituting Eq. (29)

into Eqs. (6) and (7), it can be easily checked that

H =̇ − ωkef� sin θ ϕ̂, (67)

E =̇ k2
h

�

εh

[(
1 − k2

ef

k2
h

)
cos θ r̂ − sin θ θ̂

]
, (68)

where the symbol =̇ indicates that the identities are asymptotic
(r → ∞), � = pe

1
4πr

e−jkefr , and (r̂,θ̂ ,ϕ̂) define an orthogonal
reference system associated with the usual spherical coordinate
system (r,θ,ϕ). As shown, unlike what happens in an isotropic
medium, the electric far field has a radial component. The
amplitude of the electromagnetic fields varies asymptotically
as 1/r , and Eθ = ηefHϕ with ηef = ωμ0/kef .

Similarly, substituting Eq. (29) into Eqs. (3), (4), and (11),
it is found that the asymptotic forms of the current and
additional potential are

I =̇ − jωAck
2
p�, (69)

ϕw =̇ I
kef

ωC
cos θ =̇ − j kef

εh

cos θ�. (70)
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FIG. 4. (Color online) Polar plot of the directive gain of a short
vertical dipole embedded in the uniaxial wire medium for different
frequencies of operation (ω = kh/

√
εhμ0 ).

Thus, from Eqs. (68) and (70), we see that the time-averaged
Poynting vector, Eq. (65), in the far field is

Sav =̇ 1

2
ω3μ0|�|2kef sin θ

(
k2
p

k2
h

cos θ θ̂ + sin θ r̂
)

+ 1

2

kef

εh

k2
pω cos θ |�|2 ẑ. (71)

Straightforward calculations show that the Poynting vector
only has a radial component:

Sav =̇ 1

2
kefω

3μ0|�|2
(

sin2 θ + k2
p

k2
h

cos2 θ

)
r̂. (72)

Hence, in part surprisingly, it follows that a short vertical
dipole embedded in a wire medium can radiate energy along
the direction of vibration, i.e., along the z axis! Moreover,
in the limit ω → ωp the radiation pattern becomes isotropic:
Sav ≈ 1

2kefω
3μ0 |�|2 r̂. Note, however, that for ω = ωp, we

have kef = 0 and thus the Poynting vector vanishes in the far
field. However, slightly above ωp the emission of radiation is
certainly possible. Note also that in the limit where kp → 0,
we recover the far field of a short vertical dipole embedded in
a dielectric with permittivity εh.

B. Radiation intensity, directive gain, directivity,
and radiation resistance

The radiation intensity of the short vertical dipole, U =
limr→∞ r2Sav, is given by

U = |pe|2
32π2

kefω
3μ0

(
sin2 θ + k2

p

k2
h

cos2 θ

)
. (73)

Hence, the power radiated by the dipole, Prad = ∫
Ud� =

2π
∫

U sin θdθ , is such that

Prad = |pe|2
12π

kefω
3μ0

(
1 + k2

p

2k2
h

)
. (74)

The directive gain, g = 4πU/Prad, is

g (θ,ϕ) = 3

2 + k2
p/k2

h

(
sin2 θ + k2

p

k2
h

cos2 θ

)
. (75)

Since kh � kp, it can be checked that the direction of maximal
radiation is θ = π/2. The directivity of the short vertical dipole
is, thus,

D = 3

2 + k2
p/k2

h

, (76)

which therefore increases from unity (for kh ≈ kp) up to 3/2
in the limit kh � kp.

In Fig. 4 we show a polar plot of the directive gain of
the short vertical dipole for different frequencies of operation,
normalized to the effective plasma frequency. In agreement
with the previous discussion, it can be seen that the radiation
pattern becomes more directive for increasing values of the
frequency and that, for ω ≈ ωp, the radiator resembles an
isotropic radiator.

To conclude, we note that if the dipole is fed by a current I0

and has infinitesimal height dl, then the corresponding dipole
moment is such that ω |pe| = |I0| dl. Thus, it follows that the
radiation resistance (Rrad = 2Prad/ |I0|2) of such an elementary
source is given by

Rrad = (dl)2

6π
kefωμ0

(
1 + k2

p

2k2
h

)

= ηh

(dl)2

6π
kefkh

(
1 + k2

p

2k2
h

)
, (77)

where ηh = √
μ0/εh is the impedance of the host material.

VII. CONCLUSION

In this work we have studied the radiation of two types of
elementary sources embedded in a uniaxial wire medium and
derived a general energy conservation theorem. The main chal-
lenge of the radiation problem is related to the metamaterial
being spatially dispersive. We have shown that the radiation
problem can be solved by considering either a nonlocal
dielectric function framework or, alternatively, a framework
based on the introduction of additional variables where the
medium response may be regarded as local. However, only
the latter approach enables considering stratified media and
calculating quantities such as the Poynting vector or the
directive gain. It was shown that the emission of radiation by a
short dipole in a wire medium has several anomalous features,
such as a uniform directive gain near the effective plasma
frequency. On the other hand, the radiation by a lumped voltage
generator results in a nondiffractive beam that is localized
in the vicinity of the z axis and corresponds to an infinite
directivity.

155125-9



MÁRIO G. SILVEIRINHA AND STANISLAV I. MASLOVSKI PHYSICAL REVIEW B 85, 155125 (2012)

*Corresponding author: mario.silveirinha@co.it.pt
†stas@co.it.pt
1J. Brown, Proceedings of the IEE—Part IV: Institution Monographs
100(5), 51 (1953).

2W. Rotman, IRE Trans. Antennas Propag. 10, 82 (1962).
3J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev.
Lett. 76, 4773 (1996).

4S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, Microw. Opt.
Techn. Lett. 35, 47 (2002).

