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We investigate the causality relations in homogenized metamaterial arrays and determine the reasons why
metamaterial effective (bulk) constitutive parameters obtained using classic point-dipole approximations may
violate basic causality conditions represented by the Kramers-Kronig relations. We show that noncausality
is inherently introduced by the use of point-dipole approximations within Maxwell-Garnett homogenization
procedures and that these artifacts become particularly significant for more densely packed arrays. In contrast we
show that properly defined and exactly computed bulk constitutive parameters of periodic metamaterial arrays
always satisfy causality for a fixed spatial frequency in a rigorous homogenization framework. Finally we show
how the Maxwell-Garnett approach can be modified to effectively remove the noncausal effects.
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I. INTRODUCTION

The interest in metamaterials for a variety of electro-
magnetic applications has considerably grown in the past
few years.1 Commensurately the theory and understanding
of wave propagation in metamaterials has progressed at a
rapid pace, as exemplified by the many homogenization
models recently proposed.2–14 The main purpose of all ho-
mogenization methods is to properly model the metamaterial
response as a bulk material with a limited number of
macroscopic parameters. In many ways this homogenization
is analogous to the macroscopic electromagnetic modeling of
natural materials.15,16 Nonetheless, simple quasistatic mixing
formulas and homogenization methods for natural materials17

have inherent limitations when applied to several metamaterial
geometries; see, for example, Ref. 18. Improved models
are necessary in order to properly represent the physics
of these artificial materials, especially in frequency ranges
where anomalous frequency and spatial dispersion effects
arise that do not usually occur in natural materials. Indeed,
despite the progress in metamaterial modeling, there are
important features of metamaterials that are not always well-
captured by their homogenization models. For example, bulk
metamaterial parameters should always obey the passivity
and causality conditions established for continuum models of
natural materials15,16 in the spectral regions where they retain
their physical meaning; in particular,

ε′′(ω) � 0 (1a)
∂ε′(ω)

∂ω
> 0, (1b)

where ε = ε′ + iε′′ is the bulk permittivity and an e−iωt time
dependence is assumed throughout. The second inequality
applies strictly to transparency windows with negligible loss.
Similar considerations should in general apply also to the
bulk permeability, even though here things may become more
subtle, at least in the case of artificial magnetism (that is,
magnetism produced by electric-current distributions over
finite volumes) and of diamagnetic materials.19

It is well known that commonly retrieved metamaterial
constitutive parameters often violate conditions (1), exhibiting
antiresonant artifacts near the metamaterial resonances,20,21

that is, resonant dispersion features that violate conditions
(1). As discussed in Ref. 18 some of these artifacts can be
corrected with improved homogenization models aimed at
restoring the local meaning of permittivity and permeability.
However, even away from these resonances, and in frequency
regions for which simple quasistatic considerations are
expected to apply,2 homogenization models often show
anomalous negative slope-dispersion curves of permittivity
and permeability violating condition (1b).

In this context it has been suggested that metamaterial char-
acteristics such as negative or near-zero material parameters
and index of refraction violate causality22 and that metama-
terials may overcome classic causal limitations such as the
velocity with which signals may be transmitted.23 In contrast
we show in this paper that exact metamaterial homogenized
parameters must always satisfy the same causality constraints
at a fixed spatial frequency as do the material parameters
that comprise their constituents. However, we will show that
causality may be inherently violated in widely used approx-
imate metamaterial homogenization models based on classic
Maxwell-Garnett approaches. We prove, in particular, that the
point-dipole approximations used in these models inherently
introduce noncausal features into the dynamic electromagnetic
interaction among the metamaterial inclusions. We determine
the cause of this noncausality, and we suggest a method for
restoring the proper causal response to bulk metamaterial mod-
els, retaining the advantages of point-dipole approximations.

We do not necessarily mean to caution against the use of
point-dipole models in the homogenization of metamaterials,
which are often useful and accurate. It is, however, very im-
portant to recognize the noncausality that is always introduced
when point-dipole models are used which, as will be shown
in the following, can lead to unphysical results in modeling
several metamaterial geometries of interest.

It is relevant to point out that Maxwell-Garnett ap-
proaches to the homogenization of composites have a long
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tradition, which dates back to over a century ago.13 Lord
Rayleigh himself pointed out24 that quasistatic dipolar ap-
proximations cannot accurately describe densely packed
arrays, and multipolar approaches have been developed
through the years to correct these issues.25 The noncausal
features highlighted in this paper, however, are not di-
rectly related to these well-understood effects and limita-
tions. Our work focuses on array designs for which the
dipolar approximations are usually well justified, and their
weight compared to any other multipolar order is signif-
icantly larger. We focus on another, more subtle source
of inconsistency that directly stems from using Maxwell-
Garnett approaches in combination with refined dynamic
expressions for the point-dipole model of the inclusions
and the array interaction constants. These refined models,
which have been put forward specifically for metamateri-
als to improve the accuracy of Maxwell-Garnett homoge-
nization methods, are shown to inherently introduce non-
causal features that should be accurately considered. This
inconsistency becomes particularly important when deal-
ing with densely packed arrays of inclusions, typical for
metamaterials.

The paper is organized as follows. The central equations
of causality, the Kramers-Kronig relations and condition
(1b) are derived and applied to metamaterials in Sec. II. In
Sec. III we show how the Maxwell-Garnett approach applied to
metamaterial arrays can violate the Kramers-Kronig causality
relations even in the case of fixed-spatial wave number (i.e.,
considering possible spatial dispersion effects in the metama-
terial). Because the derivation of condition (1b) is based on the
assumption that passivity constraints is satisfied, in Sec. IV we
prove that the usual Maxwell-Garnett expression for electric
susceptibility is strictly consistent with passivity requirements
at all frequencies. In Secs. V and VI we enter the core of
the paper, investigating the cause of noncausality features and
violation of the Kramers-Kronig relations. We begin in Sec. V
by exploring the noncausality introduced by concentrating the
polarizability of a metamaterial inclusion into a point-dipole
at its center. We show that noncausality features are inherently
introduced at this stage of homogenization, because the time
response of an inclusion of finite size excited by an external
field anticipates the radiation from an ideal point-dipole placed
at its center, where the inclusion’s polarizability is assumed to
be concentrated. A generalized form of the Kramers-Kronig
relations is derived to take this effect into account. The
analysis of the noncausality of the polarizability of a single-
isolated sphere carries over immediately to dilute random
arrays because for these arrays the interaction constant can
be neglected, and hence their susceptibility is proportional
to the polarizability of the single inclusion. In Sec. VI
these concepts are extended to general metamaterial arrays,
showing that their noncausal response, associated with the
dipolar approximations, becomes particularly important for
densely packed metamaterials, for which the time advance
associated with the polarizability response is comparable with
the time delay that a signal takes to cross one unit cell. In
Sec. VII and in the two Appendices we further discuss the
issue of causality and metamaterial homogenization, showing
that a rigorous full-wave definition of effective parameters
is inherently causal. In Sec. VIII we put forward a method

to modify the Maxwell-Garnett approach in order to restore
a causal response, still relying on dipolar approximations.
Finally in Sec. IX we present our conclusions.

