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Mimicking the Veselago-Pendry lens with broadband matched double-negative metamaterials
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Most metamaterial designs are based on the resonant response of either high permittivity or metallic particles
embedded in a dielectric host (e.g. an array of metallic particles standing in air). As a consequence, the response
of the material is typically narrowband, and this holds back many interesting applications. Here, we show that
the key to achieve a broadband isotropic response may lie on a low-permittivity host with a plasmonic-type
response. In particular, we demonstrate that a host medium with such characteristics may enable an effective
permittivity εeff and permeability μeff simultaneously negative in a frequency range that may be quite broad as
compared to typical designs based on metallic particles standing in a dielectric host. It is shown that the proposed
configuration is largely insensitive to disorder and that a slab of the metamaterial may mimic to some extent the
Veselago–Pendry’s superlens, enabling negative refraction and imaging with super-resolution.
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I. INTRODUCTION

In 1968, Veselago1 theoretically investigated the elec-
tromagnetic behavior of a medium having both electric
permittivity ε and magnetic permeability μ negative (DNG
material) and concluded that such a medium would have
propagation properties radically different from right-handed
materials with both ε and μ greater than zero. About 10 years
ago, building on Veselago’s work, Pendry suggested that a
lossless material slab with negative index of refraction (n =
−1 at a fixed frequency of operation) makes a perfect lens
with resolution independent of the wavelength of operation
and of the polarization of the light.2 Such an extraordinary
phenomenon has its roots in two effects: on one hand,
the propagating plane waves are focused due to negative
refraction; on the other hand, the evanescent modes are restored
due to resonant excitation of guided modes supported by the
double-negative medium when ε = μ = −1. Nevertheless, it
soon became evident that this imaging mechanism is strongly
sensitive to losses and material dispersion,3–5 besides the
numerous practical difficulties related to the realization of
double-negative media. A promising route to realize meta-
materials with simultaneously negative ε and μ is based on
periodic arrays of plasmonic particles.6–9 It is well known that
nanoparticles with negative permittivity can support multiple
electric resonances,10 and such resonances can indeed be
useful if one wishes to tailor the effective properties of a
composite material (particularly the magnetic response in
the optical regime). However, such inherently electrostatic
resonances may also be a source of sharp singularities in
the effective response εeff of a composite material and, in
practice, may imply strong spatial dispersion and imply that the
frequency range where the response of the effective medium is
useful be quite narrow. For example, in Ref. 6, it was shown that
a periodic array of plasmonic cylindrical inclusions supports
many high-multipole resonances when the real part of the
permittivity of the inclusion satisfies ε′(ω) ≈ −1 and that
some of these resonances may be associated with a regime
where the structure behaves as a DNG material. However,
the frequency window where the effective permittivity εeff

and effective permeability μeff are simultaneously negative is
very narrow due to the sensitive behavior of εeff in the DNG

regime. In other words, when the inclusions are operated near
the plasmonic resonance, the characteristic wavelength of a
guided mode may be shorter than the lattice constant, and in
such a case, the material cannot be regarded as an effective
medium, and thus it cannot be homogenized.

The main goal of this paper is to demonstrate that by
interchanging the roles of the dielectric host material and of
the plasmonic inclusions, it may be possible to circumvent the
above mentioned drawbacks and achieve a broadband DNG
regime, where the response of the effective medium is to a
good approximation local (effects of spatial dispersion are
weak) and largely insensitive both to disorder and in part to
loss effects. Moreover, we show that in the case of sufficiently
low loss, such a configuration may enable mimicking to
some extent the Veselago–Pendry’s lens and imaging with
super-resolution. In this work, a time-harmonic variation e−iωt

is considered.

II. LIMITATIONS OF DNG METAMATERIALS BASED
ON PLASMONIC-TYPE INCLUSIONS

In order to further illustrate the inherent bandwidth limi-
tations of designs based on plasmonic-type inclusions, next
we characterize the effective parameters (εeff and μeff) of
a configuration formed by an array of plasmonic inclusions
arranged in a square lattice with lattice constant a [inset
of Fig. 2(b)]. The inclusions are cylinders with a circular
cross-section with radius R. The dielectric permittivity εr of the

inclusions is described by the Drude model εr = 1 − ω2
p

ω(ω+i�)
where ωp is the plasma frequency and � is the collision fre-
quency. The Drude dispersion model may describe accurately
the response of noble metals through the infrared and optical
domains. The host region is a vacuum. It is assumed that the
cylinders have a normalized radius R/a = 0.44, the plasma
frequency is such that ωpa/c = 1.0 and the collision frequency
is �/ωp = 0.001. To characterize the effective response, we
assume that the metamaterial can be accurately described
by an effective permittivity εeff = ε(ω) and an effective
permeability μeff = μ(ω) (for simplicity, here we restrict our
discussion to the case of isotropic media and assume there is
no magneto-electric coupling). The electric field is assumed
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(a) (b)

FIG. 1. (Color online) (a) Real parts of the effective permittivity εeff = ε′
eff + iε′′

eff (green curves) and permeability μeff = μ′
eff + iμ′′

eff (blue
curves) as a function of the normalized frequency ω/ωp (�/ωp = 10−4). The inset shows the real part of the effective permittivity (�/ωp =
10−4) in the vicinity of the plasmonic resonance of the inclusions (ω/ωp = 0.7). (b) Real and imaginary parts of the effective permeability
μeff = μ′

eff + iμ′′
eff as a function of the normalized frequency ω/ωp , for different values of the damping frequency: �/ωp = 10−4 (black curves),

�/ωp = 5 × 10−4 (blue curves) and �/ωp = 10−3 (green curves). The solid lines correspond to the real part of μeff , while the dashed lines
represent the imaginary part.

to lie in the xoy plane, whereas the magnetic field is directed
along the z direction. We characterize the effective response
of the metamaterial in a two-step process: First, the nonlocal
(spatially dispersive) dielectric function of the metamaterial
εeff(ω,k) is numerically computed, as described in Refs. 11
and 12. Then, in a second step, the local parameters are
extracted from the nonlocal dielectric function using: ε(ω) =
εeff(ω, k = 0)/ε0 and μ(ω) = 1 + (1 − 1

2ε0

ω2

c2
∂2εeff,yy

∂k2
x

|k=0)−1.

