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Indefinite dielectric response and all-angle negative refraction in a structure with
deeply-subwavelength inclusions
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The realization of mesoscopic media that mimic an ideal continuous indefinite material remains a challenging
problem, particularly because current designs are plagued by spatial dispersion effects and are based on inclusions
whose size may be a significant fraction of the wavelength. Here we show that a structure formed by an array
of inductively loaded metallic rods terminated by metallic patches at both ends may enable to largely overcome
these problems, and imitate more closely indefinite dielectric media with a local response. In particular, we report
a strong all-angle negative refraction effect, even in scenarios where the characteristic size of the material is
deeply subwavelength. The response of the proposed structure is characterized using a homogenization model
developed for the uniaxial wire medium with impedance loadings.
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I. INTRODUCTION

Media exhibiting negative index or negative refraction
effects1 have been the subject of study in recent years due
to their extraordinary and exotic properties - rooted in the
complex interactions between their basic elements and radia-
tion - which have stimulated the imagination of the scientific
community. In particular, it was predicted that metamaterials
may enable subwavelength imaging2 and the realization of
novel high-resolution lenses, and may also permit partial
focusing with planar lenses. For the operation of such planar
lenses, all-angle negative refraction and high transmission are
often required. Although negative refraction is not observed in
conventional dielectrics, the advent of metamaterials brought
new opportunities to permit its occurrence, as reported in
recent literature. For example, broadband negative refraction
can be observed in a nonlocal material formed by crossed
metallic wires,3 and in photonic crystals with engineered
dispersion.4

In Refs. 5–7, the negative refraction and partial focusing
have been realized using indefinite materials with permittivity
and permeability tensors having a different sign in the princi-
pal components. Besides their unusual refracting properties,
materials with indefinite parameters have other interesting
potentials stemming from their anomalously high density of
electromagnetic states,8,9 which can enable exciting effects
such as broadband Purcell radiation. Hence, the realization
and modeling of mesoscopic media with an indefinite dielectric
response is a problem of increasing importance.

The obvious solution to realize a medium with indefinite
properties with a local response is to consider an array of
nanorods arranged in a crystal lattice. However, at microwaves
and THz frequencies, the array of nanorods is typically
characterized by strong spatial dispersion,10 and it behaves
very differently from a material with indefinite anisotropic
permittivity. Despite these difficulties, it has been shown
recently that by periodically attaching metallic patches to an
array of metallic wires,11,12 it is possible to dramatically reduce
spatial dispersion (SD) effects13–15 as originally suggested in

Ref. 13. However, some residual spatial dispersion is still
observed for wide incident angles, and in particular the designs
considered in Refs. 11 and 12 do not exhibit all-angle negative
refraction. It should be noted that the SD effects in the wire
medium (WM) can also be reduced by coating the wires
with a magnetic material or, equivalently, by increasing the
inductance of the wires.13

In this work, we show that at microwaves and low THz fre-
quencies the SD effects can be significantly reduced (even for
wide incident angles) by loading the WM slab with impedance
insertions (lumped inductive loads). Also, increasing the value
of the inductive load reduces the plasma frequency and enables
the design of an ultra thin structure with the electrical length
of the unit cell being much smaller than that of the structure
without the loads, at corresponding frequencies of operation.
The proposed structure exhibits indefinite dielectric response,
high transmission, and all-angle negative refraction below the
plasma frequency, which is the main result of this paper.
The analysis is carried out using different homogenization
models16,17 developed for the uniaxial WM loaded with
conducting plates and (or) impedance insertions based on
the quasistatic approach (which assume uniform and discrete
loadings), and take into account the SD effects in the wires.
The numerical results of the proposed configuration show a
strong negative refraction with a near perfect transmission at
microwaves.

The paper is organized as follows. In Sec. II, the formalism
of the uniform-loading and discrete-loading homogenization
models for the analysis of the loaded WM is presented.
It is shown that there is a possibility to neglect the SD
effects in the uniform-loading model which gives rise to a
local model with Drude-type effective permittivity for the
inductively loaded uniaxial WM. Section III focuses on the
analysis of the proposed configuration with the plane-wave
incidence and Gaussian beam excitation. In particular, the
emergence of negative refraction in the ultra thin structure
is numerically demonstrated. The conclusions are drawn in
Sec. IV.
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FIG. 1. (Color online) A 3D view of a two-sided mushroom
structure with inductive loads at the wire-to-patch connections excited
by an obliquely incident TM-polarized plane wave.