II. CAUSALITY IN METAMATERIALS

Since causality and the Kramers-Kronig relations for
metamaterials play a central role in this paper, they will
be derived in this section. Any passive and causal physical
system has an impulse response in time, for example the
electric susceptibility χt (t), that is zero for any t < 0. As a
direct consequence15 its Fourier transform χ (ω) is an analytic
function of complex ω that has no poles and χ (|ω| → ∞) = 0
for any Im [ω] > 0. The Kramers-Kronig relations for χ (ω)
can be then obtained by applying the Cauchy integral formula
to a semicircle enclosing the upper half of the complex ω

plane15

χ (ω) = −i

π
P

∫ ∞

−∞

χ (�)

� − ω
d�. (2)

A sufficient condition for the integral in Eq. (2) over the
real axis to be well-defined for all real ω is that χ (�) be
Hölder-continuous and decay fast enough on the real axis as
|�| → ∞ for the integral to converge.26 The above relation
assumes that ω is real-valued. By extracting real and imaginary
parts of Eq. (2) for χ (ω) = χ ′ (ω) + iχ ′′ (ω) and applying the
reality condition for the time response χ (ω) = χ∗ (−ω), we
obtain15

χ ′ (ω) = 2

π
P

∫ ∞

0

�χ ′′ (�)

�2 − ω2
d�. (3)

Similarly it is possible to write χ ′′ (ω) as a function
of χ ′ (ω). Passivity relations require χ ′′ (�) � 0; therefore,
taking the derivative of Eq. (3) for frequencies where χ ′′ (�)
is zero (or negligible) yields the condition

∂χ ′ (ω)

∂ω
= 4ω

π

∫ ∞

0

�χ ′′ (�)(
�2 − ω2

)2 d� > 0, (4)

which is consistent with condition (1b) since ε = ε0 (1 + χ ),
where ε0 is the free-space permittivity. If the bulk per-
mittivity and permeability represent a meaningful physical
response over the entire real-frequency axis, they should
satisfy Eqs. (1b) and (4) in frequency windows with zero (or
negligible) absorption. Related inequalities based on a limited-
frequency interval, of specific interest for metamaterials, have
been derived in Ref. 28. In addition to being time or frequency
dependent, the response of most metamaterials is also spatially
dispersive, that is, χ (ω) is nonlocal and is also a function of
the propagation vector β under an eiβ·r spatial variation. As
widely discussed in the literature,15,16,27 for spatially dispersive
materials the previous considerations still hold for χ (ω,β), but
only for fixed values of β.29

III. NONCAUSALITY IN MAXWELL-GARNETT MODELS
OF METAMATERIALS

The central focus of this paper is the violation of causality
in classic metamaterial homogenization models, the causes
of this violation, and possible remedies for it. We focus in
this section and the rest of the paper on one of the most
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used homogenization models, based on the Maxwell-Garnett
approach, and we show that this model inherently leads
to noncausal features in the bulk response. As mentioned
previously, spatial dispersion is often the cause of anomalous
response in metamaterials, and it has to be taken into account
to rigorously apply Maxwell-Garnett principles. In this regard
a generalized Maxwell-Garnett homogenization of periodic
arrays of dielectric inclusions, which properly accounts for
spatial and frequency dispersion, has been put forward in
Ref. 12, showing that it is possible to relate the spatially
averaged electric field Eav to the averaged displacement vector
Dav by a generalized permittivity dyadic

Dav = ε(ω,β) · Eav, (5)

under the assumption of ei(β·r−ωt) space-time dependence.
This single-parameter generalized constitutive relation was
originally introduced to describe natural optical crystals.15,16

This homogenization approach implicitly combines the elec-
tric and magnetic responses of the inclusions into the single
effective permittivity dyadic ε(ω,β). It is shown in Appendix
A that the exact expression for ε(ω,β), as defined in Ref. 12,
always satisfies exactly the causality relation Eq. (2) for fixed,
arbitrary β.

An alternative rigorous homogenization approach, using the
more traditional bianisotropic effective constitutive dyadics
(instead of the single permittivity dyadic) is developed
in Ref. 14. With the interaction among the inclusions
described by concentrated (point) electric and magnetic
dipoles, and approaching the long spatial wavelength limit
β = 0, the magneto-electric coupling is negligible,14 and
both approaches12–14 yield a simple generalized form of the
Clausius-Mossotti homogenization formulas.17 In particular
the electric susceptibility response for a cubic-lattice array is
given by

χeff(ω) = 1

d3(α−1
e − Cint)

, (6)

where d is the array period, αe is the electric polarizability of
the inclusions in each unit cell, defined such that the induced
dipole moment is given by p = ε0αeE0

loc, and E0
loc is the electric

field at the center of the particle. By its same definition, the
electric polarizability is directly proportional to the first-order
transverse-magnetic (TM) Mie-scattering coefficient, describ-
ing the scattering from the isolated inclusion.30 The interaction
constant Cint describes the full-wave electric-electric dynamic
coupling among the inclusions for a transverse electro-
magnetic wave with respect to one of the principal directions
of the cubic array.14 The expression (6), which will be
rigorously derived using a Maxwell-Garnett homogenization
approach in Sec. VII, represents the dynamic electric response
of the metamaterial under the previous assumptions, and it
is consistent with the homogenization approaches used in
Refs. 7,8,10, and 14. An analogous formula can be derived
for the magnetic susceptibility as a function of the magnetic
polarizability αm. In the quasistatic limit Cint � 1/(3d3), and
Eq. (6) reduces to the usual Clausius-Mossotti homogenization
formula commonly used in quasistatic-metamaterial models.17

This confirms that in the static regime all these homogenization
approaches correctly converge to the classic continuum model.

Quasistatic approaches neglect the inherent frequency de-
pendence attributable to the finite velocity of wave propagation
and therefore avoid noncausality problems. When more refined
dynamic models such as the one in Eq. (6) are considered,
even for a fixed value of β, it is common to encounter
significant violations of the causality condition (1b), which
imply that the Kramers-Kronig relations for passive media do
not hold. This issue is evident in numerical examples presented
in recent papers10,14 with models consistent with Eq. (6)
using rigorous dynamic expressions for Cint and displaying
negative-slope frequency dispersion curves for ε′(ω), even
where βd � ωd/c � 0 and the absorption is zero.

To demonstrate the noncausality associated with Eq. (6), we
consider here the simplest possible example of a metamaterial
homogenization problem: an array with zero phase-shift across
each unit cell (βd = 0). Under this assumption the effective
electric susceptibility given by Eq. (6) is expected to represent
a very good approximation for the dielectric metamaterial
response. It is straightforward to demonstrate, however, that
the dynamic expression in Eq. (6) can violate condition (1b)
and thus the Kramers-Kronig relations for passive media,
even in the ideal case for which βd is kept constant and
identically equal to zero. To see this, consider a metamaterial
array comprised of lossless dielectric spheres of radius a with
permittivity ε > ε0 and permeability μ0. The exact dynamic
polarizability of each sphere can be obtained directly from Mie
scattering theory30:

αd (ω) = 6π

k3
0

(v

u
− i

)−1
(7)

with

u =
∣∣∣∣∣ j1(ka) j1(k0a)

[(ka)j1(ka)]′/ε [(k0a)j1(k0a)]′/ε0

∣∣∣∣∣ ,
v =

∣∣∣∣∣ j1(ka) y1(k0a)

[(ka)j1(ka)]′/ε [(k0a)y1(k0a)]′/ε0

∣∣∣∣∣ .
The wave number in the sphere is k = k0

√
ε/ε0, and k0 = ω/c

is the free-space wave number. The exact dynamic expression
for the interaction constant Cint, which we give in Sec. VII, has
been obtained and used in several recent papers on generalized
Maxwell-Garnett homogenization principles.7,8,10,12,14

Since we are interested in the long-wavelength regime
for which homogenization principles are applicable (k0d �
2π,βd � 2π ), to demonstrate the noncausality it is sufficient
to consider the second-order Taylor expansion of the terms
in Eq. (6) with respect to k0. Specifically, for βd = 0 the
interaction constant in a cubic lattice is approximated by the
first three terms of its power series12:

Cint � d−3

[
1

3
− 0.1505(k0d)2 − i

(k0d)3

6π

]
. (8)

Similarly, the inverse polarizability in Eq. (7) becomes

α−1
d � a−3

[
1

4π

ε + 2ε0

ε − ε0
− 3(k0a)2

20π

ε − 2ε0

ε − ε0
− i

(k0a)3

6π

]
. (9)
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Combining these two expressions recasts Eq. (6) in the form