For more details, see Ref. 11. The calculated effective
parameters are depicted as a function of the frequency in
Fig. 1(b), confirming that the frequency window where both
εeff and μeff are simultaneously negative is extremely narrow
(0.629 < ω/ωp < 0.630, i.e. the bandwidth is less than
0.2%). Our computed results are qualitatively analogous to
those reported in Ref. 6 for a similar geometrical structure.
The inset of Fig. 1(a) illustrates the irregular behavior of the
effective permittivity εeff in the vicinity of ω = 0.7ωp (where
ε′
r ≈ −1), caused by the excitation of multiple quasistatic

resonances. In order to determine how the effective response of
this configuration is affected by losses, in Fig. 1(b), we depict
the effective permeability μeff = μ′

eff + iμ′′
eff at the resonance

for different values of absorption, i.e. for different values of
�. It is clear from Fig. 1(b) that even for extremely low values
of absorption (�/ωp = 5 × 10−4, blue curves) the magnetic
resonance is tremendously damped, and it almost disappears
when a slightly higher value of loss is considered (�/ωp =
1 × 10−3, green curves), confirming that the DNG response of
this configuration is not only extremely narrowband but also
very sensitive to the effect of loss.

III. BROADBAND MATCHED DNG METAMATERIALS

The example of the previous section illustrates the inherent
bandwidth restrictions and high loss sensitivity of typical
metamaterial designs based on materials with a plasmonic-
type response. Surprisingly, as described next, there may be
a simple strategy to overcome these apparently fundamental
limitations and achieve a broadband low loss response.

Notably, this may involve simply interchanging the roles of
the inclusions and of the host material. The idea of considering
a metamaterial with a design based on its complementary
structure was also considered in Ref. 13 in a different context.

In order that DNG materials can be used effectively as
functional elements of novel electromagnetic devices it is
essential that they can be efficiently coupled to conventional
dielectrics. In practice, this requires that the impedance of
the DNG material, η, is relatively close to the impedance of
vacuum η0 = √

μ0/ε0, or equivalently that μ ∼ ε, being ε

and μ the relative permittivity and permeability of the DNG
material, respectively. Hence, in an ideal scenario, we would
like to have matched operation, μ = ε, over a broad frequency
region.

An interesting possibility of having matched operation in
the regime where the effective parameters are simultaneously
near zero [εeff(ωp) ≈ μeff(ωp) ≈ 0] was described in Ref.
14, and involves embedding dielectric particles with suitable
size and permittivity in a host background with near-zero
permittivity.15 The analysis of Ref. 14, was however focused in
the regime εeff ≈ μeff ≈ 0 (for geometries that are intrinsically
two dimensional), and the possibility of having matched opera-
tion over a broad frequency band or superlensing (εeff ≈ μeff ≈
−1) was not investigated. However, it is evident that causality
and passivity restrictions imply that for small absorption both
εeff(ω) and μeff(ω) must increase with frequency,16 and hence
if εeff ≈ μeff ≈ 0 at a given frequency ωp, then for ω < ωp

the effective permittivity and permeability are simultaneously
negative. Next, we build on these ideas and demonstrate that
a metamaterial formed by dielectric inclusions embedded in
a plasmonic host enables, indeed, a broadband DNG regime,
even in fully three-dimensional scenarios.

The first configuration that we will analyze is related to
that in Sec. II, i.e. an array of cylinders arranged in a square
lattice with lattice constant a; however, now we suppose that
the cylinders have a high-index permittivity εr and that the
permittivity of the host material εh is described by the Drude
dispersion model (see the inset of Fig. 2). It is assumed that
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(a) (b)

FIG. 2. (Color online) (a) Effective permittivity εeff (green curves) and permeability μeff (blue curves) (�/ωp = 0) as a function of the
normalized frequency ω/ωp .The discrete symbols were calculated using full wave homogenization (Ref. 11), and the solid lines are obtained
using the Clausius−Mossotti formula. (b) Same as (a) but the effective parameters are depicted in a narrower frequency band. The geometry of
the unit cell is shown in the inset: it consists of a cylindrical inclusion with circular cross-section with normalized radius R/a and permittivity εr

embedded in a host medium with permittivity εh described by a Drude-type dispersion model.

the plasma frequency is such that ωpa/c = 1.0, and first,
we will consider the case wherein the material is lossless,
i.e. �/ωp = 0. Using the theory of Ref. 14, we have chosen
the normalized radius of the cylinders (R/a = 0.435) and
the dielectric permittivity εr ≈ 50.47 in such a way that at
ω = ωp the structure behaves as a zero-index material with
simultaneously near-zero permittivity and permeability and,
consequently, as a left-handed material for ω < ωp.

The effective parameters εeff(ω) and μeff(ω) calculated
using the full-wave homogenization11 are depicted as a
function of frequency in Fig. 2(a) (discrete symbols); the
same parameters are shown in Fig. 2(b) but over a narrower
spectral region. As in Sec. II, the electric field is assumed to
lie in the xoy plane, whereas the magnetic field is directed
along the z direction. Consistent with the theory of Ref. 14,
both the permittivity and permeability are near zero at the
plasma frequency εeff(ωp) = μeff(ωp) ≈ 0. It is also seen
that εeff(ω) and μeff(ω) are simultaneously positive for 1.0 <

ω/ωp < 1.2, and simultaneously negative for 0.8 <

ω/ωp < 1.0, being the bandwidth of the DNG regime several
orders of magnitude wider than what is achievable when
the roles of the inclusions and host are interchanged, as
discussed in Sec. II (e.g. in one of the examples of Sec. II,
the DNG bandwidth was less than 0.2%). The solid curves of
Fig. 2 represent the effective parameters calculated using the
Clausius–Mossotti (CM) mixing formulas,17 and concur rather
well with the results obtained with our numerical homoge-
nization formalism. The effective permittivity εeff(ω) and the
effective magnetic permeability μeff(ω) were calculated using
Eqs. (20) and (23) of Ref. 14, respectively. In Fig. 2, it is also
possible to observe that the effective parameters calculated
using the full-wave homogenization11 are such that εeff(ω) ≈
μeff(ω) ≈ −1 at ωa/c = 0.88. In fact, using the CM formulas, it
is possible to fine tune the geometry in such a way that εeff (ω) ≈
μeff(ω) in the DNG regime, ensuring a good matching with free
space in a wide frequency window. Notably, at ωa/c = 0.88,
the response of a planar metamaterial slab may mimic to some
extent the Veselago–Pendry’s lens,1,2 as we will discuss ahead.

