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Casimir forces at the threshold of the Cherenkov effect

Stanislav I. Maslovski* and Mário G. Silveirinha
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We study the Casimir-Lifshitz forces in a strongly nonreciprocal system: a waveguide filled with a medium
moving at a relativistic velocity. In such a waveguide the waves propagate dominantly along a single direction
that coincides with the direction of the velocity. Our theory shows that the Casimir forces acting on a piston in
such a quasi-one-way waveguide vanish when the velocity approaches the Cherenkov threshold.
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I. INTRODUCTION

Recently, the Casimir-Lifshitz interactions in systems
involving moving matter have raised a growing interest.
One reason for this is that at the moment there are several
phenomenological and semiclassical theories of such forces—
resulting from quantum fluctuations of the electromagnetic
field in moving media—that sometimes give opposite predic-
tions. For example, some semiclassical theories [1,2] predict
the existence of the so-called quantum friction between two
moving dielectric slabs separated by a vacuum, even at the
absolute zero of temperature. Similar results were obtained
within first-order perturbation quantum theories for moving
plasmons [3] or particles near dielectric surfaces [4]. Never-
theless, some authors defend that there is no quantum friction at
zero temperature between uniformly moving dielectric plates
[5] or, in certain cases, particles [6], which shows that there are
many questions in this field that remain largely unanswered.

In part, the complications arise from the fact that moving
media are nonreciprocal as they are not invariant under time
reversal, which would reverse the direction of the flow of
matter. Such nonreciprocity may lead to interesting effects. For
instance, it has been recently shown [7] that in a nonuniformly
moving fluid the quantum fluctuations of the electromagnetic
field may result in both attractive and repulsive interactions
between the moving layers, depending on the relative velocities
and directions of movement of the layers. Another effect—
that we exploit in this paper—is the drag of radiation by
moving matter. This effect becomes especially important when
the velocity of the flow approaches the phase velocity of
the electromagnetic waves in the medium, that is, when it
approaches the threshold of Cherenkov radiation. When a
medium moves at such a high speed, the electromagnetic
radiation (as seen by a stationary observer) becomes trapped
in the moving matter, so that the wave propagation in the
direction opposite to the medium flow becomes forbidden.

Imagine now that one has realized the above conditions in
a waveguide environment, that is, the moving fluid is confined
by some waveguide. Then, in such a structure the waves
propagate mainly in a single direction and, essentially, one
obtains a one-way waveguide. Of course, filling the waveguide
with real moving matter is not absolutely necessary to obtain
this property, at least, if one is only interested in operation
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in a narrow frequency band. For instance, waveguides made
of ferrites or magnetized plasma are quite well known. In
these structures an applied static magnetic field plays the role
of the time-odd parameter, due to which the nonreciprocity
occurs. However, as we show in this work, a waveguide
filled with weakly dispersive (ideally, nondispersive) moving
medium may have the one-way propagation property fulfilled
in a very wide range of frequencies, thus allowing for both
qualitative and quantitative studies of the effect of this property
on the Casimir-Lifshitz interactions in such nonreciprocal
structures without resorting to particular models of dispersion
in magnetized ferrites, for example.

Puzzling questions immediately come to mind when
thinking about possible Casimir-Lifshitz interactions between
objects in a one-way waveguide. Can this interaction become
“nonreciprocal” in the sense that the Casimir pressure on
two identical interacting objects embedded in the moving
fluid is different? Will there be a drift force of quantum
origin that may pull polarizable particles, for example, along
the direction of the flow? The answer to these questions is
intrinsically related to the manner in which the fields in such a
waveguide are quantized. Within the usual framework of quan-
tum electrodynamics, the Hamiltonian of the electromagnetic
field is expressed as a summation over quantum harmonic
oscillators that correspond to the classical electromagnetic
modes of the system. This framework may be generalized
to moving media, provided that the essential nonreciprocity
of the electromagnetic processes in such media is properly
taken into consideration. In a recently published work [7] such
generalization has been performed, and, in the rest of the paper,
we use this theory to answer the intriguing questions posed
above.