χeff(k0d → 0,βd = 0)

= χeff(0)

1 − χeff(0)
[ 3(ε−2ε0)d

20π(ε−ε0)a − 0.1505
]
(k0d)2

, (10)

where the static expression of the electric susceptibility is given
by17

χeff (0) =
(

(d/a)3

4π

ε + 2ε0

ε − ε0
− 1

3

)−1

. (11)

It is evident that the slope of χeff (ω) versus frequency for
small k0d is determined by the coefficient of (k0d)2 in the
denominator of Eq. (10) and that, for sufficiently densely
packed arrays (smaller d/a), the effective susceptibility ob-
tained with a full wave point-dipole dynamic model inherently
violates condition (1b), that is, produces a negative slope in
χeff(ω). In fact it is simple to show that a positive slope for
χeff(k0d → 0+,βd = 0) may be obtained if and only if the
following conditions are simultaneously satisfied:⎧⎨

⎩
ε > 2ε0

d

a
> π

ε − ε0

ε − 2ε0

. (12)

The inequalities (12) imply that inclusions that are too
densely packed or have too low a permittivity produce a
negative slope in the effective metamaterial permittivity and
thereby do not satisfy the Kramers-Kronig causality relations
for passive media. In Sec. V we show that dilute metamaterial
arrays homogenized according to Eq. (6) inherently violate
causality, and we show the reason for this violation. Surpris-
ingly we find in Sec. VI that the Kramers-Kronig relations
can never be satisfied by Eq. (6), independent of the array
density and material permittivity, even for design parameters
that satisfy Eqs. (12). In fact it is possible to have a positive
slope and yet violate the Kramers-Kronig relations, as will be
shown in Sec. VI. In other words the Kramers-Kronig causality
relations are sufficient but not necessary to ensure the positive
slope of the susceptibility.

In usual composites and mixtures these noncausal features
are hardly noticeable because the noncausal time advance
introduced by the point-dipole approximation is much smaller
than the time the signal takes to cross one array period. This is
translated into a positive slope of χeff (ω), as conditions (12)
are typically satisfied. In contrast for metamaterials and
for densely packed arrays these artifacts may become very
important, as we describe in the following.

For this reason we derive a generalized form of the Kramers-
Kronig relations that compensates for the noncausality in-
troduced by the point-dipole approximation, and we discuss
the conditions under which χeff (ω) may regain its causal
response. Finally we show how to correct the noncausality
when the inequalities (12) are not satisfied, still retaining the
advantages of a dipolar homogenization model. Our results can
be generalized to inclusions other than spheres and to nonzero
fixed values of β by applying similar procedures.

IV. PASSIVITY

Before discussing causality further, it is important to
establish that the dynamic expression (6) always satisfies the

passivity condition (1a) for any real ω because the derivation of
condition (1b) relies on the array passivity [see Eq. (4)]. Any
passive particle is characterized by a polarizability function
satisfying31

α−1
e (ω) = Re

[
α−1

e

] − i
k3

0

6π
− iα−1

loss, (13)

where its imaginary part is derived from power conservation,
the first imaginary term accounting for dipolar radiation loss31

and the second imaginary term accounting for absorption loss
with α−1

loss � 0. The interaction constant Cint has an imaginary
part that exactly compensates for the radiation loss in Eq. (13),

that is, Im [Cint] = k3
0

6π
, independent of d.7,12 This implies that

Eq. (6) can be rewritten as

χeff(ω) = 1

d3
(
Re

[
α−1

e

] − Re[Cint] − iα−1
loss

) , (14)

which ensures that Im [χeff(ω)] � 0, with the equal sign
holding for lossless inclusions. This result confirms that the
function χeff(ω) satisfies the passivity condition (1a) for any
periodic array, independent of the nature of the inclusion and
its period.

V. NONCAUSALITY OF THE POLARIZABILITY
FUNCTION AND DILUTE METAMATERIAL ARRAYS

In this section we begin to investigate why the effective
susceptibility given by Eq. (6) violates the causality conditions.
To determine the cause of its noncausality, we analyze the
individual elements of Eq. (6), starting in this section with
the polarizability response of a single dielectric sphere αe(ω).
It is important to note that, in the limit of dilute random
(nonperiodic) arrays of particles, χeff(ω) � αe(ω)/d3,17 where
d is now the average distance between the inclusions. Hence,
the following analysis of the polarizability of an isolated
sphere carries over immediately to the susceptibility of a dilute
random array.

We use and compare the exact dynamic expression for the
polarizability of a dielectric sphere αd (ω), as given by Eq. (7),
and its quasistatic expression with the proper radiation-loss
correction

αs(ω) = 6π

k3
0

[(k0a x)−3 − i]−1, (15)

where x = 3

√
2
3

ε−ε0
ε+2ε0

. Eq. (15) is obtained from αd (ω) in Eq. (7)

by taking the limit as (k0a) → 0 but keeping the imaginary
term in the square brackets to ensure that the passivity
condition is satisfied as a consequence of the unavoidable
radiation loss. Eq. (15) is a good approximation to Eq. (7) for
long free-space wavelengths.

In Fig. 1 we show the calculated polarizability spectra
for two typical examples of interest: ε = 3ε0 [Fig. 1(a)] and
ε = 20ε0 [Fig. 1(b)]. The figures show real and imaginary
parts of the normalized polarizability (top and bottom rows,
respectively) and the comparison between αs (solid blue
lines) and αd (solid red lines). The polarizability spectrum
is mainly concentrated in the region k0a < 4, beyond which
higher-order multipoles dominate the scattering. This is the
most interesting frequency range for homogenization purposes
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FIG. 1. (Color online) Normalized polarizability spectrum for a
sphere of radius a and permittivity: (a) ε = 3ε0, (b) ε = 20ε0 versus
frequency.

because the metamaterial inclusions are smaller in size than
the wavelength. The quasistatic approximation is accurate for
lower permittivity spheres that do not support strong reso-
nances in this frequency range. As expected, the quasistatic
approximation cannot represent the dynamic resonances of
the higher permittivity spheres that produce sharp peaks in the
dynamic polarizability of Fig. 1(b). Both expressions satisfy
the passivity requirement Im[αe] � 0 ∀ω as expected.

Surprisingly, however, it is shown next that neither the
dynamic susceptibility expression, Eq. (7), nor the quasistatic
susceptibility expression, Eq. (15), satisfy the Kramers-Kronig
relations (2), that is, they do not provide a causal scattering
response in time. This was noticed as an aside in Ref. 32,
but it has not been pursued in the literature to the best of our
knowledge. To prove this, we calculate the inverse Fourier
transform of Eq. (15), which for any ε > ε0 is given by

αst(t) = 2πca2x2

[
e

ct
xa u(−t) + e− ct

2xa

×
(

cos

√
3ct

2xa
+

√
3 sin

√
3ct

2xa

)
u(t)

]
, (16)

where u(t) is the Heaviside-step function. It is evident that the
time response of the quasistatic polarizability is nonzero for
t � 0. In particular it has the finite value

αst(0) = 2πcx2a2 (17)

at time t = 0 and an anticausal exponential advance with time
constant xa/c for t < 0. In Fig. 2 we plot the calculated time
response for the two numerical examples of Fig. 1, comparing
the analytical result (16) for the quasistatic polarizability (solid
blue lines) with the numerically calculated inverse Fourier
transform of αd (solid red lines). The curves in Fig. 2 are
normalized to the value αst (0) in each plot. The time response
of the quasistatic polarizability closely follows the dynamic
(exact) response in the transient regime [small values of
|ct/(2a)|], but it fails to agree well, as expected, with the later
dynamic response in the presence of the strong resonances that
exist for larger permittivity [Fig. 2(b)]. The anticausal advance

FIG. 2. (Color online) Time response for the polarizability spectra
of Fig. 1: a sphere of radius a and permittivity (a) ε = 3ε0, (b) ε =
20ε0.

for t < 0, of most interest for the present analysis, agrees well
with the exponential advance in Eq. (16).