Next, we analyze the robustness with respect to loss of the
proposed configuration by calculating the effective parameters

εeff(ω) and μeff(ω) when losses are taken into account
(Fig. 3; these results were computed using the full-wave
homogenization method).11 In Fig. 3(a), it can be seen that
when the damping frequency of the host is increased to �/ωp =
0.01, the effective permittivity εeff = ε′

eff + iε′′
eff (green curves)

and permeability μeff = μ′
eff + iμ′′

eff (blue curves) are barely
affected, i.e. our material remains tuned so that ε′

eff(ω) ≈
μ′

eff(ω) ≈ −1 at ωa/c = 0.88 and ε′
eff(ωp) = μ′

eff(ωp) ≈ 0.

This contrasts sharply with the response of the complementary
structure described in Sec. II, which is strongly affected
by loss, and indicates that the present configuration is far
more robust in this regard. Interestingly, the loss in the host
medium affects mainly the imaginary part of εeff (green dashed
curve) given that μ′′

eff(ω) ≈ 0, whereas 0.023 < ε′′
eff(ω) < 1.0.

Notably, these general conclusions still hold when the loss
of the host medium is increased by one order of magnitude
[�/ωp = 0.1, Fig. 3(b)]. Indeed, consistent with the results of
Fig. 3(a), when �/ωp = 0.1 the imaginary part of the effective
magnetic permeability remains negligible.

Figure 3(c) reports the effect of loss in the cylindrical
dielectric inclusion (εr = ε′

r + iε′′
r ) when the loss tangent

of the dielectric is ε′′
r /ε

′
r = 0.1. In this case, the effective

magnetic response is more affected by loss, and in particular,
the magnetic permeability is detuned so that μ′

eff(ω) �= −1 at
ωa/c = 0.88. Nevertheless, even though the effective magnetic
permeability μeff is shifted when lossy inclusions are consid-
ered, the effective response of the material remains broadband.
Curiously, different from Figs. 3(a) and 3(b), wherein for a
lossy host the imaginary part of the magnetic permeability
μ′′

eff(ω) was almost zero valued, for lossy dielectric inclusions,
we notice the opposite behavior, i.e. ε′′

eff(ω) ≈ 0. Finally,
Fig. 3(d) reports the combined effect of loss in the plasmonic
host and loss in the dielectric inclusions, and it is seen that the
two mechanisms of loss add up, resulting in moderate loss in
both the effective permittivity and permeability.

In Fig. 4(a), we depict the dispersion diagram obtained
by solving k2 = ω2

c2 εeffμeff around the plasma frequency, for
the case �/ωp = 0. The blue circles were obtained using
our homogenization method,11 whereas the green diamonds
were calculated using the Clausius–Mossotti theory.14 The
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(a) (b)

(c) (d)

FIG. 3. (Color online) Real and imaginary parts of the effective permittivity εeff = ε′
eff + iε′′

eff (green curves) and permeability μeff =
μ′

eff + iμ′′
eff (blue curves) as a function of the normalized frequency ω/ωp , for the same configuration as in Fig. 2, except that losses are taken

into account: (a) �/ωp = 0.01. (b) �/ωp = 0.1. (c) ε′′
r /ε

′
r = 0.1. (d) �/ωp = 0.1 and ε′′

r /ε
′
r = 0.1. The solid lines correspond to the real parts

of εeff and μeff while the dashed lines represent the imaginary parts.

band structure is formed by two nearly twin bands that have
reflection symmetry with respect to ω = ωp, and are associated
with transverse electromagnetic waves. The two bands touch
at the k = 0 point, because the condition εeff ≈ μeff ≈ 0

excludes the possibility of a photonic band gap and ensures a
continuous linear dispersion close to the plasma frequency. In
Fig. 4(a), the lower band corresponds to the frequency window
where the material behaves as a left-handed material, which

(a) (b)

FIG. 4. (Color online) (a) Band structure (only the bands associated with transverse electromagnetic waves are shown) calculated from:
full-wave homogenization (Ref. 11) (blue circles); Clausius–Mossotti formula (green diamonds); plane wave method (black stars). (b) The
complete band structure calculated using the plane wave method, showing also the dispersionless bands associated with the longitudinal modes
(the dispersion of the transverse modes is plotted with black stars so that it can be distinguished from the dispersion of the longitudinal modes).
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in this case happens for 0.85 < ω/ωp < 1.0. The negative
slope of this band shows that the group velocity vg = ∂ω

∂k
is

negative for 0.85 < ω/ωp < 1, confirming the emergence of
backward wave propagation in this regime. On the other hand,
the upper band corresponds to a frequency window where both
εeff(ω) and μeff(ω) are positive (right-handed material), which
happens for 1 < ω/ωp < 1.23.

Besides the two bands associated with the transverse modes,
there are also two flat bands at ω = ωp [not shown in Fig. 4(a)]
which are associated with longitudinal modes. The emergence
of such plasmon modes is made possible by the condition εeff ≈
μeff ≈ 0. The electric plasmon modes are such that E is
parallel to the wave vector and H = 0 and occur when
εeff = 0. Similarly, the magnetic plasmon modes are such
that H is parallel to the wave vector and E = 0 and occur when
μeff = 0.

To further validate the extracted effective parameters, we
have calculated the exact band structure of the periodic
medium using the plane wave method.18 Since the host mate-
rial is dispersive, the plane wave method must be implemented
as described in Refs. 19–22. To ensure the convergence of the
plane wave method, we had to expand the (in-plane) electric
field into 2148 plane waves. The computed results [along a
segment of the Brillouin zone with k = (kx , 0)] are depicted in
Fig. 4(b). As seen, the band structure is formed by a very large
number of nearly dispersionless (flat) bands with accumulation
point at ω = ωp. Such bands correspond to the longitudinal
plasmon modes discussed previously. For an ideal continuous
medium, they should all be concentrated at ω = ωp, but due
to the granularity of the structure, this is not strictly observed
in the metamaterial implementation. It is worth noting that
there is an infinite number of flat bands because, due to the
periodicity of the structure, the plasmon band is folded into
many branches.

Besides the dispersionless bands, it is possible to identify
in Fig. 4(b) two nearly twin bands [black stars in Fig 4(b),
also depicted in Fig 4(a)], whose dispersion matches well the
dispersion of the transverse electromagnetic waves computed
with homogenization theory [Fig. 4(a)]. Therefore, the band
structure calculations support the effective medium theory.

The described ideas can be readily generalized to the
three-dimensional case. To illustrate this, we consider an
array of spheres with permittivity εr , embedded in a near-
zero permittivity host, and arranged in a cubic lattice with
lattice constant a (see the inset of Fig. 5). It has been
shown in previous works that arrays of magneto-dielectric
spheres standing in air enable a DNG response;23 however,
the difference in our design is that the spheres have no
intrinsic magnetic response and are embedded in a plasmonic
material.