II. HOMOGENIZATION MODELS FOR LOADED
WIRE MEDIUM

The configuration under study is shown in Fig. 1. The
structure consists of an array of parallel conducting wires
with radius r0 directed along z in a host medium with relative
permittivity εh. The patch arrays are at the planes z = 0 and
z = −h, and the wires are connected to the metallic patches
through lumped loads. The period of the square patches is
a, and the gap is g. A time dependence of the form ejωt is
assumed and suppressed.

In Sec. II A, we review the general expression for the
spatially dispersive permittivity of a uniaxial continuously
loaded wire medium. Based on this model, the interaction
of electromagnetic waves with the structure of interest (Fig. 1)
can be described using homogenization techniques with
different levels of accuracy. One option is to consider that
the effect of the lumped loads can be approximated by a
distributed uniform loading. Within this framework, detailed
in Sec. II B, the array of wires and lumped loads are regarded
as a bulk material. Thus, the effective dielectric function
includes the response of both the wires and lumped loads. In
general the dielectric function of such a bulk medium depends
on the wave vector, because of the effects of spatial dispersion.
A simpler model can be obtained by discarding the dependence
of the dielectric function on the wave vector. Such a local
model is described in Sec. II C. Finally, a third option is to
take into account the actual discreteness of lumped loads.
Within this alternative and more accurate approach, the effect
of the lumped load is not incorporated in the effective dielectric
function of the material, but rather taken into account through
suitable boundary conditions. This approach is discussed in
Sec. II D.

A. Dielectric function for a continuously loaded wire medium

We model the wire medium using the quasistatic approach
described in Ref. 16, which is formulated in terms of an
effective capacitance and an effective inductance per unit
length. The permittivity dyadic [Eq. (33), Ref. 16] of the
uniaxial WM hosted in a medium with permittivity εh and
uniformly loaded with metallic patches and (or) impedance
insertions is expressed as follows:

¯̄ε

ε0
= εh

[
εt

¯̄I t +
(

1 − k2
p

k2
h − jξkh − k2

z /n2

)
z0z0

]
, (1)

where εt is the transverse permittivity18 for the patch arrays
separated by distance h, kp is the plasma wave number of the
WM defined in Ref. 16, kh = k0

√
εh is the wave number in the

host medium, k0 = ω/c is the free space wave number, kz is
the wave vector component along z0, and ¯̄It is the unit dyadic
in the plane orthogonal to z0.

In Eq. (1), n2 = LC/(εhε0μ0) is the square of the slow-
wave factor, which determines the degree of nonlocality of the
material’s response. The larger is n, the less important are the
effects of spatial dispersion. The value of n is minimal when
the wires are unloaded and stand in vacuum, and in that case
n = 1. In practice, the value of n can be tuned by loading the
wires with suitable loads. In the above expression for the slow-
wave factor, L is the effective inductance per unit length of a
wire in the WM as defined in Ref. 19, C = Cwire + Cpatch/h

is the effective capacitance per unit length of a wire in the
WM loaded with metallic patches as defined in Ref. 16, ξ =
(Zw/L)

√
εhε0μ0, and Zw is the self-impedance per unit length

of a wire, which may include the effect of lumped elements.
When the losses in the metal are negligible (as assumed in this
work) and the effect of the lumped loads is incorporated in
the dielectric function, we have Zw = ZLoad/h, where ZLoad

accounts for the type of the lumped load (inductive/capacitive).
The explicit formulas for the notations in Eq. (1) and for those
discussed above are given in Appendix A.

The quasistatic model of Ref. 16 does not take into account
the granularity of the structure along z, i.e., the loading
is assumed to be effectively continuous along the wires.
In Ref. 17, this model has been improved to account for
discontinuities in the distributions of wire current and charge
at the points of lumped insertions. In what follows, we describe
the homogenization models resulting from the studies of
Refs. 16 and 17, and in Sec. III apply them to the analysis
of transmission properties in the indefinite dielectric media.