There is, however, a feature of the dynamic polarizability
expression that differs from the quasistatic expression: its time
response is identically zero for any t < −2a/c. In other words
the dynamic polarizability time response is noncausal, but
its anticausal advance begins exactly at t = −2a/c for any
value of ε. This feature provides the clue for understanding the
noncausal behavior of the polarizability: since αd represents
the scattering amplitude of the first TM spherical harmonic
(electric-dipole moment) scattered by a sphere of finite radius
a, it is evident that, although the dipole moment is evaluated
at the center of the sphere, and by definition the instant t = 0
corresponds to the moment in which the impinging excitation
hits this center point, the sphere interaction with the excitation
field actually starts when the impinging wave hits its surface,
that is, at time t = −a/c. Moreover, the scattered radiation has
a time advance of another t = −a/c, since it first originates
from the surface of the sphere, rather than from the t = 0
reference point at its center. The total time advance compared
to an ideal dipole radiating at the origin is exactly t = −2a/c

(provided that the sphere material is causal), which is indeed
the exact instant at which the transient response of αd starts
in both examples of Fig. 2. The quasistatic approximation
(16) cannot perfectly represent this noncausal response, but it
approximates it well with an anticausal exponential advance.
These considerations imply that the time response αdt(t), that
is, the inverse-Fourier transform of αd (ω), must satisfy the
generalized causality equation

αdt(t) = αdt(t)u(t + 2a/c). (18)
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This finding clearly explains why the frequency curves in
Fig. 1 cannot satisfy the Kramers-Kronig’s relations: Eq. (18)
ensures that the function αd (ω)eiω2a/c is strictly causal and
therefore αd (ω) cannot have poles in the upper complex half
plane. However, the contribution from the large semicircle
|ω| → ∞ in Cauchy’s integral is not necessarily zero, since
Eq. (18) does not ensure that αd (|ω| → ∞) converges to zero.
It may be indeed proven using Eq. (7) that

lim|ω|→∞αd (ω) = 3c3π

ω3

[
i + e−iω 2a

c

(
2√

ε cot
[

ka
c

] − i
− i

)]
,

(19)

which goes to zero only after αd (ω) is multiplied by an
exponential eiωδ with δ � 2a/c, consistent with Eq. (18)
and with our physical intuition. We can therefore write a
generalized form of the Kramers-Kronig relation (3) using
Eq. (18):

α′
d (ω) = 2

π
P

∫ ∞

0

�α′′
d (�)

�2 − ω2
d� + 2

∫ 0

−2a/c

αdt(t) cos(ωt)dt.

(20)

This equation shows that the real part of the dynamic
polarizability may be related to the sum of the usual causal-
relation integral over the imaginary part, plus an additional
contribution stemming from the point-dipole approximation
for a scatterer of finite size, which consists of the noncausal
contribution to the Cauchy’s integral formula stemming from
the nonzero contribution at |ω| → ∞. This correction becomes
negligible as the radius of the scatterer decreases in value
(a → 0), as expected.

For the quasistatic polarizability, we can evaluate in closed
form the second (noncausal) term on the right-hand side of
Eq. (20), to obtain

α′
s(ω) = 2

π
P

∫ ∞

0

�α′′
s (�)

�2 − ω2
d� + 4πc2x3a3

c2 + x2a2ω2
, (21)

in which the second term on the right-hand side provides a
very good approximation to the dynamic noncausal transient
correction in Eq. (20).

It is evident from the time-domain response that the
analytical properties of αs(ω) provide clear insights into the
noncausal response of αd , since it is strictly concentrated in the
transient regime. Without the correction term for point-dipolar
radiation required by passivity, the quasistatic polarizability
expression (15) would neglect frequency dispersion and it
would yield the constant value 6πa3x3 for any frequency
ω. This corresponds to a (causal) Dirac δ(t) response in the
time domain. Adding the required imaginary unit in Eq. (15)
introduces poles into the expression for αs(ω), which are
evident after writing explicitly its real and imaginary parts:

α′
s(ω) = 6πc6x3a3

c6 + x6a6ω6
(22a)

α′′
s (ω) = 6πω3c3x6a6

c6 + x6a6ω6
. (22b)

As an aside, it may be verified that these expressions do exactly
satisfy Eq. (21).

The point-dipole radiation correction adds three pairs of
complex conjugate poles in Eq. (21), with three of the
poles in the upper half complex ω plane. Of these only the
purely imaginary pole ω1 = i

√
ca/x has a nonzero residue

−2iπcx2a2 whose amplitude is identical to the value of αst(0)
in Eq. (17). Indeed, the correction term

α′
nc = 4πc2x3a3

c2 + x2a2ω2
= Re

[
2iπcx2a2

ω1 − ω

]
(23)

on the right-hand side of Eq. (21), associated with the non-
causal response of αst, provides an anti-Lorentzian response
with complex conjugate poles at ω = ±i

√
ca/x, precisely

associated with this residue term.33 Applying the Cauchy
integral formula to the large semicircle around the upper-
half complex plane and taking into account the residue at
ω = i

√
ca/x, it is indeed possible to obtain the same relation

Eq. (21), as shown in the last identity in Eq. (23). It is not
surprising to realize that the presence of noncausal poles in
the upper-half complex plane stems from the point-dipole
radiation correction to the quasistatic polarizability expression,
since we have noticed that this noncausality is physically
associated with the re-radiation and scattering from a sphere
of finite size.

In its full dynamic expression, the noncausal response of
αd (ω) in the right-hand side of Eq. (20) is well approximated
by the quasistatic closed-form noncausal contribution (23).
The generalized Kramers-Kronig relation for the dynamic
polarizability Eq. (20) may therefore be approximated in
closed form as

α′
d (ω) � 2

π
P

∫ ∞

0

�α′′
d (�)

�2 − ω2
d� + 4πx3a3

1 + (xk0a)2
. (24)

Figure 3 shows the comparisons between (a) the exact
expression for α′

d (ω) (as in Fig. 1), (b) the value that one
would obtain from α′′

d (ω) by simply using the Kramers-Kronig
relations [effectively from Eq. (3) or Eq. (20) without the
correction attributable to noncausality], and (c) the approx-
imate value obtained using Eq. (24) for the two examples
of Fig. 1. The usual Kramers-Kronig relations are unable to
relate real and imaginary parts of the dynamic polarizability
because of its inherently noncausal response corrected by
Eq. (24). The required additional contribution stemming from
the nonzero value of Eq. (19) is well approximated by its
quasistatic closed-form expression (23), used in Eq. (24).
This is consistent with the transient response of the dynamic
polarizability being well approximated by its quasistatic
response. The dynamic resonances in the larger permittivity
example are all associated with causal poles, placed in the
lower-half complex plane outside the Cauchy integration path,
and therefore they are correctly captured by the integral in
Eq. (21). The quasistatic term added in Eq. (24) effectively
takes into account the transient anticausal response associated
with the approximation of concentrating the polarization
response of a sphere of finite radius into one point, and it
shows that its contribution to the Cauchy integral formula,
represented by the nonzero value of αd (ω) for |ω| → ∞ in
Eq. (19), may be well approximated by a single pole on the
imaginary axis in the upper-half complex plane.
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FIG. 3. (Color online) Comparisons among the exact value of
α′

d (ω), the value calculated using α′′
d (ω) in the standard Kramers-

Kronig relation (3), and the value obtained using the generalized
formula (24). Panels (a) and (b) refer to the examples in Fig. 1.