It was shown recently with full-wave homogenization
simulations that the metamaterial response can be accurately
modeled using the Lewin’s formulas when the inclusions
are embedded in a low permittivity host.24 For the case of
inclusions with trivial permeability, the Lewin’s formulas
read:25

εL =εh

(
1+ 1

a3α−1
e −1/3

)
, μL = 1+ 1

a3α−1
m − 1/3

(1)

FIG. 5. (Color online) Effective permittivity εeff (green curves)
and permeability μeff (blue curves) (�/ωp = 0) as a function of
the normalized frequency ω/ωp . Both curves were calculated using
Lewin’s formulas. The geometry of the unit cell is shown in the
inset: it consists of a spherical inclusion with normalized radius R/a
and permittivity εr embedded in a host medium with permittivity εh

described by a Drude-type dispersion model.

where

α−1
e = 1

4πR3

F (θ )+2εh/εd

F (θ )−εh/εd

, α−1
m = 1

4πR3

F (θ )+2

F (θ ) − 1
. (2)

with F (θ ) = 2(sin θ−θ cos θ)
(θ2−1) sin θ+θ cos θ

and θ = (ωR/c)
√

εd . In the
previous formulas, εd is the permittivity of the spherical
inclusions and εh the permittivity of the host material.

To investigate the potentials of this fully three-dimensional
(3D) configuration, we consider first that the plasma frequency
is such that ωpa/c = 1.0 and that �/ωp = 0 (lossless
case). The normalized radius of the spheres is R/a = 0.482
and the dielectric permittivity εr ≈ 58.4. These parameters
ensure a matched DNG operation εeff(ω) ≈ μeff(ω). The
effective parameters calculated with Lewin’s theory [Eq. (1)]
are depicted in Fig. 5, showing a very wideband DNG response
in the range 0.8 < ω/ωp < 1.0 and that εeff(ω) ≈ μeff(ω) ≈
−1 at ωa/c = 0.88, in qualitative agreement with the results
for the 2D configuration.

Next, we investigate the sensitivity to loss of the 3D
configuration. In Fig. 6(a), losses in the host medium are taken
into account by setting the damping frequency to �/ωp = 0.01.
Similar to the 2D case, the 3D configuration remains tuned
when the host medium is lossy, as the effective parameters
εeff(ω) and μeff(ω) are matched and simultaneously negative in
a broad frequency band of operation. Lewin’s formulas [Eqs.
(1) and (2)] predict that the effective magnetic permeability
μeff is not affected by the dielectric response of the host
medium, and accordingly, in Fig. 6(a), the imaginary part of the
magnetic permeability μeff = μ′

eff + iμ′′
eff is zero valued in the

whole spectral range. This behavior is qualitatively consistent
with the results obtained with the full-wave homogenization
method for the 2D configuration. The results reported in
Figs. 6(b), 6(c), and 6(d) are also qualitatively analogous
to those reported in Figs. 3(b), 3(c), and 3(d), where it was
seen that even in the presence of strong loss in both the host
medium and dielectric inclusions, the effective response of the
3D configuration remains very broadband, even in the worst
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(a) (b)

(c) (d)

FIG. 6. (Color online) Real and imaginary parts of the effective permittivity εeff = ε′
eff + iε′′

eff (green curves) and permeability μeff =
μ′

eff + iμ′′
eff (blue curves) as a function of the normalized frequency ω/ωp , for the same configuration as in Fig. 5, except that losses are taken

into account: (a) �/ωp = 0.01. (b) �/ωp = 0.1. (c) ε′′
r /ε

′
r = 0.1. (d) �/ωp = 0.1 and ε′′

r /ε
′
r = 0.1. The solid lines correspond to the real parts

of εeff and μeff , while the dashed lines represent the imaginary parts.

scenario [Fig. 6(d)], where both host medium and inclusions
are simultaneously affected by strong loss modeled by �/ωp

= 0.1 and ε′′
r /ε

′
r = 0.1.

To conclude this section, we discuss possible combinations
of realistic materials that may enable realizing the described
metamaterial. At infrared and optical frequencies, the role
of the plasmonic material may be played (at very specific
frequency bands) either by noble metals (e.g. silver in the
optical regime) or polar dielectrics (e.g. SiC at the far-IR).26

However, in these regimes, materials with large permittivities
are difficult to find, even though they may be possibly
synthesized as metamaterials.27 Yet, the most promising
possibility is perhaps the terahertz regime, where several
materials with high index and relatively low loss are readily
available (e.g. TiO2, MgO:LiNbO3).28,29 In this regime, either
materials with a terahertz polariton resonance, such as CsI,30

or semiconductors (e.g. InSb)31 are characterized by a negative
permittivity in some frequency band and thus may be used as
the host material.

As an example, here we consider a 3D setup based on TiO2

(titanium dioxide) spheres embedded in an HgTe (mercurium
telluride) host. HgTe is a high-mobility (degenerate) semicon-
ductor, whose electrical response may be modeled by a Drude

model of the form ε(ω) = ε∞[1 − ω2
p

ω(ω+i�) ], with plasma

frequency ωp = √
Ne2

m∗ε∞ε0
and collision frequency � = e

m∗μn

(within the same level of approximation as that considered
in Ref. 31 for InSb), where −e is the electron charge, and
ε0 is the permittivity of vacuum. With the data available in
the literature, it is possible to estimate that ε∞ = 14.432 and
that the effective electron mass is m∗ = 0.03m0.33 On the
other hand, the mobility of the electrons μn and the electron
concentration N depend significantly on the temperature and
can be calculated using the data of Refs. 34 and 35. As a
consequence, the plasma and collision frequencies of HgTe are
tunable with the temperature. At room temperature, we have
μn ≈ 3.5 × 103 cm2V/s and N ≈ 4.3 × 1017 cm−3, and thus
the plasma frequency should be about ωp/2π = 9.0 [THz] and
the collision frequency �/2π = 0.27 [THz]. Unfortunately,
this value of ωp is far too high to enable the combination of
HgTe and TiO2 at room temperature in our design. Indeed, after
the polaritonic resonance of TiO2 at 5.7 THz, its permittivity
drops sharply.28 To circumvent this problem, we will consider
operation at lower temperatures to effectively decrease the
plasma frequency of HgTe. The permittivity of TiO2 is almost
insensitive to temperature.28
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(a) (b)

(c) (d)

FIG. 7. (Color online) Real and imaginary parts of the effective permittivity εeff = ε′
eff + iε′′

eff (green curves) and permeability μeff =
μ′

eff + iμ′′
eff (blue curves) as a function of frequency in the terahertz domain, for the scenario wherein the plasmonic host is HgTe and the

spherical inclusions are made of TiO2. (a) T = 10 K. (b) T = 30 K. (c) Similar to (b), but the radius of the TiO2 was tuned to ensure that
ε′

eff ≈ μ′
eff ≈ −1 at f = 0.989 THz. The discrete symbols were calculated using the full-wave homogenization (Ref. 24), and the solid curves

were determined using Eqs. (1) and (2). (d) T = 77 K.