B. Uniform loading within period

Ignoring loading by the patches (εt = 1 and C = Cwire) and
assuming that each period of the uniaxial WM is loaded with
lumped inductance L1 (with an impedance ZLoad = jωL1),
we may include the load impedance into the self-impedance of
the wire, obtaining, when the loss in wires is neglected, Zw =
ZLoad/h. Then, the relative permittivity along z0 in Eq. (1),
after substituting all the intermediate quantities and doing a
simplification, can be expressed as

εzz

ε0
= εh

(
1 − k̃2

p

k2
h − k2

z /ñ
2

)
. (2)

Here, k̃p = kp/
√

1 + L1/(hL) is the effective plasma wave
number and ñ = n

√
1 + L1/(hL) is an effective slow-wave

factor. Alternatively, the same result can also be obtained if the
loading inductance is included directly into the wire inductance
per unit length: L̃ = L + L1/h, so that ñ2 = L̃Cwire/(εhε0μ0)
and k̃p =

√
μ0/(a2L̃). It can be inferred from Eq. (2) that with

an increase in the value of the lumped inductance we have
a decrease in the plasma frequency and a dramatic reduction
in the spatial dispersion effects. It should be noted that this
simple approach treats the inductive insertions as uniform
loadings over the period, therefore the discontinuity in the
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charge distribution close to the point where an inductor is
inserted is neglected. However, even such a simplified model
may give physical insight on the effects of spatial dispersion
in the loaded WM.

In accordance with Ref. 17, the discontinuities in the wire
current distribution I (z) at the points where the wires meet the
patches are taken into account in this model by the following
additional boundary condition (ABC):[

dI (z)

dz
± Cwire

Cpatch
I (z)

]
z=0,−h

= 0, (3)

with the plus sign used at z = 0, and the minus sign at z =
−h. When a ≈ h and g � a, Cpatch � hCwire and this ABC
reduces to the one used in Ref. 14. In addition to this, to
account for the discontinuity in the tangential magnetic field
at the two sides of the patch arrays, these arrays are modeled
with the sheet admittance20

Yg = j (εh + 1)
k0a

πη0
log

[
csc

(
πg

2a

)]
. (4)

C. Local model

When ñ � 1 the spatial dispersion in the loaded WM
is negligible, and the material can be described with a
Drude-type local uniaxial permittivity. In this model, the
relative permittivity along z0 for the WM slab loaded with
lumped inductances is obtained from Eq. (2) by neglecting the
wave-vector dependence of the permittivity, resulting in:

εloc
zz

ε0
= εh

(
1 − k̃2

p

k2
h

)
, (5)

with all the notations as defined in Sec. II A. This model
treats the WM slab with inductive loadings as a local Epsilon
Negative (ENG) continuous material, and takes into account
only the frequency dispersion. Since the local model does not
take into consideration the SD effects in the WM, it does not
account for the discontinuities in the wire current distribution
[I (z)], and, therefore, does not require the use of ABC at the
wire-to-patch connections.

Following Ref. 12, the transmission and reflection prop-
erties for the structure shown in Fig. 1 can be obtained in a
similar way by matching the tangential electric and magnetic
fields with the sheet impedance boundary conditions at the
air-patch interfaces [with the admittance of the patch arrays
given by Eq. (4)]. It should be noted that the local model
predicts accurately the response of the structure when the SD
effects in the inductively loaded WM are significantly reduced
(we show in Sec. III that this is the case in the considered
structured WM).

D. Discrete loading within period

The model from Sec. II B can be further improved by taking
into account the precise position of the inductive load, so that
this loading is not considered uniform over the period anymore.
Using the results of Ref. 17 [or alternatively Eq. (1) with n = 1

and ξ = 0], the WM slab as a uniaxial medium (for long
wavelengths) is characterized by relative effective permittivity

¯̄ε

ε0
= εh

[
¯̄I t +

(
1 − k2

p

k2
h − k2

z

)
z0z0

]
. (6)

As in Sec. II B, the WM slab is loaded with the metallic patch
arrays at the planes z = 0 and z = −h characterized by the
sheet admittance given by Eq. (4). The impedance insertions
(lumped inductive loads) are placed at the wire-to-patch
connection at the plane z = −h (see Fig. 1).