5A. L. Pokrovsky and A. L. Efros, Phys. Rev. B 65, 045110
(2002).

6P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov,
M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev.
B 67, 113103 (2003).

7M. G. Silveirinha and C. A. Fernandes, IEEE Trans. Microwave
Theory Tech. 53, 1418 (2005).

8C. R. Simovski and P. A. Belov, Phys. Rev. E 70, 046616
(2004).

9I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E 71,
046612 (2005).

10I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. B 72,
245113 (2005).

11M. G. Silveirinha, IEEE Trans. Antennas Propag. 54, 1766
(2006).

12M. G. Silveirinha, Phys. Rev. E 73, 046612 (2006).
13M. G. Silveirinha, in Theory and Phenomena of Artificial Materi-

als,, edited by F. Capolino, Vol. 1 (CRC Press, Boca Raton, FL,
2009).

14M. G. Silveirinha and C. A. Fernandes, Phys. Rev. B 78, 033108
(2008).

15O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski,
I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory
Tech. 57, 2692 (2009).

16A. B. Yakovlev, M. G. Silveirinha, O. Luukkonen, C. R. Simovski,
I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory
Tech. 57, 2700 (2009).

17S. I. Maslovski and M. G. Silveirinha, Phys. Rev. B 80, 245101
(2009).

18I. S. Nefedov, Phys. Rev. B 82, 155423 (2010).
19I. Nefedov and A. Viitanen, Electronic Lett. 43, 1206 (2007).
20P. Ikonen, M. Karkkainen, C. Simovski, P. Belov, and S. Tretyakov,

IEE Proc. Microw. Antennas Propag. 153, 163 (2006).
21G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R.

Wilton, IEEE Trans. Antennas Propag. 54, 1017 (2006).
22P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R.

Wilton, IEEE Trans. Antennas Propag. 56, 1329 (2008).
23P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R.

Wilton, IEEE Trans. Microwave Theory Tech. 58, 1112 (2008).
24V. M. Agranovich and V. Ginzburg, Spatial Dispersion in Crystal

Optics and the Theory of Excitons (Wiley-Interscience, New York,
1966).

25J. T. Costa, M. G. Silveirinha, and A. Alu, Phys. Rev. B 83, 165120
(2011).

26S. I. Maslovski, T. Morgado, M. G. Silveirinha, C. S. R. Kaipa, and
A. B. Yakovlev, New J. Phys. 12, 113047 (2010).

27M. G. Silveirinha, P. A. Belov, and C. R. Simovski, Phys. Rev. B
75, 035108 (2007).

28K. Sakoda, Optical Properties of Photonic Crystals (Springer-
Verlag, Berlin, 2001).

29P. A. Belov, Y. Hao, and S. Sudhakaran, Phys. Rev. B 73, 033108
(2006).

30L. P. Felsen and N. Marcuvitz, Radiation and Scattering of Waves,
IEEE Series on Electromagnetic Theory (IEEE Press, Piscataway,
NJ, 1994).

31M. G. Silveirinha, Phys. Rev. B 80, 235120 (2009).
32M. G. Silveirinha, New J. Phys. 11, 113016 (2009).

155125-10

http://dx.doi.org/10.1109/TAP.1962.1137809
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1002/mop.10512
http://dx.doi.org/10.1002/mop.10512
http://dx.doi.org/10.1103/PhysRevB.65.045110
http://dx.doi.org/10.1103/PhysRevB.65.045110
http://dx.doi.org/10.1103/PhysRevB.67.113103
http://dx.doi.org/10.1103/PhysRevB.67.113103
http://dx.doi.org/10.1109/TMTT.2005.845128
http://dx.doi.org/10.1109/TMTT.2005.845128
http://dx.doi.org/10.1103/PhysRevE.70.046616
http://dx.doi.org/10.1103/PhysRevE.70.046616
http://dx.doi.org/10.1103/PhysRevE.71.046612
http://dx.doi.org/10.1103/PhysRevE.71.046612
http://dx.doi.org/10.1103/PhysRevB.72.245113
http://dx.doi.org/10.1103/PhysRevB.72.245113
http://dx.doi.org/10.1109/TAP.2006.875920
http://dx.doi.org/10.1109/TAP.2006.875920
http://dx.doi.org/10.1103/PhysRevE.73.046612
http://dx.doi.org/10.1103/PhysRevB.78.033108
http://dx.doi.org/10.1103/PhysRevB.78.033108
http://dx.doi.org/10.1109/TMTT.2009.2032458
http://dx.doi.org/10.1109/TMTT.2009.2032458
http://dx.doi.org/10.1109/TMTT.2009.2031933
http://dx.doi.org/10.1109/TMTT.2009.2031933
http://dx.doi.org/10.1103/PhysRevB.80.245101
http://dx.doi.org/10.1103/PhysRevB.80.245101
http://dx.doi.org/10.1103/PhysRevB.82.155423
http://dx.doi.org/10.1049/el:20071668
http://dx.doi.org/10.1049/ip-map:20050078
http://dx.doi.org/10.1109/TAP.2006.869925
http://dx.doi.org/10.1109/TAP.2008.922620
http://dx.doi.org/10.1109/TMTT.2008.921657
http://dx.doi.org/10.1103/PhysRevB.83.165120
http://dx.doi.org/10.1103/PhysRevB.83.165120
http://dx.doi.org/10.1088/1367-2630/12/11/113047
http://dx.doi.org/10.1103/PhysRevB.75.035108
http://dx.doi.org/10.1103/PhysRevB.75.035108
http://dx.doi.org/10.1103/PhysRevB.73.033108
http://dx.doi.org/10.1103/PhysRevB.73.033108
http://dx.doi.org/10.1103/PhysRevB.80.235120
http://dx.doi.org/10.1088/1367-2630/11/11/113016