II. THE WAVES IN A WAVEGUIDE FILLED
WITH A MOVING MEDIUM

Let us consider a waveguide formed, for example, by two
ideally conducting walls (PEC) at y = ±b/2 and two ideally
permeable walls (PMC) at x = ±a/2 (Fig. 1) completely filled
with a nondispersive moving dielectric fluid. As discussed in
what follows, PMC plates do not play any special role here:
One may as well consider a standard PEC waveguide, or a
coaxial line, etc. Later in the paper we consider in detail one of
such configurations. The filling fluid moves with the velocity
v along the z axis, which is the axis of the waveguide. The
Maxwell equations for the fields in the waveguide as seen in
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FIG. 1. Geometry of a waveguide filled with a moving dielectric
fluid. (Left) The cross section of the waveguide. The waveguide is
formed by two PEC plates at y = ±b/2 and two PMC plates at
x = ±a/2. (Right) The section of the waveguide in the yz plane. The
waveguide is closed with two stationary walls at z = 0 and z = L.
A wall that can slide along Oz (a piston) is placed at z = z0. The
walls are assumed penetrable by the fluid, but impenetrable by the
electromagnetic field (see further explanations in Sec. III).

the stationary frame can be written as (the time dependence is
of the form e−iωt ) [8]

iωμ · H = ∇t × E + (iων + ∂z)z0 × E, (1)

−iωε · E = ∇t × H + (iων + ∂z)z0 × H, (2)

where ∇t ≡ I t · ∇, ∂z ≡ ∂/∂z, ε = εtI t + εz0z0, μ = μtI t +
μz0z0, where I t is the unity dyadic in the xy plane and

εt = ε
1 − β2

1 − n2β2
, μt = μ

1 − β2

1 − n2β2
, ν = β

c

n2 − 1

1 − n2β2
,

(3)

where ε and μ are the permittivity and the permeability of
the fluid filling the waveguide (at rest), c = 1/

√
ε0μ0 is the

speed of light in vacuum, β = v/c, and n2 = εμ/(ε0μ0) (see
Refs. [7,8]).

Looking for plane wave solutions of Eqs. (1) and (2), it is
possible to reduce Eqs. (1) and (2) to[

ω2εtμt − (kz,TM + ων)2 − εt

ε
k2

t,TM

]
Ez = 0, (TMz), (4)[

ω2εtμt − (kz,TE + ων)2 − μt

μ
k2

t,TE

]
Hz = 0, (TEz), (5)

where k = kt + kzz0z0, kt ≡ I t · k, is the wave vector of
a partial wave and Eqs. (4) and (5) are associated with
the transverse magnetic polarization with respect to the z

axis (TMz), for which Hz ≡ 0, and with the transverse
electric polarization (TEz), for which Ez ≡ 0, respectively. The
waveguide supports also a transverse electromagnetic wave
(TEMz), with dispersion ω2εtμt − (kz,TEM + ων)2 = 0, which
may be understood as a degenerated TEz or TMz wave with
kt = 0.

The allowed transverse wave numbers of the eigenwaves in
the considered waveguide are found by applying the boundary
conditions at the walls of the waveguide. In doing so, one
obtains

(kt,TM,TE)lm = π

√(
l

a

)2

+
(

m

b

)2

, (6)

where l and m are integers such that l2 + m2 > 0.
The propagation constants κ± of the eigenwaves with the

z dependence of the form eikz,1z = eiκ+z and eikz,2z = e−iκ−z

propagating along the waveguide in the two opposite directions

can be obtained from the dispersion Eqs. (4) and (5) (this result
holds for both TMz and TEz modes):

κ±=
√

(1−β2)
[
n2(1−β2)k2

0 − (1−n2β2)k2
t

] ∓ β(n2 − 1)k0

1−n2β2
,

(7)

where k0 = ω/c. One can see from here that when β �= 0
the propagation constants of the oppositely propagating waves
differ, which is a manifestation of nonreciprocity of the system
under study.

In the scope of the present study, the most interesting
situation for us is the limiting case for which the velocity
approaches the threshold of the Cherenkov effect: β2 → 1/n2.
However, we do not consider velocities above the Cherenkov
threshold to avoid any potential instabilities related to the
appearance of negative quanta [7] in media moving with such
high velocities.