This model takes into account the spatial dispersion effects
in the WM by considering that the field in the WM region is
a superposition of the three fundamental plane wave modes
of the bulk WM. Moreover, the nonlocal response of WM is
taken into account by matching the fields at the patch interfaces
through the known boundary conditions at an impedance sheet
and applying the generalized additional boundary condition
(GABC) for the wire current I (z) at the connection of the
lumped loads to the metallic elements (patches):17[

dI (z)

dz
−

(
jωCwireZLoad + Cwire

Cpatch

)
I (z)

]
z=−h

= 0. (7)

The ABC at z = 0 is given by Eq. (3). The microscopic current
I (z) along the metallic wires can be written in terms of the
bulk electromagnetic fields using the results of Ref. 17. The
explicit expressions for the GABC and ABC in terms of the
macroscopic electromagnetic fields are given in Appendix B.
In the next section, the predictions of the developed analytical
models are presented along with the numerical full-wave
results.

III. RESULTS AND DISCUSSION

As a first step, in order to validate the homogenization
models (uniform-loading and discrete-loading), we consider
a scattering problem where an obliquely incident transverse
magnetic (TM) plane wave illuminates a structured material
slab with the following dimensions: a = 2 mm, g = 0.2 mm,
h = 2 mm, r0 = 0.05 mm, εh = 10.2, θi = 60◦, and L1 =
0.2 nH. The transmission and reflection properties for the
structure shown in Fig. 1 can be obtained by writing the
fields in the WM region as a superposition of the plane-
wave modes determined by the permittivity functions for
the uniform-loading model [Eq. (2)] and the discrete-loading
model [Eq. (6)], and by matching the tangential electric and
magnetic fields at the air-patch interfaces using the two-sided
impedance boundary conditions. Also, both the models require
the use of ABC [Eq. (3)] at the connection of the metallic
wires to the patches. Additionally, discrete-loading model
requires a GABC [Eq. (7)] at the connection of lumped loads
to metallic patches. It should be noted that the uniform-loading
and discrete-loading models presented here can in general be
applied to any type of load (deeply-subwavelength inclusions).
However, in the present work, we focus our attention only on
the inductive loads.

The transmission properties (magnitude and phase) of the
structure obtained from the uniform-loading model, discrete-
loading model, and the local model are shown in Fig. 2. It is
seen that the results of the three models are in a reasonable
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agreement with the full-wave results obtained with HFSS,21

except for a small shift in the frequency corresponding to the
plasma resonance. However, the results of the local model
show spurious resonances in a very narrow frequency band
in the vicinity of the plasma frequency where εloc

zz = 0. In the
full-wave simulations, it is assumed that the load is connected
to the patch through a gap of 0.1 mm. In practice, the insertion
of a load introduces nonuniformities in the current and the
charge distributions, therefore, the correction terms describing
the parasitic inductance Lpar and parasitic capacitance Cpar

should be taken into account in the expression for the load
impedance.17 However, for simplicity in the present work we
ignore the effect of the parasitic elements because it is rather
small. From Fig. 2, the plasma frequency is 10.6 GHz, which is
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FIG. 2. (Color online) Transmission characteristics for the two-
sided mushroom structure excited by a TM-polarized plane wave
incident at 60◦ as a function of frequency. (a) Magnitude of the
transmission coefficient. (b) Phase of the transmission coefficient.
The solid lines represent the results of the uniform-loading model,
the dashed lines are the discrete-loading model results, the dot-dashed
lines are the local model results, and the symbols correspond to the
full-wave HFSS results.

reduced when compared to the case of no impedance insertions
(short circuit) with the plasma frequency of 12.14 GHz.
This confirms that by using the lumped inductances, we
have a decrease in the plasma frequency. Moreover, the fact
that the response of the local model is close to that of
the full-wave simulations confirms that the effects of spatial
dispersion are negligible. In the rest of the paper, we employ
the discrete-loading model to study the transmission properties
and to characterize the negative refraction.

Now, we fix the plasma frequency (12.1 GHz) and increase
the inductive load L1 and decrease the permittivity εh of the
structure simultaneously, with a motive to have a smaller unit
cell at the frequency of operation and better transmission char-
acteristics. Thus, the formed structure is of the following di-
mensions: a = 2 mm, g = 0.2 mm, h = 2 mm, r0 = 0.05 mm,
εh = 1, and L1 = 5 nH. The transmission characteristics
(magnitude and phase) of the structure obtained from the
discrete-loading model for a TM-polarized plane wave inci-
dent at 60 degrees are depicted in Fig. 3(a). It can be seen that
the homogenization results are in a good agreement with the
full-wave HFSS results. It is assumed that the load is connected
to the patch through a gap of 0.1 mm. The good agreement
between simulations and theory reveals that the effects of
the parasitic inductance and capacitance are negligible in
the considered configuration, and justifies why these were
not taken into account in our model. It can be observed
from Fig. 3(a) that we have a better transmission magnitude
(due to improved matching) when compared to the results in
Fig. 2. The percentage decrease in the plasma frequency of
the proposed configuration when compared to the structure
without the inductive loads is nearly 66%.