In the first example [Fig. 7(a)], we consider operation at T =
10 K for which the plasma frequency of HgTe can be estimated
as fp ≈ 0.683 THz. The permittivity of TiO2 at this frequency
is εTiO2 ≈ 93.9 + i1.3.28 In order to ensure εeff ≈ μeff ≈ 0 at
f = 0.683 THz, we use Eqs. (1) and (2) to determine the radius
of the spheres, and this yields R/a = 0.35 (a = 70.0 μm). The
results shown in Fig. 7(a) confirm that the effective response of
the 3D configuration formed by realistic materials may provide
a fairly matched and fairly broadband DNG response, i.e. the
real part of the effective permittivity ε′

eff (solid green curve) is
reasonably identical to the real part of the effective magnetic
permeability μ′

eff (solid blue curve) in a relatively wide range
of frequencies. The bandwidth of DNG operation is about 8%,
which should be contrasted with the results of Sec. II. It is
relevant to mention that it is possible to achieve a bandwidth
of DNG operation of nearly 10% with metamaterials formed
by split ring resonators and metallic wires,36 a bandwidth of
about 20% with metamaterials formed by several layers of
fishnets,37 or even larger values using transmission line based
metamaterials.38 Nevertheless, these structures do not provide
an isotropic matched local response, unlike our metamaterial,
or may require electronic lumped components not available at
optics.

The effective parameters were also determined for a
temperature T = 30 K [Fig. 7(b)]. In this scenario, the
plasma frequency of HgTe may be estimated as fp ≈
1.012 THz and εTiO2 ≈ 95.2 + i2.0. The normalized radius
of the TiO2 spheres is chosen as R/a = 0.34 (a = 47.2 μm).
The behavior of the effective parameters is identical to that of
Fig. 7(a) but with a shift in frequency, as a consequence of the
temperature increase. It should be noticed that even though
the effective response remains broadband at T = 30 K, the
matching properties are slightly deteriorated. In order to have
simultaneously ε = −1 and μ = −1 the radius of the spheres
may be slightly decreased to R/a = 0.33 [Fig. 7(c)]. It can
be seen in Fig. 7(c) that this provides ε′

eff ≈ μ′
eff ≈ −1 at f ≈

0.989 THz. In Fig. 7(c), we also depict the effective parameters
calculated using a time-domain full-wave homogenization,24

confirming the accuracy of the Lewin’s formulas.25 Finally,
in Fig. 7(d), the effective response of the 3D configuration is
depicted at T = 77 K. For this temperature, fp ≈ 3.411 THz and
εTiO2 ≈ 136.5 + i14.7. The normalized radius of the spheres is
chosen R/a = 0.276 (a = 78.2 μm). It can be seen [Fig. 7(d)]
that at 77 K it is not possible anymore to ensure a DNG
response. In fact, the effective magnetic response is strongly
damped by the increased loss of TiO2 (due to operation closer
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to the resonance of TiO2) because, as discussed previously, the
effective magnetic response is mainly affected by the loss in
the dielectric inclusions.

IV. NEGATIVE REFRACTION

To further characterize the potentials of the proposed meta-
materials, we studied the refraction of a Gaussian cylindrical
beam by a planar metamaterial slab using a commercial
full-wave electromagnetic simulator.39 In the first example,
we consider the 2D configuration reported in Sec. III where
the inclusions are high-index cylinders and the magnetic field
is parallel to the axes of the cylinders (z direction). The
metamaterial slab is finite along the x and y directions, with
dimensions Lx = 17.8a and Ly = 60.4a, respectively. In the
simulation, the effect of loss was taken into account by consid-
ering that the collision frequency satisfies �/ωp = 0.05. The
Gaussian beam illuminates the slab along the direction θi =
33◦. Figure 8(a) shows a snapshot in time of the z component
of the magnetic field at ωa/c = 0.88, i.e. at the frequency
where, according to the results shown in Fig. 2, the effective
parameters are εeff ≈ μeff ≈ −1. The negative refraction is
evident from Fig. 8(a), which shows that the beam is bent in
an unusual way at the interfaces.

While in the previous configuration, the DNG response is
polarization sensitive and is revealed only when the magnetic
field is parallel to the cylindrical inclusions, it is possible to
overcome this limitation by considering spherical inclusions.
In such a scenario, we can obtain a magnetic response for
the two polarizations, i.e. both when the magnetic field is
parallel to the z direction (P-polarized waves) and also when
the electric field is parallel to the z direction (S-polarized
waves). To illustrate this, we consider a metamaterial formed
by spherical dielectric inclusions with dimensions Lx = 8.87a
and Ly = 54.3a along the x and y directions, respectively.
The metamaterial has the same parameters as in Fig. 5,
except that losses in the host material were also taken into
account assuming �/ωp = 0.05. Figures 8(b) and 8(c) show a
snapshot in time of the z component of the magnetic field
(for a P-polarized incident wave) and of the electric field
(for an S-polarized incident wave), respectively, when the
metamaterial is illuminated by a cylindrical Gaussian beam.
These two snapshots are calculated at ωa/c = 0.88, the
frequency at which the effective parameters satisfy εeff ≈
μeff ≈ −1, and at a z = const. plane that cuts the spheres
into two equal parts (i.e. at half height of the unit cell).
Nevertheless, it can be checked (not shown here) that the
results obtained for other cuts are very similar. The results of
Fig. 8(b) and 8(c) confirm a strong negative refraction effect for
both polarizations and that the level of reflections is very low,
demonstrating that the metamaterial is well matched with free
space. It should be noticed that the transmission and incident
angles satisfy θt ≈ −θi , consistent with the fact that n ≈ −1.