Without any loss of generality we may assume β � 0 and
k0 � 0. Then, in the mentioned limit, the propagation constant
κ− tends to infinity, as the numerator of (7) is finite in this
limit. However, for the propagation constant κ+, Eq. (7) results
in an underdetermined form 0

0 which can be resolved with
l’Hôpital’s rule. This yields a quite simple result:

κ+ = k0(n2 + 1)

2n
− k2

t

2nk0
. (8)

The property κ− → ∞ implies that the waves propagating in
our waveguide in the direction opposite to the velocity vector v
have infinitely small phase (and also group) velocity. On the
other hand, the phase and group velocities of the wave with
propagation constant κ+ are finite and may be expressed as

vph

c
= k0

κ+
= 2n

1 + n2 − k2
t /k2

0

, (9)

vgr

c
= dk0

dκ+
= 2n

1 + n2 + k2
t /k2

0

, (10)

from which one may notice that, of course, vgr � c, and that
vgr > 0. Quite differently, vph can be greater than c in absolute
value and may also change sign if kt is sufficiently large.
Another interesting feature of the dispersion relation (8) is
that there is no cutoff: All such modes are propagating waves
starting from zero frequency and independent of the transverse
wave number. In other words, at the threshold of the Cherenkov
effect the electromagnetic energy of all such waves is dragged
by the moving fluid.

To illustrate the dependence of the wave velocities in a
waveguide filled with a moving dielectric on β = v/c, we
calculated the phase velocities of the TEM waves (kt = 0)
propagating in such a waveguide in two opposite directions,
using Eq. (7) with different refractive indices of the fluid n =√

εr. In this work, the fluid permittivity is assumed independent
of frequency, and, thus, the group velocity of the TEM wave
is coincident with the phase velocity. The results are shown in
Fig. 2 for three values of the relative permittivity of the fluid:
εr = 1.0548 (this is the permittivity of air under the pressure
of 100 atm), εr = 2, and εr = 4. As seen, when the velocity
approaches the Cherenkov threshold (which is different for
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FIG. 2. (Color online) Normalized phase velocity vph/c of the
TEM waves propagating in the waveguide filled with the moving
fluid as a function of β = v/c (the range of the plots is restricted
to velocities below the Cherenkov’s threshold). Solid curves, phase
velocity of the wave copropagating with the fluid flow; dashed curves,
phase velocity of the counterpropagating wave. The velocities are
calculated for the following values of the dielectric constant of the
fluid: ε1 = 1.0548, ε2 = 2, and ε3 = 4.

fluids with different refractive index) the phase velocity of the
counterpropagating wave tends to zero.

From the above analysis we may conclude that a waveguide
filled with a medium moving with a velocity at the threshold
of the Cherenkov effect may be a good physical model of
a one-way waveguide, as it provides the required feature
of such a waveguide: The waves may propagate only in a
single direction along v. Nevertheless, at a velocity slightly
below the Cherenkov threshold, this is a quite peculiar
one-way waveguide, differing in a fundamental aspect from
other waveguides based, for example, on magnetized media.
Indeed, strictly speaking, propagation of waves in the direction
opposite to the medium flow is not really forbidden in a
moving medium for velocities below the Cherenkov limit, and,
moreover, it can be shown that the density of modes (per unit of
frequency and volume) propagating in the direction opposite to
v diverges to infinity as the velocity approaches c/n. However,
despite the large number of counterpropagating modes, in
practice they cannot be excited because they are associated
with extremely large wave vectors (and extremely low group
velocities), and hence it is difficult to transfer energy to these
modes and ensure the conservation of momentum. In other
words, these modes are highly mismatched from any realistic
source, and thus in practice only modes copropagating with
the medium can be excited near the Cherenkov threshold.

III. ZERO-POINT ENERGY AND CASIMIR’S FORCE
AT ZERO TEMPERATURE

We can now move to the study of Casimir forces in
waveguides filled with moving media, which, as discussed pre-
viously, may behave as one-way waveguides at the Cherenkov
threshold. Let us close such a waveguide with two “walls” at
z = 0 and z = L, where L 	 max(a,b) (Fig. 1). In addition to
these two walls, we also place a sliding wall of the same type (a
piston) somewhere inside the waveguide at 0 < z0 < L. Our
purpose is to find the Casimir force acting on this piston. We
assume that the walls at z = 0, z = z0 (this one is the piston),

and z = L are such that they do not block the flow of the
fluid, but they block the propagation of the electromagnetic
waves. One may imagine such walls as dense metallic grids
with holes which allow the fluid to go through. As is known,
a dense metallic grid may be nearly as a good reflector for the
electromagnetic waves as a sheet of PEC, particularly if the
wavelength of radiation is much larger than the characteristic
period of the grid [9–11].