To summarize, we have shown so far in this section that the
polarizability response of an isolated sphere of finite radius a

is inherently noncausal because of having approximated the
scattering from a finite-diameter sphere by the radiation from
a single-point dipole at its center. A fully causal scattering
response may be obtained only after considering the exact
boundary conditions on the surface of the sphere. In particular,
higher-order multipolar terms, usually considered negligible
in the frequency range of interest for typical homogenization
problems (k0a < 1), become necessary to rigorously model
the causality of the scattering response of a finite size object.
Translated to the homogenization problem, this concept is
verified in Appendix A, where it is rigorously proven that
a full-wave derivation, without making use of point-dipole
approximations, of the homogenized dielectric response of
any metamaterial array for a fixed β necessarily yields a causal
effective permittivity.

As pointed out previously, analogous considerations apply
to dilute arrays of randomly positioned inclusions for which
the effective permittivity obtained within the point-dipole
approximation will exhibit similar noncausality, since for
these arrays the interaction constant can be neglected, and
hence χeff(ω) is simply proportional to αe(ω). In such arrays
the generalized Kramers-Kronig relation (24) yields for the
susceptibility

χ ′
eff(ω) � 2

π
P

∫ ∞

0

�χ ′′
eff(�)

�2 − ω2
d� + 4πx3γ −3

1 + (xk0a)2
, (25)

where γ = d/a represents the density factor of the array. By
taking the derivative of Eq. (25) in transparency regions and
using εeff = ε0(1 + χeff), we obtain

∂[ε′
eff(ω)]

∂ω
� 4ω

π

∫ ∞

0

�ε′′
eff(�)

(�2 − ω2)2
d�

− 8πε0

ω

x3γ −3(xk0a)2

[1 + (xk0a)2]2
, (26)

which generalizes Eq. (4) to the case of random dilute
metamaterial arrays.

Equation (26) shows that the noncausal polarizability
response adds a negative contribution to the derivative of
ε′

eff(ω). In the case of more densely packed arrays (smaller
γ ), this negative term may dominate the right-hand side
of Eq. (26), possibly leading to anomalous (negative-slope)
dispersion of the effective permittivity. This effect is quite
simple to understand from a physical point of view, since we
have determined that the polarizability response anticipates the
excitation by a time interval 2a/c. If the density of the array
is too large, this time interval becomes comparable to the time
that the excitation advance takes to travel across the average
period along the array, and the small time advance introduced
by the point-dipole approximation becomes relevant in the
array homogenization, reflected in the negative slope of ε′

eff (ω).
In contrast if the array is very sparse, as in the case of natural
materials and mixtures, the small time advance associated
with the finite size of the inclusions is negligible compared to
the average period in the array, and classic Maxwell-Garnett
approaches are well suited for homogenization purposes.17

This discussion agrees with the general conditions (12), which
indeed predict that a negative derivative in the effective
permittivity and anomalous negative-slope dispersion arise for
more densely packed metamaterial arrays, even after relaxing
the assumption of a dilute random array that we have made to
derive Eq. (26).

It is relevant to point out that we have also analyzed in detail
the case of periodic dilute arrays (not reported here for sake
of brevity), for which the point-dipole radiation correction in
the polarizability is cancelled by the array periodicity. These
dilute periodic arrays are of particular interest because we
have shown previously in this section, preceding Eq. (22),
that the radiation correction is directly associated with the
appearance of complex conjugate poles in αs and with its
noncausal response. We have verified, however, that even for
periodic dilute arrays, an anticausal response with similar time
advance is obtained in the fully dynamic case, and a negative
slope of χ ′

eff(ω) may be produced, especially for smaller values
of ε/ε0.

VI. CAUSALITY IN ARBITRARILY DENSE
METAMATERIALS

In the previous section we considered dilute random arrays
for which the interaction constant Cint can be neglected in
the expression (6) for the effective susceptibility. We showed
that there is then an inherent noncausality in the susceptibility
caused by the concentration of the unit-cell polarization in
a point-dipole at its center. In this section we continue this
investigation by considering arbitrarily dense metamaterial
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arrays. For densely packed arrays, as in metamaterials, the
influence of Cint cannot be neglected, and we analyze here
its effects on the causality properties and time response of
Eq. (6). In this effort we proceed to study the general causality
properties of Cint and relate them to the possible misbehavior
in the upper half of the complex ω plane.

Using the approximate expressions (8) and (9) for Cint and
for the inverse polarizability α−1

d , it is simple to prove that χeff

in Eq. (6) has two complex poles for small k0d at

k0d � ±
√

5

3

4π (ε − ε0) − 3γ 3(ε + 2ε0)

3π (ε − ε0) − 3γ (ε − 2ε0)
. (27)

Not surprisingly these poles coincide with those in Eq. (10)
and are real if and only if conditions (12) are satisfied, implying
that too densely packed arrays or too low a permittivity
produce the appearance of an anticausal imaginary pole in
the upper half of the complex ω plane, reflected in the negative
slope of χeff(ω). The appearance of this pole is qualitatively
consistent with the noncausal imaginary pole in αs(ω), but
its position is now influenced by the array-interaction factor
Cint. Consistent with the discussions in the previous section,
the possible occurrence of this noncausal pole is associated
with the use of the point-dipole approximations in obtaining
Eq. (6), and it produces a negative slope in χeff(ω) even
in the long-wavelength regime (that is, at frequencies lower
than any dynamic resonance of the array), as explained
in the previous section. The array-interaction constant Cint,
representing the array coupling, influences the position of
the pole, in agreement with Eq. (27), effectively determining
the slope of the effective susceptibility as a function of the
array density. In particular the conditions (12) imply, as we
have discussed in the context of Eq. (26) for random arrays,
that a smaller ratio d/a produces an imaginary (noncausal)
pole and the corresponding negative slope in the permittivity
dispersion curve in the long-wavelength limit (k0d � 0)
when using a generalized Clausius-Mossotti homogeniza-
tion approach based on point-dipole models. Equations (12)
give the necessary and sufficient conditions to avoid a negative
slope in the effective permittivity dispersion curve and the
presence of an imaginary pole in the upper-half complex
plane under the point-dipole approximation for the array
interaction. It should be noted, however, that avoiding the
negative slope does not ensure a causal behavior, consistent
with the discussion following Eqs. (12). As shown in the
previous section in connection with Eq. (26), even for less
densely packed arrays and positive slopes where conditions
(12) are satisfied, we cannot expect that Eq. (6) perfectly
obeys the Kramers-Kronig causality relations because the
point-dipole approximation inherently introduces a noncausal
time response.

In order to confirm these theoretical results, we show in
Figs. 4 and 5 the frequency and time response of metamaterial
periodic arrays made of spheres similar to those considered
in the previous section (see Fig. 2). Since here we consider
periodic arrays, we need to add small losses in the spheres to
ensure that the time response is finite and bounded (no poles
on the real axis in the frequency response). Figure 4 shows
the real part of the effective permittivity [calculated using
Eq. (6)] for a metamaterial array composed of spheres with ε =

FIG. 4. (Color online) Real part of the effective permittivity,
calculated using Eq. (6), for periodic arrays of spheres with ε =
(3 + i 0.01k0d)ε0 (black lines) and ε = (20 + i 0.1k0d)ε0 (red) and
(a) γ = 2.22, (b) γ = 6.67.