Next, we characterize the negative refraction based on the
analysis of variation in the phase of T (ω,kx) (transmission
coefficient for a plane wave with the transverse wave number
kx) of the material slab with the incident angle θi . Specifically,
it was shown in Ref. 3 that for an arbitrary material slab excited
by a quasiplane wave, apart from the transmission magnitude,
the field profile at the output plane differs from the same at the
input plane by a spatial shift � [see inset in Fig. 3(b)], given
by � = dφ/dkx , where φ = arg(T ). The transmission angle
can be obtained as θt = tan−1(�/h) (h is the thickness of the
planar material slab). Thus, negative refraction occurs when
� < 0, i.e., when φ decreases with the angle of incidence θi .

The homogenization model results of the transmission
magnitude and phase as a function of the incidence angle θi

calculated at a frequency of 11 GHz are depicted in Fig. 3(b),
showing a very good agreement with the full-wave CST
Microwave Studio22 results. It can be observed that the phase
of the transmission coefficient [φ = arg(T )] decreases with
an increase in the incidence angle, except at large incidence
angles where we have a rapid variation in the magnitude
of T (ω,kx). This clearly shows that the structure enables
negative refraction. The spatial shift calculated at an incident
angle of 33.3◦ corresponding to the maximum transmission
is � = −0.16λ0 (λ0 is the free space wavelength calculated
at 11 GHz). The electrical thickness of the structure is
h = 0.073λ0, and the calculated transmission angle is θt =
−65.42◦. It is interesting that in spite of the structure being
electrically very thin, it exhibits strong negative refraction at an
interface with air. In order to further characterize the negative
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FIG. 3. (Color online) (a) The magnitude and phase of the
transmission coefficient for the two-sided mushroom structure excited
by a TM-polarized plane wave incident at 60◦ as a function
of frequency. The solid lines represent the homogenization re-
sults, and the symbols correspond to the full-wave HFSS results.
(b) Transmission magnitude and phase as a function of the incidence
angle θi calculated at 11 GHz. The solid lines represent the
homogenization results, and the symbols correspond to the full-wave
CST Microwave Studio results.

refraction effect, we have calculated the transmission angle θt

as a function of incidence angle θi at different frequencies. The
calculations are based on the discrete-loading model and are
depicted along with the transmission magnitude |T | in Fig. 4.
The results of the homogenization model predict an all-angle
negative refraction with a maximum transmission, which is
observed in the frequency band from 8.7 GHz to 10.8 GHz.
The proposed structure is electrically very thin (< λ0/15) in
this frequency range.

To further confirm these findings based on the discrete-
loading model, we have simulated the response of the proposed
configuration excited by a cylindrical Gaussian beam using
CST Microwave Studio. The Gaussian beam has magnetic
field polarized along the y direction and θi = 33.3◦. The array
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FIG. 4. (Color online) Discrete-loading model results of the
transmission magnitude |T | and the transmission angle θt as a function
of the incidence angle θi calculated at different frequencies. The red
solid lines and blue dashed lines correspond to the results calculated
at 10 GHz and 9 GHz, respectively.

of loaded wires with patches has the same unit cell as that used
in the calculations in Fig. 3(a). Both the Gaussian beam and
the array are invariant to translations along y, and the width of
the array along the x direction is 90a. A snapshot in time of the

(a)

(b)

FIG. 5. (Color online) (a) Snapshot in time of the magnetic field
Hy when the array of loaded wires is illuminated by a Gaussian beam
with θi = 33◦. The inset shows a zoom of the central region of the
structure. (b) Amplitude of the magnetic field in arbitrary units (a.u.)
calculated at (i) Solid blue curve: input plane, (ii) dashed blue curve:
output plane, and (iii) black curve: similar to (i) but for propagation
in free space.
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magnetic field at t = 0 is shown in Fig. 5(a) for f = 11 GHz,
and the negative spatial shift of the incoming beam as it travels
through the deeply-subwavelength array of loaded wires with
patches is quite evident. In Fig. 5(b), we show the beam profile
at a distance 0.5a above the input interface (blue solid curve)
and at a distance 0.5a below the output interface (blue dashed
curve). As a reference, we have also plotted the beam profile
when the array is removed, and the Gaussian beam travels in
free space (black curve, calculated at the same plane as the
solid blue curve). Based on these profiles, it is possible to
obtain the spatial shift by calculating the position of the center
of mass of each curve (with weight |Hy |2), and then the angle
of transmission to the array of wires: θt ≈ −75.5◦.