It is well known that the Casimir interaction is mostly
determined by the normal modes associated with the lowest
eigenfrequency values. The upper limit of the range of relevant
eigenfrequencies depends on the distance d between the
interacting bodies and may be estimated as ωmax ∼ c/(nd).
This indicates that provided the distance between the piston
and the walls at z = 0 and z = L is much larger than the
characteristic period of the respective metallic grids then our
assumption that these grids can be accurately modeled as PEC
surfaces is justified in the context of the Casimir interaction.
For instance, using the theory of Ref. [10], which applies
to both dense and sparse wire grids, one may verify that in
a wire grid with the wire radius of about 1/50 of the grid
period and the period on the order of 1/10 of the characteristic
wavelength, the absolute value of the reflection coefficient is
greater than 0.9 and the reflection phase is close to π .

Moreover, because we are interested only in the force due
to quantum-electromagnetic fluctuations in the waveguide, we
neglect any mechanical friction that may appear between the
moving fluid and the walls when the fluid penetrates the holes
in the walls. At least from a purely theoretical perspective
this does not offer any difficulties: One can easily picture the
desired scenario by imagining a fluid formed by point moving
dipoles whose trajectories are not blocked by the metallic grid.
It is also interesting to mention that a moving medium may be
to some extent mimicked in an optical fiber environment by
exploiting nonlinear optical effects [12].

We would like to mention another important thing here:
While in the laboratory frame (wherein the waveguide is at
rest; it is the frame of Fig. 1) the reflection from the waveguide
walls does not involve frequency conversion (this is valid
provided the boundary conditions at the walls relate fields
calculated at the same time instant), the reflected wave in the
frame comoving with the medium has a different frequency
because of the Doppler effect. The Doppler shift grows with
the velocity and the frequency; therefore, if the medium is
dispersive the conditions of one-way propagation may not
be easily achievable, as a reflected wave will propagate at
a frequency at which the refractive index may not fulfill the
Cherenkov threshold condition.

From previous studies [7,13–15], it is known that the
electromagnetic field in moving media is subject to the
canonical quantization; therefore, we may find the zero-point
energy of the quantum-electromagnetic fluctuations in the
waveguide shown in Fig. 1 (at zero temperature) with the
standard summation over the eigenfrequencies of all possible
electromagnetic modes in this structure. Then, the Casimir
force acting on the piston may be found with the principle
of virtual work, that is, by differentiating the (regularized)
zero-point energy with respect to the position of the piston.

Let us consider the space between one of the ends of
the waveguide and the piston: 0 < z < z0 (the other half
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of the waveguide can be considered in the same way). The
characteristic equation for the electromagnetic modes in this
space reads

κ+z0 + κ−z0 + 2	ϕ = 2πN, (11)

where 	ϕ is an additional phase shift that a wave gets when
reflected from the wall at z = 0 and the piston at z = z0, and
N is an arbitrary integer. For the ideally reflecting PEC piston
and the wall we may let 2	ϕ = 0 (or 2	ϕ = 2π which is
equivalent). Thus, the characteristic equation satisfies

(κ+ + κ−)z0 = 2πN. (12)

When the formulas (7) for κ± are substituted in this equation,
the β-proportional term in the numerator of (7) cancels out
and we are left with

Kz0 = πN, where K=
√

1 − β2√
1 − n2β2

√
n2(1 − β2)

1 − n2β2
k2

0 − k2
t .

(13)

In the limit β2 → 1/n2, K behaves as K ∼ n(1−β2)k0

1−n2β2 ; there-
fore, it grows without limit when velocity approaches the
Cherenkov threshold.

To obtain the modal eigenfrequencies, we solve Eq. (13)
for the free space wave number k0. This gives

ωN

c
=

√
1 − n2β2

n
√

1 − β2

√
1 − n2β2

1 − β2

(
πN

z0

)2

+ k2
t . (14)

We may introduce a notation,

zeff
0 = z0

√
1 − β2√

1 − n2β2
, (15)

so that the eigenfrequency (14) is expressed as

ωN

c
=

√
1 − n2β2

n
√

1 − β2

√(
πN

zeff
0

)2

+ k2
t . (16)

Therefore, the zero-point energy associated with the modes in
the space 0 < z < z0 reads

E(z0) = h̄c

2

√
1 − n2β2

n
√

1 − β2

∑
kt

∑
N

√(
πN

zeff
0

)2

+ k2
t . (17)

In the trivial case when v = 0 and the fluid is at rest, the
expression for the zero-point energy may be written as

E0(z0) = h̄c

2n

∑
kt

∑
N

√(
πN

z0

)2

+ k2
t . (18)

We understand the infinite sums over eigenstates (which are
diverging in a strict mathematical sense) as regularized ones.
When regularized, (17) and (18) represent the interaction part
of the zero-point energy which vanishes when z0 → ∞. We
would like to stress that our derivation is not limited to a
particular regularization procedure (for the existing methods,
see, for instance, [16,17]).