Next, we discuss the effects of disorder on the response of
the metamaterial. As demonstrated theoretically in Ref. 14, in
the 2D scenario and in the limit of vanishing loss, a wave that
illuminates the slab at the plasma frequency cannot distinguish
if the slab is a continuous medium (with parameters εeff(ωp) ≈
μeff(ωp) ≈ 0 in case of a zero-index medium, as considered
here) or if it is a metamaterial implementation of the same

(a)

(b)

(c)

FIG. 8. (Color online) Snapshots of Hz (P-polarized waves)
and Ez (S-polarized waves) when a cylindrical Gaussian beam
illuminates (θi = 33◦) a metamaterial slab: (a) 2D con-
figuration (cylindrical inclusions) and slab with dimensions
Lx = 17.8a and Ly = 60.4a and plasmonic host with collision
frequency �/ωp = 0.05. (b) and (c) 3D configuration (spherical
inclusions) and a slab with dimensions Lx = 8.87a and Ly = 54.3a
and plasmonic host with collision frequency �/ωp = 0.05.

medium. Indeed, at the plasma frequency, the electromagnetic
fields are unable to sense the granularity of the slab. Moreover,
in this ideal scenario, the metamaterial response is also totally
insensitive to disorder effects, and an external observer is
unable to tell if the inclusions of the metamaterial slab
are periodically or randomly arranged.14,40,41 This is made
possible by the fact that the wavelength in the host medium
is infinite at ω = ωp, and thus the electrical size of the
inclusions is very small, independent of their actual physical
size. Even though this property is rigorously valid only when
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(a) (b)

FIG. 9. (Color online) Snapshots of Hz when a Gaussian beam illuminates a metamaterial slab formed by cylindrical inclusions (θi = 33◦).
(a) Slab with dimensions Lx = 7a and Ly = 60a composed by an array of cylinders arranged in a square lattice within a plasmonic host with
collision frequency �/ωp = 0.01. (b) Similar to (a), but the cylinders are randomly positioned within the host.

ω = ωp, it remains approximately valid at nearby frequencies.
To demonstrate this, we studied the effect of positional disorder
on the refraction of waves by a metamaterial slab formed
by cylindrical inclusions. The dimensions of the slab in this
example are Lx = 7a and Ly = 60a. In order to have a
higher degree of disorder, we have reduced the radius of the
inclusions to R/a = 0.315 and increased the plasma frequency
to ωpa/c = 1.66, compared to the previous examples. The
dielectric permittivity (εr ≈ 39.12) was tuned so that at
ωa/c ≈ 1.33 the effective permeability and permittivity
satisfy εeff ≈ μeff ≈ −1. The effect of loss was taken into
account by using �/ωp = 0.01. Figures 9(a) and 9(b) show a
snapshot in time of the magnetic field when the inclusions are
periodically and randomly arranged, respectively (the specific
spatial arrangement of the inclusions in the two cases can
be seen directly in Fig. 9). It is clear [also from the time
animation of Fig. 9(b) reported in Ref. 42], consistent with
the previous discussion, that the response of the metamaterial
and the negative refraction are little affected by disorder of
the structure, confirming that the incident beam is unable to
sense the granularity of the metamaterial. Notice that when
εeff ≈ μeff ≈ −1, the real part of the permittivity of the host is
εh ≈ −0.56, and thus the contrast between the permittivity
of the host and inclusions is near zero (εh/εd ≈ −0.01), as
required in order that the theory of Ref. 14 applies.

Next, we investigate the possibility of achieving negative
refraction in a 3D-configuration wherein the host medium is
HgTe and the spherical inclusions are made of TiO2, with the
same parameters as in the example of Fig. 7(c). The dimensions
of the slab are Lx = 3.84a and Ly = 44.3a along the x and y
directions, respectively (a = 47.2 μm). Figures 10(a) and 10(b)
show a snapshot in time of the z component of the electric field
(for an S-polarized incident wave) and of the magnetic field (for

a P-polarized incident wave), respectively, at f = 0.989 THz,
the frequency at which ε′

eff ≈ μ′
eff ≈ −1. Despite the presence

of loss both in the host medium and dielectric, the negative
refraction is well evident in the figures and also in the time
animations.43,44

V. SUPERLENSING

One of the most exciting potentials of DNG materials is the
fact that a metamaterial slab with εeff ≈ μeff ≈ −1 is able to
suppress the effects of diffraction and focus electromagnetic
radiation with no limit of resolution.2 Unlike conventional
optical lenses, which can only process the propagating waves,
a DNG slab permits restoring the evanescent waves. In the near
field, the condition εeff ≈ μeff ≈ −1 can be relaxed, and there
are simpler solutions to achieve superlensing.45–48 Indeed, to
obtain superlensing for a specific polarization, it is sufficient
to guarantee that only one of the effective parameters (εeff or
μeff) is negative. This is a result of the almost total decoupling
between the magnetic and electric responses in the near field.

It is natural to wonder if the metamaterial structures
investigated in previous sections may mimic to some extent the
response of the perfect lens. To this end, first, we consider the
configuration where the metamaterial is formed by cylindrical
inclusions and has the same parameters as in Fig. 2. Using a full
wave electromagnetic simulator,39 we determined the transfer
function T of a metamaterial slab as a function of the transverse
wave number of the impinging wave, ky . The frequency of
operation is ωa/c = 0.88, i.e. the frequency at which the
effective parameters of the metamaterial satisfy εeff ≈ μeff ≈
−1. The slab has dimensions Lx = a, and it is infinite along the
y and z directions, and the effect of loss was taken into account
supposing that the collision frequency of the plasmonic host
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(a) (b)

FIG. 10. (Color online) Snapshots of the electromagnetic fields when a Gaussian beam (θi = 22◦) illuminates a metamaterial slab formed
by TiO2 spherical inclusions embedded in a HgTe host, with dimensions Lx = 3.85a and Ly = 44.3a. (a) S-polarized waves. (b) P-polarized
waves.

is such that �/ωp = 0.01. The obtained results are depicted in
Fig. 11 (blue solid curve) and are compared with the transfer
function of an ideal Pendry’s lens (black dashed curve) with

ε = μ = −1 (T = eγ0Lx ,with γ0 =
√

k2
y − (ω/c)2). As seen,

the results are qualitatively similar, and support, undoubtedly,
that the metamaterial indeed amplifies the evanescent waves
(i.e. waves with kyc/ω > 1). We would like to point out that the
edge of the Brillouin zone (kya = π ) corresponds in Fig. 11 to
ky/k0 = π/0.88 = 3.57, i.e. to the range of the horizontal axis.
Thus, as expected, the resolution of the system is ultimately
limited by the granularity of the material.