(3 + i 0.01k0d)ε0 (black lines) and ε = (20 + i 0.1k0d)ε0 (red
lines).34 Panel (a) shows the results for a very densely packed
array γ = 2.22 and panel (b) for a less densely packed array
γ = 6.67. As expected, the denser array produces a stronger
permittivity response and, consistent with Eq. (12), displays
anomalous negative-slope dispersion in the long-wavelength
regime k0d � 0. A larger permittivity value of the spheres
shifts the dynamic (causal) resonances to lower values of k0d,
but it still shows the anomalous negative-slope dispersion in
the more densely packed example. In the less densely packed
array the frequency response has a positive-slope dispersion
curve, but, as we have discussed, this does not mean that
the corresponding time response is causal. Figure 5 shows
the corresponding time response, obtained from the inverse-
Fourier transform of the effective susceptibility Eq. (6). The
curves are all normalized to the same arbitrary value for
the sake of comparison. As expected, all time responses are
decidedly noncausal, and they start at about the same time
instant t � −2a/c. It is remarkable that the noncausality
associated with the point-dipole approximation of the single
inclusion dominates the noncausal response for the whole
array, whereas Cint has only a minor effect on the amount of
noncausality in the time response. The more densely packed
array with larger permittivity spheres has a time response
slightly more noncausal, but in all examples the time advance
is dominated by the inherent noncausality of the individual
Mie-polarizability response. The causal portion of the time
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FIG. 5. (Color online) Normalized time response (arbitrary
units) for the arrays of Fig. 4, composed by spheres with ε =
(3 + i 0.01k0d)ε0 (black lines) and ε = (20 + i 0.1k0d)ε0 (red) and
(a) γ = 2.22, (b) γ = 6.67. All values are normalized to the same
arbitrary units for the sake of comparison.

response reflects the Lorentzian resonances of the arrays,
consistent with the curves in Fig. 4.

It is emphasized that, despite all time responses having
roughly the same amount of time advance and noncausality
features, the effect on the frequency dispersion curve of
permittivity strongly depends on the size of the unit cell. For
more densely packed arrays the time advance ∼2a/c is on
the same order as the time delay across one unit cell ∼ d/c,
becoming non-negligible in the array homogenization and
producing strong anomalous dispersion that violates Eq. (1b).
For sparser arrays, satisfying conditions (12), on the other
hand, as well as for natural materials and mixtures, this same
time advance is less important, since it represents only a minor
correction over the typical time delay that the wave takes to
cross one unit cell, and the slope of the permittivity dispersion
curve remains positive. This is why the concepts introduced
here have no drastic effects on the frequency response of
Maxwell-Garnett homogenization models for natural materials
and composites, but become very important in the proper
homogenization of metamaterials.

Sphere permittivities in the range ε0 < ε < 2ε0 form a
peculiar class of metamaterial arrays. Independent of the array
density, the conditions (12) are not satisfied, and the array
response has noncausal poles in the upper half of the complex

ω plane. This is especially puzzling, since it implies that,
even for very small ratios a/d, for which one would expect
the point-dipole approximation to hold extremely well in the
long-wavelength regime (k0d � 0), such arrays would display
anomalous negative-slope frequency dispersion. We have
verified this prediction in a series of numerical simulations
(not shown here for the sake of brevity). The reason for this
unexpected negative slope lies in the fact that the point-dipole
approximation always introduces a small advance that is not
compensated by the dynamic response of the spheres, because
the contrast between the spheres and the background is too
small to override the point-dipole approximation for ε0 < ε <

2ε0. From the viewpoint of Eqs. (9) and (10) the ω2 Lorentzian
term changes sign for ε0 < ε < 2ε0, and therefore it becomes
manifestly noncausal. Of course these low-permittivity spheres
are not particularly interesting for most practical purposes,
because in the frequency range for which the point-dipole
approximation is applicable, arrays with such low-permittivity
inclusions are characterized by an extremely weak dielectric
response (relative effective permittivity very close to unity).

To conclude we have shown in this section that, even after
considering the full dynamic coupling within periodic arrays
of inclusions, the dipolar approximations typical of Maxwell-
Garnett approaches introduce a noncausal time advance in the
same order as the one associated with the polarizability of the
individual unit cell, which amounts to ∼ 2a/c for spheres of
radius a. The array interaction, represented by Cint in Eq. (6),
has only a minor effect on the amount of time advance in the
array response, but it has a significant effect in determining the
position of the associated noncausal pole along the imaginary
axis of the upper half complex ω plane, associated with the
negative slope of the permittivity function for densely packed
arrays. In particular when the period d is comparable with the
size of the inclusions, the noncausal time advance is reflected
in the appearance of an imaginary pole in the upper complex
half ω plane and the corresponding violation of condition (1b).
In the following sections we further discuss the roots of these
noncausal features, and we put forward a method to restore the
causality of Maxwell-Garnett homogenization approaches.

VII. FURTHER THOUGHTS ON THE ROOTS OF
NONCAUSALITY IN METAMATERIAL

HOMOGENIZATION

We have shown in the previous sections how, even after
considering the fully dynamic expression for the effective
permittivity of a metamaterial array composed of polarizable
inclusions, and in the simplest case of constant phase variation
βd = 0 along the array, the susceptibility response (6) is in-
herently noncausal and the standard Kramers-Kronig relations
do not apply. We have also traced back this noncausality
to the polarizability having been concentrated to a point-
dipole within each unit cell. It is evident from the previous
numerical results, however, that the interaction constant Cint

in Eq. (6) also plays a role in the noncausal response of
the array, affecting the position of the poles Eq. (27). In
order to better understand how the point-dipole approximation
affects the causality of homogenization models for periodic
metamaterial arrays, in this section we derive Eq. (6) from
first-principles physical considerations. This allow us to clarify
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the limitations of introducing the point-dipole approximation
in classic Maxwell-Garnett schemes and discuss how the
noncausal features may be avoided by adopting a more
rigorous homogenization procedure.

In the context of this paper we use a dynamic homoge-
nization model to derive Eq. (6), analogous to the rigorous
homogenization approaches employed in12–14 but here applied
to the particular case βd = 0. Under the assumption of zero
phase-shift across each unit cell (βd = 0), the array’s electric
and magnetic responses are uncoupled and we can rigorously
express the effective permittivity as

Pav = (εeff − ε0)Eav, (28)

where the subscript av stands for spatial average over one
unit cell, applied to the microscopic electric-polarization
vector P(r) and the electric-field vector E(r). As previously
mentioned it is proven in Appendix A that the exact solution
to Eq. (28) yields an εeff that rigorously satisfies causality and
the Kramers-Kronig relations.

In order to sustain zero phase shift across the unit cell for
finite ω the presence of external sources is required.29 Using
an approach analogous to that used in Refs. 12–14, we assume
that an external impressed current distribution Jext is uniformly
distributed across the unit cell, sustaining an impressed electric
field

Eext = Jext/iωε0. (29)

Averaging Maxwell’s equations over one unit cell, we
obtain a general relation between these external sources and
the averaged fields

iωε0(Eav + Pav/ε0) = Jext, (30)

which, combined with Eq. (29), gives

Eav = Eext − Pav/ε0. (31)

Introducing the point-dipole approximation, we may relate
the induced dipole moment in the unit cell p = d3Pav to the
local field at its center (E0

loc) using the polarizability definition

Pav

ε0
= d−3αeE0

loc = d−3αe

(
E0

array + Eext
)
, (32)

where E0
array is the electric field induced at the center of the

unit cell by all the other inclusions in the array. E0
array is related

linearly to Pav as

E0
array = d3C

Pav

ε0
, (33)

where C = ∑
(l,m,n)�=(0,0,0) Gee(rlmn)e−jβ·rlmn · p̂ · p̂ and

Gee(rlmn) is the electric dyadic Green’s function of the
array, assuming that we take into account only the dipolar
interactions within the array. Its rapidly converging numerical
expression may be found in several recent papers on
homogenization of metamaterials.7,8,10,12,14 By combining
Eqs. (29)–(33), we find that

Pav

ε0
= 1

d3
(
α−1

e − C − d−3
)Eav, (34)

which coincides with Eq. (6) after defining

Cint = C + d−3. (35)

FIG. 6. (Color online) Normalized time response (arbitrary units)
of C−1

int , which may approximate the array response in the limit of
strong scatterers.