Comparing (17) with (18) we realize that

E(z0) =
√

1 − n2β2√
1 − β2

E0

(
z0

√
1 − β2√

1 − n2β2

)
; (19)

that is, the zero-point energy in a waveguide filled with a
moving medium can be expressed through the formula for the
zero-point energy in a system at rest.

The Casimir force (to be precise, the part of it related to the
quantum fluctuations in the space 0 < z < z0), which is the
derivative of the energy with respect to z0, can, therefore, be
found as

FC(z0) = FC0

(
z0

√
1 − β2√

1 − n2β2

)
, (20)

where FC0(z0) is the Casimir force in a system with v = 0.
Because from physical reasons FC0(z0) must vanish in the
limit z0 → ∞ (the same holds for the contribution to the force
from the fluctuations in the space z0 < z < L when L − z0 →
∞), we obtain the following result: In the limit of one-way
propagation that happens in the considered waveguide when
the velocity tends to the Cherenkov threshold, β2 → 1/n2, the
Casimir forces acting on the piston in the one-way waveguide
vanish.

To illustrate the above general results—which are applica-
ble to arbitrary waveguides (with PEC or PMC walls, or with
any combination of them)—with a particular example, let us
consider a metallic PEC waveguide with a square cross section
(b = a), similar to the geometry considered in Ref. [18]. The
Casimir force FC0 acting on the piston (per unity of area) in
this waveguide is given by Eq. (6) of Ref. [18], which, in our
notation, reads

FC0(z0) = h̄c

n

[
− 3ζ (4)

8π2z4
0

+ ζ (2)

8πa2z2
0

− 2Z2(1,1; 4)

32π2a4

+ π2

16z4
0

∑
l,m�=0,0

coth
(

πa
z0

√
l2 + m2

)
πa
z0

√
l2 + m2 sinh2

(
πa
z0

√
l2 + m2

)
]
,

(21)

where ζ (x) is Riemann’s ζ function, 2Z2(1,1; 4) ≈ 12.053,
and we expressed the force in SI units (in Ref. [18] h̄ = 1 and
c = 1) and took into account that the waveguide is filled with
a nondispersive stationary medium with the refractive index n.

As one can check by a direct calculation using Eq. (21),
the force quickly and monotonically decays with z0, and
vanishes practically completely at z0 � 2a. Mathematically,
this happens because at large z0 the first three addends of
(21) are compensated by the contribution of the series (for
more details, see Ref. [18]). Physically, the force vanishes at
the distance on the order of the transverse dimension of the
waveguide due to the fact that the propagating modes of this
waveguide are cut off at low frequencies, and, as discussed
previously, the force for a distance d is mainly determined by
normal modes with eigenfrequencies smaller than ω ∼ c/(nd),
and there are no modes with such properties when d > a.

Equation (21) was obtained assuming that the walls of the
waveguide and the piston are ideally conducting, nevertheless,
as explained in the beginning of this section, we may apply
it also to the case when some of the walls and the piston are
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FIG. 3. (Color online) Casimir force acting on the piston
[Eq. (20)] in a PEC waveguide with a × a cross section filled with
the moving fluid as a function of β = v/c. The force is calculated at
z0 = a and normalized to the same force at β = 0. The three curves
correspond to the three different values of the dielectric constant of
the fluid (same as in Fig. 2).

made penetrable by a moving fluid. Therefore, in the case of
the same waveguide filled with moving medium (β �= 0) we
may apply the relation (20) and get to the same conclusion that
at the limit β2 → 1/n2 the force acting on the piston vanishes.
This property is illustrated in Fig. 3 for different values of the
index of refraction at rest, n, of the moving fluid.

IV. CASIMIR INTERACTION AT FINITE TEMPERATURE

In the previous section, we considered the Casimir force
acting on a piston in the waveguide filled with a moving
medium at zero temperature and found that the force vanishes
when the velocity of the medium approaches the Cherenkov
limit. Naturally, it is interesting to study if this phenomenon
persists also at finite temperatures.