Using CST Microwave Studio,39 we simulated the case
wherein a magnetic line source (infinitely extended along
the z direction) [see inset of Fig. 12(a)]49 is placed at a
distance d1 above the metamaterial slab. The slab has the

FIG. 11. (Color online) Amplitude of the transfer function T of
the metamaterial slab as a function of the transverse wave vector, ky ,
for a fixed frequency of operation ω. The slab has dimensions Lx =
a ≈ 0.14λ0 and is infinite along the y and z directions. The blue solid
line was obtained with a full-wave simulation using CST Microwave
Studio (Ref. 39), whereas the black dashed line represents the transfer
function of an ideal Pendry’s lens with ε ≈ μ ≈ −1.

same parameters as in Fig. 11, but it is finite along the
y direction with Ly = 30.55a. The magnetic field profile
was calculated at a plane located at a distance d2 below the
slab. It was assumed that d1 = d2 = 0.5Lx = 0.07λ0. Notice
that the slab thickness corresponds to a single period of the
bulk metamaterial. In principle, unlike in other configurations
reported in the literature, this will not invalidate the effective
medium approximation, because when the permittivity of the
host material is near zero, the electromagnetic wave that illu-
minates the material slab may see the material as a continuous
material, independent of the exact thickness of the material in
the direction of propagation14 (this property may, however, not
hold when the excitation is placed in the very near field of the
slab due to the excitation of higher-order diffraction modes).

The normalized magnetic field at the image plane is
depicted in Fig. 12(a) as a function of y/λ0 (solid blue curve),
where λ0 is the wavelength associated with the frequency
of operation that provides εeff ≈ μeff ≈ −1. The half-power
beamwidth (HPBW) is equal to 0.2λ0. The square normalized
magnetic field at the image plane, when the slab is absent and
the distance between the source and the image plane is d1 +
d2, is also shown in Fig. 12(a) (dashed blue curve). It should
be noticed that, when the lens is present, the total distance
between the source and the image plane is d1 + d2 + Lx

= 0.28λ0; whereas when the lens is absent, the distance is
reduced to d1 + d2 = 0.14λ0. Thus, notwithstanding the greater
proximity between the source and the image plane, in the
latter case, the HPBW increases to 0.3λ0. For the propagating
distance d1 + d2 + Lx in free space, the HPBW is 0.48λ0. It is
clear that the metamaterial lens enables, indeed, a superlensing
effect and compensates the effects of propagation of free space.

Figure 12(b) shows the square normalized magnetic field
as a function of the distance d2 of the image plane to the
slab interface. The solid curves correspond to the magnetic
fields calculated in the presence of lens, whereas the dashed
curves represent the same but when the lens is absent and
the propagation distance in air is d1 + d2. It is seen that
the transmitted beam remains significantly narrower than the
beam radiated by the source in free space, even for large

155131-10



MIMICKING THE VESELAGO-PENDRY LENS WITH . . . PHYSICAL REVIEW B 84, 155131 (2011)

(a)

(b)

(c)

FIG. 12. (Color online) Profiles of the fields for a magnetic line
source placed at a distance d1 = 0.5Lx above the superlens. The
image plane is located at a distance d2 = d1 from the lower interface
of the lens. (a) Square normalized amplitude of the field imaged by
the superlens for a material slab formed by high-index cylindrical
inclusions embedded in a plasmonic host; the slab has dimensions
Lx = a ≈ 0.14λ0 and Ly = 60a (solid blue line). The effective
parameters at the frequency of operation are such that εeff ≈ μeff ≈
−1. Blue dashed line: the same but without lens. The inset represents
the geometry of the problem. (b) Square normalized field profiles
as a function of the distance d2 to the outer interface of the lens.
(c) Similar to (a) but for different frequencies of operation.

values of d2, confirming that the metamaterial slab reverses
to some extent the effects of diffraction, consistent with the
transfer function of Fig. 11. Notice that in Fig. 12(b) the solid
yellow line represents the field profile at the midplane of the
metamaterial slab. Clearly, the field is focused inside the lens
as a consequence of the negative refraction and of the property
n ≈ −1.

We also studied the imaging properties of the lens when
the frequency of operation is detuned from the value ωa/c =
0.88 (frequency where the effective parameters are εeff ≈ μeff

≈ −1) [Fig. 12(c)]. As seen, at a lower frequency of operation
ωa/c = 0.78 (solid blue curve), Fig. 12(c) shows that, even
though some side lobes may be present, the beam is still sharply
focused with the same HPBW as that obtained at ωa/c = 0.88,
indicating a reasonable tolerance to the effects of frequency
dispersion. However, at ωa/c = 0.98 (solid green line), the
lens loses completely its focusing ability.

Next, we investigate the performance of a fully 3D meta-
material slab, such that at the microscopic level it is formed
by dielectric spheres embedded in the plasmonic host. We
aim to demonstrate that such a configuration (for sufficiently
weak loss) may provide superlensing, independent of the wave
polarization. Using Microwave Studio,39 we ran a simulation
similar to that of Fig. 12(a) but assuming that the inclusions
are dielectric spheres. The metamaterial parameters are as in
Fig. 5. The dimensions of the slab in the x and y directions
are exactly the same as those considered in Fig. 12(a). It was
assumed that d1 = d2 = 0.5Lx = 0.07λ0, where λ0 is the
wavelength associated with the frequency where the effective
parameters are εeff ≈ μeff ≈ −1. In Fig. 13(a), we compare the
profile of the magnetic field at the image plane obtained using
(i) 2D metamaterial considered in Fig. 12 (solid green line)
and (ii) 3D metamaterial (solid blue line) at the frequencies
where the effective parameters of both configurations are εeff ≈
μeff ≈ −1. Notice that the wave is P polarized. Interestingly,
the HPBW obtained using the spherical inclusions is precisely
the same as the one obtained using cylindrical inclusions, and
it is equal to 0.2λ0.

To test whether the 3D configuration is able to work as
a superlens for S-polarized waves, we simulated the scenario
wherein an electric source (infinitely extended along the z
direction) is placed at a distance d1 above the metamaterial.50

The slab has dimensions Lx = a and Ly = 30.55a [see the inset
of Fig. 13(b)]. The normalized electric field at the image plane
is depicted in Fig. 13(b) as a function of y/λ0 (solid blue line),
where λ0 is the wavelength associated with the frequency of
operation where εeff ≈ μeff ≈ −1. The half-power beamwidth
(HPBW) is equal to 0.19λ0, which is slightly narrower than in
the case of P-polarized waves. This is only possible because
of the strong magnetic response of the metamaterial, since it
is well know that the near-field imaging of P-polarized waves
requires ε ≈ −1, whereas the near-field imaging of S-polarized
waves requires μ ≈ −1. The square normalized electric field
at the image plane when the slab is absent and the distance
between the source and the image plane is d1 + d2 is also shown
in Fig. 13(b) (dashed blue curve). Again, notwithstanding the
greater proximity between the source and the image plane, in
the latter case, the HPBW increases to 0.25λ0.