The foregoing result is consistent with the more general
derivation in Ref. 14.

In the fully dynamic case we have proven that αe inherently
produces a noncausal time advance �t = −2a/c in the time
response of Pav produced by E0

array + Eext in Eq. (32). In
addition Cint itself, as defined in Eq. (35), is based on a point-
dipole approximation, and it introduces further restrictions
on the causal response of the array. This can be seen in the
limit of strong scatterers (for instance around the inclusion
resonance), for which αe � C−1

int and χeff � −d−3C−1
int . Even

in this scenario, dual to the one analyzed in Sec. V, the
computed time response is inherently noncausal, as shown
in Fig. 6 where we plot the inverse Fourier transform of the
exact dynamic expression of C−1

int . Combining the results in
Sections V and VI with these considerations, it is not surprising
that the overall response of the susceptibility expression (6),
based on point-dipole approximations, is inherently noncausal.
More densely packed arrays, for which the time taken to
cross one unit cell is of the order of the noncausal time
advances introduced by the point-dipole approximations, are
more strongly affected and, if conditions (12) are not satisfied,
will produce anomalous negative-slope frequency dispersion
curves for the effective permittivity. It should not be forgotten,
however, that the time response will be always noncausal
when point-dipole approximations are employed, even when
the frequency dispersion curves for the effective permittivity
have positive slope.

It is interesting to compare these considerations with the
full-wave solution obtained when the point-dipole approx-
imation is not applied. In this case the causality of the
materials in each unit cell ensures that no microscopic P(r,t)
can anticipate in time the pulsed-excitation field Eext(t),
β = 0. Once established P(r,t) induces Earray(r,t), but the
material causality ensures that Pav(t), Eloc(r,t) and Earray(r,t)
necessarily follow in time the excitation fields Eext(t). Since
Eav(t) is a unit cell average of Eloc(r,t) + Earray(r,t) + Eext(t),
and both Eloc(r,t) and Earray(r,t) follow in time Eext(t), then
the exact expression for εeff in Eq. (28) provides an inherently
causal response. This is rigorously proven in Appendix A for
microscopic dielectric fields and any fixed β.

Before concluding this section, we point out that the
foregoing derivation of Eq. (34) or (6), based on a standard
Maxwell-Garnett approach, is not fully consistent with the
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assumption of using distributed impressed sources that enforce
an eiβ·r variation in space, required for the Kramers-Kronig
relations to hold. This is because the usual expression of αe

in Eq. (32), stemming from Mie theory, implies the usual
free-space variation for the exciting fields. To be perfectly con-
sistent with the previous homogenization approach, therefore,
in Eq. (32) we should consider a different form of polarizability
for the portion of the excitation associated with Eext, due to the
different phase variation of the impressed fields. Although this
correction is relatively minor for small k0d, we have verified
that it leads to an intrinsic violation of the passivity condition
derived in Sec. IV, and therefore it may produce unwanted
artifacts in the effective permittivity. In addition the noncausal
features introduced by the point-dipole approximation are still
present with this new form of polarizability.

VIII. RESTORING CAUSALITY IN THE
HOMOGENIZATION OF METAMATERIALS

BASED ON DIPOLAR MODELS

In this section we discuss how the unphysical, noncausal be-
havior of εeff associated with the point-dipole approximations,
highlighted in Secs. V–VII, can be effectively removed while
retaining the advantages of a dipolar description of the array
inclusions. We have shown that the dynamic expression for the
effective permittivity in a periodic metamaterial array becomes
inherently noncausal when point-dipole approximations are
used. It is stressed however that in the long-wavelength limit
k0d � 0 this approximation is very accurate in describing the
dynamic wave interaction within the array, as proven in several
recent works on the homogenization of metamaterials.10,14

Representing the inclusions as point-dipoles, especially in the
case of center-symmetric geometries like spheres, provides
excellent agreement with full-wave simulations in predicting
the eigen-wave properties and the power relations, such as
the absorption and decay rate of the propagating modes,
even in the case of very densely packed arrays.14 There-
fore, it may prove beneficial to develop a susceptibility
model that retains the point-dipole approximation for the
inclusions while restoring a causal response at a fixed
value of β.

A first attempt to restore causality within a dipolar approach
may simply consist in purposely delaying the polarizability
response by a time interval 2a/c, through defining a modified
αe(ω) = αd (ω)eiω2a/c, which was shown in Sec. V to satisfy
the Kramers-Kronig relations. Unfortunately this modified
polarizability violates the passivity considerations in Sec. IV
and thus justifies the appearance of a negative slope in the
effective permittivity.

A more rigorous approach may be based on the fact that a
strictly causal form of susceptibility must satisfy the Kramers-
Kronig relations Eq. (3). In the lossless limit Eq. (6) is purely
real, as shown in Sec. III, and its imaginary part, in order to
satisfy Eq. (3), is concentrated at the real poles of χeff :

χeff(ω) = 1

d3
(
Re

[
α−1

e

] − Re[Cint]
) + i

∑
ω0i

πω2
pi

2ω0i
δ(ω − ω0i),

(36)

where ω0i are the poles in the denominator of the first term
on the right-hand side of Eq. (36). They are real-valued and
represent the natural resonances of the array. The ωpi are
arbitrary constants associated with each resonance. Applying
Eq. (3), we find

χ ′
eff(ω) = 1

d3
(
Re

[
α−1

e

] − Re[Cint]
) =

∑
ω0i

ω2
pi

ω2
0i − ω2

, (37)

which implies, as expected, that a causal susceptibility function
is required in the lossless limit to be expressed as a sum
of causal Lorentzian functions, with poles at real ω0i . In
particular Eq. (37) ensures that −ω2

pi/(2ω0i) represents the
residue associated with a pole at ω = ω0i . Even when moderate
losses are introduced, the effective susceptibility is required to
have a similar causal form

χeff(ω) =
∑
ω0i

ω2
pi

ω2
0i − 2iδiω − ω2

, (38)

where δi > 0 accounts for the presence of finite losses at each
resonance.

Eq. (38) implies that a causal form of χeff(ω) may be
obtained by simply extracting the values of ω0i and δi at the

complex poles ω =
√

ω0i − δ2
i − iδi of Eq. (6), that is, the

complex roots of the dispersion equation

α−1
e − Cint = 0 (39)

for a given metamaterial array under its point-dipole approxi-
mation. In addition the coefficients ωpi may be obtained as the
residues at these poles

ω2
pi = −2

√
ω2

oi − δ2
i Resi . (40)

As an additional requirement χeff(k0d → 0) in Eq. (38) has
to coincide with the Clausius-Mossotti quasi-static limit (11),
yielding the residue summation result

χeff (0) =
∑
ω0i

ω2
pi

ω2
0i

. (41)

Consider now, as a first example, the densely packed
metamaterial array of Fig. 4, formed by spheres with ε =
(3 + i 0.01k0d)ε0 and γ = 2.22. The effective susceptibility
dispersion, calculated in Fig. 4, is shown again in Fig. 7
[black line; (a) real part; (b) imaginary part]. As noticed in
the previous section, its real part has a negative slope for small
k0d, which violates the causality condition (1b) in this limit of
negligible losses, and it is therefore unacceptable on physical
grounds. Since we have proven previously that the noncausal
portion is associated with a localized anticausal response well
represented by a pole along the imaginary axis, we can safely
expect that these noncausal features do not significantly affect
the imaginary part of χeff(ω). For this reason using a fitting
algorithm we model the dispersion of χ ′′

eff(ω) as a sum of
three causal Lorentzian functions, as in Eq. (38). The fitting
parameters are given in the first three rows of Table I, and
Fig. 7(b) shows that indeed very good matching is achieved
between the two curves. The extracted values of ω0i , ωpi, and
δi are evidently the causal poles and residues of Eq. (39),
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FIG. 7. (Color online) Effective permittivity and differ-
ent Lorentzian models for a metamaterial array with ε =
(3 + i0.01k0d)ε0 and γ = 2.22.