At finite temperatures, the ensemble of quantum oscillators
formed by all available electromagnetic modes in a system
may be conveniently described by its free energy which is
defined as

F = E − T S, (22)

where E is the internal energy of the system, T is the
absolute temperature, and S is the entropy. At a constant
temperature, the generalized macroscopic force Fq associated
with a generalized coordinate q (a parameter of the system) is
found from the free energy as Fq = −∂qF .

As is known, when dealing with finite temperatures one
may use Matsubara’s formalism, so that the free energy of a
system in thermal equilibrium at temperature T is expressed as
a summation over imaginary Matsubara’s frequencies [17,19]:

F(z0,T ) = kBT

2

∑
kt

∑
ωm

lnD(ωm,z0), (23)

where ωm = i(2πkBT/h̄)m, m ∈ Z , and kB is Boltzmann’s
constant. In our waveguide, the free energy depends on the
position of the piston z0 and the temperature. As before, we
understand the infinite sums in (24) as renormalized ones, that
is, representing only the interaction part of the free energy.
The result (23) may be derived by considering an ensemble
of quantum oscillators representing the eigenmodes of the

quasi-one-way waveguide and taking into account that the
occupation numbers of the states satisfy the Bose-Einstein
statistics [20]. An experimental verification of the theory of
thermal corrections of the Casimir effect has been recently
reported [21], but received certain criticism [22,23].

The function D(ω,z0) that occurs in (23) is a suitable
characteristic function of the system such that the eigenfre-
quencies of the electromagnetic modes are the roots of the
equation D(ω,z0) = 0. Similarly to the previous section, we
may consider the two halves of the waveguide separately. Then,
for the waveguide segment at 0 < z < z0 the characteristic
function may be chosen in the following form:

D(ω,z0) = 1 − ei2Kz0 , (24)

where K is defined by (13). Besides evident analytical
reasons, Eq. (24) can be also inferred from physical consid-
erations. Indeed, the characteristic equation for the modes
in a segment of a waveguide bounded by two reflectors
with the reflection coefficients r1 and r2 may be written as
r1r2 exp(iκ+z0) exp(iκ−z0) = 1, from which one obtains (24)
when the reflectors are PEC. Since only the distance-dependent
terms should appear in (23), the term with both kt = 0 and
m = 0 at which K = 0 must be excluded from the summation.
Notice that in Eq. (23) the summation is over both positive and
negative imaginary frequencies and that Eq. (23) with D(ω,z0)
of the form (24) reduces to the well-known Lifshitz integral
for the Casimir energy when T → 0.

Comparing the expression (13) for K at an arbitrary velocity
with the same expression at β = 0, K0(ω) =

√
n2(ω/c)2 − k2

t ,
one may notice that

K(ω) =
√

1 − β2√
1 − n2β2

K0

(
ω

√
1 − β2√

1 − n2β2

)
. (25)

Therefore, the characteristic function at β �= 0 can be ex-
pressed through the corresponding function for a system
without movement:

D(ω,z0) = D0

(
ω

√
1 − β2√

1 − n2β2
,
z0

√
1 − β2√

1 − n2β2

)
. (26)

When this expression is substituted into (23), it becomes evi-
dent that because Matsubara’s frequencies are proportional to
the temperature one may introduce the effective temperature,

T eff = T

√
1 − β2√

1 − n2β2
, (27)

and the effective distance (15), so that the free energy in a
waveguide filled with a moving fluid can be expressed through
the formula for the free energy in the system where the fluid
is at rest:

F(z0,T ) =
√

1 − n2β2√
1 − β2

F0
(
zeff

0 ,T eff
)
. (28)

This result is the generalization of (19) to the case of finite
temperatures. From both physical and analytical reasons,
F0(z0,T ) → 0 when z0 → ∞.

When the velocity of the medium approaches the
Cherenkov threshold (β2 → 1/n2) both the effective distance
zeff

0 and the effective temperature T eff tend to infinity. The
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growth of T eff [which is the multiplier in front of the
double sum (23) for F0] is compensated by the factor√

1 − n2β2
/

√
1 − β2 in front of (28), while the infinite growth

in zeff
0 results in the same phenomenon as we observed at zero

temperature: The Casimir interaction of the piston with the
walls closing the waveguide vanishes in the Cherenkov limit.