IV. CONCLUSION

We have shown that by loading the WM slab with inductive
loads, it is possible to decrease the plasma frequency of the
uniaxial WM and reduce the spatial dispersion effects. By
using the proposed concept of lumped loads, we have demon-
strated that it is feasible to design an ultra-thin structure which
exhibits all-angle negative refraction with a high transmission,
the response of which can be accurately predicted by the
developed homogenization model. The proposed structure can
be used for focusing of waves and in the design of planar
lenses because of its two very important properties: all-angle
negative refraction and high transmission.

APPENDIX A

Here, we give the explicit formulas for the notations used
in Eq. (1), and also for those described in Sec. II A, as defined
in Ref. 16,

εt = 1 + (2(a − g)/πh) log[csc(πg/2a)],

kp =
√

(2π/a2)/ log[a2/(4r0(a − r0))],

L = (μ0/2π ) log[a2/(4r0(a − r0))],
(A1)

Cwire = 2πεhε0/ log[a2/(4r0(a − r0))],

Cpatch = πε0(εh + 1)(a − g)/ log[sec(πg/2a)].

APPENDIX B

For the discrete-loading model defined in Sec. II D, assum-
ing that a TM-polarized plane wave propagating in the x−z

plane is incident at an angle θi on the configuration shown in

Fig. 1, the electric and magnetic fields in the air region above
the structure (z > 0) can be expressed as

Hy = eγ0z − Re−γ0z,
(B1)

Ex = −γ0

jωε0
[eγ0z + Re−γ0z],

where R is the reflection coefficient, γ0 =
√
k2
x − k2

0, and kx =
k0 sin θi is the x component of the wave vector k. The fields in
the WM region (−h < z < 0) can be expressed in terms of the
TM and transverse electromagnetic (TEM) plane-wave modes
of bulk wire media determined by the permittivity function
[Eq. (6)]:

Hy = A+
TMeγTM(z+h) + A−

TMe−γTM(z+h)

+B+
TEMeγTEM(z+h) + B−

TEMe−γTEM(z+h),

Ex = j

ωε0εh

[γTM(A+
TMeγTM(z+h) − A−

TMe−γTM(z+h)). (B2)

+ γTEM(B+
TEMeγTEM(z+h) − B−

TEMe−γTEM(z+h))],

Ez = − kxη0

k0εTM
zz

(A+
TMeγTM(z+h) + A−

TMe−γTM(z+h)),

where γTM =
√
k2
x + k2

p − k2
0εh, γTEM = jk0

√
εh, and εTM

zz =
εhk

2
x/(k2

p + k2
x) is the relative permittivity along the wires for

TM polarization. A±
TM and B±

TEM are the unknown amplitudes
associated with the TM and TEM fields in the WM slab,
respectively. The tangential electromagnetic fields in the air
region below the structure (z < −h) are written as

Hy = T eγ0(z+h), Ex = −γ0

jωε0
T eγ0(z+h), (B3)

where T is the transmission coefficient. Now, the ABC [Eq. (3)
at z = 0] and GABC [Eq. (7) at z = −h] can be written in
terms of the field quantities, by expressing the microscopic
current I (z) along the wires in terms of the macroscopic
electromagnetic fields using the results of Ref. 17:[(

k0εh

dEz

dz
+ kxη0

dHy

dz

)

+ Cwire

Cpatch
(k0εhEz + kxη0Hy)

]
z=0

= 0, (B4)

[ (
k0εh

dEz

dz
+ kxη0

dHy

dz

)
−

(
jωCwireZLoad + Cwire

Cpatch

)

× (k0εhEz + kxη0Hy)

]
z=−h

= 0. (B5)

*ckaipa@olemiss.edu
1V. G. Veselago, Sov. Phys. USP. 10, 509 (1968).
2J. B. Pendry, Phys. Rev. Lett. 85, 03966 (2000).
3M. G. Silveirinha, Phys. Rev. B 79, 153109 (2009).
4E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M.
Soukoulis, Nature (London) 423, 604 (2003).