In order to further characterize the imaging potential of the
3D-metamaterial slab, we simulated the case where it images
the field diffracted by a perfectly conducting screen with two
narrow slits (running along the z direction) under plane wave
incidence (Einc = Eẑ). The wave diffracted by the slits is thus
S polarized. The slits are separated by a distance dgap,slits =
0.48λ0, and the slab has exactly the same parameters as those
we used in the example of Fig. 13(b). Figure 13(c) shows the
profile of the electric field at the image plane (d2 = d1) as a
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FIG. 13. (Color online) (a) Profile of the square normalized
magnetic field for a magnetic line source placed at a distance
d1 = 0.5Lx above the superlens for (i) 2D-configuration (solid
green curve) and (ii) 3D-configuration (solid blue curve).
(b) Profiles of the electric field for an electric line source placed
at a distance d1 = 0.5Lx above the superlens (3D configuration).
The solid blue curve is the profile of the field when the lens is
present and at a distance d1 + d2 + Lx = 0.28λ0 of the electric
line source, whereas the dashed blue curve is the profile of the
field when the lens is absent and at a distance d1 + d2 = 0.14λ0

of the electric source. (c) Profile of the electric field diffracted
by two narrow slits separated by a distance dgap,slits = 0.48λ0

when the lens is present and at a distance d1 + d2 + Lx = 0.28λ0

from the slits (blue solid curve); when the lens is absent and at
a distance d1 + d2 + Lx = 0.28λ0 from the slits (green dashed
curve); when the lens is absent and at a distance d1 + d2 = 0.14λ0

from the slits (blue dashed curve).

function of y/λ0 (solid blue line), where λ0 is the wavelength
associated with the frequency of operation where εeff ≈
μeff ≈ −1. The two slits are clearly discriminated by the lens.
When the lens is absent and the total distance between the
source plane and image plane is d1 + d2 = 0.14λ0 (blue dashed
curve), the slits can still be distinguished but more imperfectly,
despite the greater proximity between the source and the image
plane. Indeed, the coupling between the fields radiated by
the slits is higher than in the case where the lens is present.
The green dashed curve shows the electric field profile at a
distance d1 + d2 + Lx = 0.28λ0 when the lens is absent,
and it can be observed that in this scenario it is impossible to
discriminate the two slits.

To conclude, we consider the fully 3D scenario wherein
both the metamaterial slab and the source are finite along all the

directions of space. To this end, we used an electrically small
horizontal dipole antenna with dimensions Ldp = 0.075λ0

oriented along the z direction. The dipole antenna is located
at a distance d1 above the metamaterial slab with dimensions
Lx = a, and Ly = Lz = 30.55a [see the inset of Fig. 14(a)].
The microstructure of the metamaterial is the same as in the
example of Fig. 13. In Fig. 14(b), we depict (at the plane
xoy) the square normalized amplitude of the magnetic field at
a distance d1 + d2 + Lx = 0.28λ0 from the dipole antenna
(solid blue curve) in the presence of the lens, and at a distance
d1 + d2 = 0.14λ0 (dashed blue curve) when the lens absent.
The HPBW when the lens is present is equal to 0.09λ0, while
when the lens is absent, the HPBW increases to 0.148λ0. This
demonstrates that even in this demanding scenario, the lens
still provides a remarkable focusing effect, even more exciting
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(a)

(b) (c)

(d)

FIG. 14. (Color online) (a) Geometry of the finite-sized plasmonic slab with high-index spherical inclusions. The dipole antenna is located
at a distance d1 = 0.5Lx above the slab with dimensions Lx = a, and Ly = Lz = 30.55a (b) Profile of the square normalized magnetic field
at a distance d2 = 0.5Lx below the superlens. (c) Snapshot of the magnetic field radiated by the dipole antenna at the xoy plane. (d) Similar to
(c), but in a scenario wherein the lens is absent.

than in the previous cases. However, it must be mentioned that
the response of the lens may depend on the specific relative
position of the source with respect to the inclusions. In fact,
the imaging properties described previously correspond to the
case wherein the dipole is placed exactly above a dielectric
sphere (center of the unity cell). If the dipole is shifted along
the xoy plane into an interstitial place, the magnetic field profile
at the image plane is significantly changed [discrete black
stars in Fig. 14(b); the HPBW is equal to 0.26λ0]. Clearly,
when placed at an interstitial site the source excites all the
neighboring spheres with the same strength, which broadens
the beam profile. This happens due to the excitation of higher-
order diffraction modes (due to the proximity of the dipole
and the metamaterial slab), whose description is beyond the
validity of effective medium theory. These results reveal that
the granularity of the metamaterial may not be negligible in
the near field and show that, when the source is placed in the
very near field, the metamaterial cannot be regarded as a truly
continuous medium.

Figure 14(c) shows a snapshot in time of the magnetic
field at the xoy plane and when the lens is present, whereas
Fig. 14(d) shows a similar plot but for the case where the
lens is absent. These results suggest interesting applications
for metamaterials formed by a plasmonic host and high-index

inclusions in imaging. However, in practice, the realization of
such systems with passive natural materials may be difficult.
Indeed, it can be checked (not shown here) that the loss of the
metamaterial formed by HgTe and TiO2 considered in Sec. IV
is slightly too large to enable a superlensing effect, even though
it may permit focusing (based uniquely on the negative index
of refraction) limited by diffraction.

VI. CONCLUSION

In this paper, it was shown that metamaterials formed
by spherical or cylindrical dielectric inclusions embedded in
a plasmonic host medium may imitate an ideal continuous
DNG material in a frequency window notably wider than
in conventional designs where the role of the inclusions
and the host is interchanged. We demonstrated using full-
wave simulations that the proposed configurations are less
affected by loss than conventional designs and may mimic
to some extent the Veselago–Pendry’s superlens, enabling a
strong broadband negative refraction effect and superlensing.
Moreover, due to the long wavelengths of the plasmonic host,
the metamaterial response is largely insensitive to disorder.
Thus, we believe that the proposed design may be an exciting
route to obtain a DNG response in different frequency regimes.
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