V. DISCUSSION AND CONCLUSIONS

In this work we obtained an interesting result: The Casimir
force acting on a piston in a waveguide filled with a medium
moving at the velocity approaching the Cherenkov threshold
vanishes (at both zero and finite temperatures). This result may
be physically understood as follows.

One hint is given by the characteristic Eq. (13). Because
K ∼ n(1−β2)k0

1−n2β2 when β2 → 1/n2, the solution of (13) behaves

in this limit as ωN

c
∼ πN

z0

1−n2β2

n(1−β2)
→ 0. Therefore, the eigen-

frequencies of the electromagnetic modes with indices from
within a finite range N ∈ [1,Nmax] with an arbitrary Nmax 	 1
all tend to zero when the velocity approaches the Cherenkov
limit. In essence, one may say that these modes simply
disappear, as they do not contribute to the zero-point energy
anymore. As the regularized infinite sums for the Casimir
energy converge and can be truncated at a certain large-enough
Nmax, the above observation means that the Casimir energy
itself vanishes at the threshold of the Cherenkov velocity.
Additionally, at finite temperatures, when the interaction part
of the free energy is given by (28) and (23) with an effective
temperature expressed by (27) one may notice that the interval
between the Matsubara frequencies becomes larger and the
respective summation over them in (23) becomes sparser
when T eff increases with β2 → 1/n2, which indicates that
the Casimir interaction will decrease even faster at finite
temperatures than at zero temperature.

One may also picture that when the medium moves with a
velocity equal to the velocity of the waves in the same medium,
the electromagnetic field becomes trapped within the moving
matter so that it becomes impossible for the waves to travel
back and forward in between the stationary reflectors and form
a standing wave (i.e., a mode). Such a physical picture is very
intuitive and also helps to understand why the Casimir force in
a system of two parallel plates separated by a moving fluid that
moves tangentially to the plates does not vanish in the same
limit. In such a scenario the partial waves can still reach the
plates, be reflected, and form a standing wave (notice also that
in this scenario there are no reflectors oriented perpendicularly
to the flow, and thus, evidently, the characteristic equation for
the eigenmodes is different). The theory for this configuration
was developed in Ref. [7], which, in particular, predicts that

the Casimir force per unit area (i.e., the pressure) in such a
scenario is invariant in all inertial frames moving in a direction
parallel to the plates. Specifically, for a pair of PEC reflectors
separated by a tangentially moving nondispersive fluid, this
force is independent of the velocity of the fluid and is the
same as in the frame comoving with the fluid: |FC/A0| =
π2h̄c/(240nd4) (at zero temperature).

It is interesting to point out that at the threshold of
the Cherenkov effect some of the effective parameters
of the moving medium [Eq. (3)] approach infinity. Typically,
the Casimir interaction between two bodies is reduced if these
bodies are embedded in some fluid as compared to the case
where the bodies stand in vacuum, because of the larger value
of n in the fluid. Thus, it could be thought that the reason for
the suppression of the Casimir interaction at the threshold of
the Cherenkov effect could also be explained by the increased
value of the effective index of refraction of the moving fluid,
as seen from the stationary frame. However, such picture
is not really accurate because it fails to describe the fact
that the Casimir interaction does not vanish when the fluid
flows tangentially to the plates, as discussed in the previous
paragraph.

Thus, we may conclude that the simple theory developed
in this paper answers the questions posed in the Introduc-
tion: In the limit of one-way propagation in the considered
electromagnetically closed system the quantum fluctuation-
originated forces acting on the piston simply vanish. There
is no “mysterious” drift force or any other force that might
“self-accelerate” the piston and violate the conservation laws
for such a closed system (recall that we consider only the
electromagnetic part of the force and neglect any possible
friction due to the contact of the piston with the moving fluid).
The obtained result, however, does not pose any restrictions
on the behavior of open systems wherein there may exist
intermediate agents (for example, real photons that may leave
the system) that may contribute to the energy and to the
momentum of the system.

One may also wonder if the developed theory can be directly
applied to one-way waveguides realized with magnetized
ferrites or a plasma. The general answer is negative, because
of the strong dispersion in these materials. In these structures
the one-way operation may happen only in a narrow band
of frequencies. In particular, there are no eigenmodes in
the frequency band associated with one-way waveguiding,
which therefore does not contribute to the zero-point energy.
However, the modes outside this band can contribute to the
zero-point interaction energy. Nevertheless, one may still
expect a reduction in the value of the interaction energy in
this case and a respective reduction in the value of the Casimir
force.
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