5D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405
(2003).

6D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, P. Rye, and Appl.
Phys. Lett. 84, 2244 (2004).

7Q. Cheng, R. Liu, J. J. Mock, T. J. Cui, and D. R. Smith, Phys. Rev.
B 78, 121102 (2008).

165135-6

http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1103/PhysRevB.79.153109
http://dx.doi.org/10.1038/423604b
http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1103/PhysRevLett.90.077405
http://dx.doi.org/10.1063/1.1690471
http://dx.doi.org/10.1063/1.1690471
http://dx.doi.org/10.1103/PhysRevB.78.121102
http://dx.doi.org/10.1103/PhysRevB.78.121102


INDEFINITE DIELECTRIC RESPONSE AND ALL-ANGLE . . . PHYSICAL REVIEW B 84, 165135 (2011)

8Z. Jacob, I. Smolyaninov, and E. Narimanov, e-print
arXiv:0910.3981v2.

9Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E.
Narimanov, and V. Shalaev, Appl. Phys. B 100, 215
(2010).

10P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov,
M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev.
B 67, 113103 (2003).

11M. G. Silveirinha and A. B. Yakovlev, Phys. Rev. B 81, 233105
(2010).

12C. S. R. Kaipa, A. B. Yakovlev, and M. G. Silveirinha, J. Appl.
Phys. 109, 044901 (2011).

13A. Demetriadou and J. B. Pendry, J. Phys. Condens. Matter 20,
295222 (2008).

14O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski,
I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory
Tech. 57, 2692 (2009).

15A. B. Yakovlev, M. G. Silveirinha, O. Luukkonen, C. R. Simovski,
I. S. Nefedov, and S. A. Tretyakov, IEEE Trans. Microwave Theory
Tech. 57, 2700 (2009).

16S. I. Maslovski and M. G. Silveirinha, Phys. Rev. B 80, 245101
(2009).

17S. I. Maslovski, T. A. Morgado, M. G. Silveirinha, C. S. R. Kaipa,
and A. B. Yakovlev, New J. Phys. 12, 113047 (2010).

18S. A. Tretyakov, Analytical Modelling in Applied Electromagnetics
(Artech House, Norwood, MA, 2003).

19S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, Microw. Opt.
Techn. Lett. 35, 47 (2002).

20O. Luukkonen, C. R. Simovski, G. Granet, G. Goussetis,
D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, IEEE Trans.
Antennas Propagat. 56, 1624 (2008).

21HFSS: High Frequency Structure Simulator based on Finite
Element Method, Ansoft Corporation [http://www.ansoft.com].

22CST Microwave Studio 2011, CST GmbH [http://www.cst.com].

165135-7

http://arXiv.org/abs/arXiv:0910.3981v2
http://dx.doi.org/10.1007/s00340-010-4096-5
http://dx.doi.org/10.1007/s00340-010-4096-5
http://dx.doi.org/10.1103/PhysRevB.67.113103
http://dx.doi.org/10.1103/PhysRevB.67.113103
http://dx.doi.org/10.1103/PhysRevB.81.233105
http://dx.doi.org/10.1103/PhysRevB.81.233105
http://dx.doi.org/10.1063/1.3549129
http://dx.doi.org/10.1063/1.3549129
http://dx.doi.org/10.1088/0953-8984/20/29/295222
http://dx.doi.org/10.1088/0953-8984/20/29/295222
http://dx.doi.org/10.1109/TMTT.2009.2032458
http://dx.doi.org/10.1109/TMTT.2009.2032458
http://dx.doi.org/10.1109/TMTT.2009.2031933
http://dx.doi.org/10.1109/TMTT.2009.2031933
http://dx.doi.org/10.1103/PhysRevB.80.245101
http://dx.doi.org/10.1103/PhysRevB.80.245101
http://dx.doi.org/10.1088/1367-2630/12/11/113047
http://dx.doi.org/10.1002/mop.10512
http://dx.doi.org/10.1002/mop.10512
http://dx.doi.org/10.1109/TAP.2008.923327
http://dx.doi.org/10.1109/TAP.2008.923327
http://www.ansoft.com
http://www.cst.com