and their contribution adequately describes the dispersion of
χ ′′

eff(ω) in Fig. 7(b).
The corresponding ε′

eff(ω), obtained using the retrieved
Lorentzian model, is shown as the red line in Fig. 7(a).
This permittivity curve is inherently causal and describes to a
very good approximation the permittivity dispersion near its
resonances and in the higher-frequency regime. However, it
dramatically fails to describe the long-wavelength (k0d � 0)
response of Eq. (6), and in particular it predicts a static value
of χeff(0) that is not consistent with Eq. (41). The difference
between the solid curve Eq. (6) and the causal Lorentzian curve
is also plotted in Fig. 7(a), as the thin dotted line. This curve
effectively extracts the noncausal portion of χt (t), in analogy
with the generalized form of the Kramers-Kronig relations in
Eq. (20), as the difference between χ ′

eff(ω) [black curve] and its
causal contribution stemming from the usual Kramers-Kronig
integral [red]. Consistent with our previous analysis, this curve
is well approximated by the presence of one pair of complex
conjugate poles along the imaginary axis, perfectly consistent
with Eq. (25) (valid for random dilute arrays) and Eq. (27)
(valid in the long-wavelength k0d � 0 limit). Indeed, excellent
fitting with χ ′

eff(ω) is obtained with the addition of a simple
imaginary pole, as in the fourth row of Table I, which provides
the blue line in Fig. 7(a). This pole captures extremely well
the anomalous dispersion features of the real part of effective
permittivity, over the whole frequency spectrum of interest,
and it is associated with the noncausal features produced
by the point-dipole approximation, in agreement with our
findings in the previous sections. It is evident therefore that

TABLE I. Lorentzian parameters to model the array of Fig. 8
[ε = (3 + i 0.01k0d)ε0, γ = 2.22].

ω0id/c ωpid/c 2δid/c

4.761 1.211 0.053
6.934 0.5 0.067
9.318 0.229 0.179
2.864i 2.021i 0

the contribution to the frequency dispersion from this fourth
anticausal pole should be removed to restore causality, still
retaining its important role in recovering the correct χeff(0) in
Eq. (41).

We can therefore address the causality issue and propose
a causal model for the effective permittivity based on a
point-dipole description of the array by simply removing
the noncausal imaginary pole and artificially adding to the
Lorentzian causal permittivity obtained from the dispersion of

ε′′
eff(ω) the missing quasistatic contribution

ω2
p4

ω2
04

, as shown by

the green line in Fig. 7(a). The corrected form of susceptibility
effectively becomes

χeff(ω) = 1

d3
(
α−1

e − Cint
) − ω2

p4

ω2
04 − ω2

+ ω2
p4

ω2
04

= 1

d3
(
α−1

e − Cint
) + ω2ω2

pn

ω2
0n

(
ω2 + ω2

0n

) , (42)

where ω0n = |ω04| and ωpn = |ωp4| refer to the imaginary pole.
The causal (green) curve is indeed consistent with the static
Clausius-Mossotti homogenization formula (41), it satisfies
the causality conditions, and it correctly captures the dynamic
resonances of the array, providing a physical description of the
array response within its dipolar model.

It should be noted that, for larger frequencies, this corrected
form of χeff(ω) does not tend to zero but to ω2

p4/ω
2
04, and there-

fore it inherently diverges from the dynamic response of Eq. (6)
for short wavelengths and it does not satisfy the expected lack
of response for very large frequencies. This is not necessarily
unphysical, since we are considering an idealized material
with permittivity ε = (3 + i 0.01k0d) ε0. Adopting a causal
dispersion model for ε that tends to ε0 at large frequencies
requires the presence of an additional Lorentzian resonance
to restore a causal asymptotic response converging to zero.34

It is irrelevant, however, to consider the applicability of this
model for large k0d, as higher-order multipoles rapidly become
more significant. In the long-wavelength regime k0d � 0 of
interest here, the corrected model (42), represented by the
green line in Fig. 7(a), represents a very good approximation
to the exact response of the metamaterial array that restores its
causal properties despite the point-dipole approximation.

Figure 8 shows the calculated time response associated
with the black and green curves of Fig. 7. In particular the
black line represents the time response obtained using Eq. (6),
whereas the red line corresponds to the response obtained after
suppressing the imaginary pole, using the corrected expression
(42). The curves are normalized to the same arbitrary value
used in Fig. 5. It is evident that the responses coincide for t >

a/c, right after the transient regime, and the Lorentzian form
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FIG. 8. (Color online) Normalized time response (arbitrary units)
associated with the dynamic permittivity model Eq. (6) and the
corrected causal response obtained by removing the noncausal pole
on the imaginary axis Eq. (42). In this case, ε = (3 + i0.01k0d)ε0

and γ = 2.22.

of permittivity avoids the noncausal response starting at about
t = −2a/c, the time advance associated with the point-dipole
approximation. This correction is particularly relevant in this
example, in which we have considered a very densely packed
array violating Eqs. (12), and for which the residue at ω04 is
large.

We have verified that for less densely packed arrays the
proposed correction has a much weaker effect. For instance for
a density factor γ = 6.67, as in the other example of Fig. 4,
the correction term in Eq. (42) represents less than a 1.2%
correction on the static effective permittivity in Eq. (6). This
ensures that, for a less densely packed array satisfying (12),
the usual form of susceptibility already has a nearly causal
response and effectively no correction is needed. The small
noncausality in its time response is still on the order of t =
−2a/c, as discussed in the previous sections, but in this case it
is negligible compared with the time delay introduced by the
wave traveling along one array period.

Finally Fig. 9 shows analogous curves for a densely packed
array of spheres with ε = (20 + i0.1k0d)ε0 and γ = 2.22.
Here we have extracted five dominant causal poles from the
imaginary part of εeff , as reported in Table II, and an additional
noncausal imaginary pole at ω06 = i2.202, contributing to the
noncausal dispersion represented by the dotted line in Fig. 9(a).
Also in this case, anomalous dispersion is accurately described
by this imaginary pole, consistent with the previous analysis.

TABLE II. Lorentzian parameters to model the array of Fig. 9
[ε = (20 + i0.1k0d)ε0, γ = 2.22].

ω0id/c ωpid/c 2δid/c

2.104 0.833 0.02
3.69 0.784 0.065
5.206 0.543 0.12
7.13 0.362 0.202
9.932 0.348 0.255
2.2i 2.544i 0

FIG. 9. (Color online) Consistent with Figs. 7 and 8, real part
of effective permittivity and time response for an array with ε =
(20 + i0.1k0d)ε0 and γ = 2.22.

The corrected causal response (42), represented by the green
line, determines the long-wavelength (k0d � 0) response of the
array. The corresponding time response in Fig. 9(b) shows how
the two curves extracted from Eqs. (6) and (42) indeed overlap
in the steady-state also in this example, and the corrected model
ensures a causal transient response. Also in the case of larger
permittivity spheres, we have verified that, by reducing the
array density, the contribution of the noncausal pole arising
from the point-dipole approximation is drastically reduced,
and Eq. (42) practically coincides with Eq. (6).

IX. CONCLUSIONS

We have investigated the nature of the noncausality ex-
hibited by the time and frequency responses of homogenized
effective (bulk) constitutive parameters of metamaterials. We
have shown that a Maxwell-Garnett approach based on point-
dipole models, combined with the use of Mie coefficients
to describe the inclusion scattering, commonly applied to
the homogenization of metamaterials, inherently introduces a
noncausal behavior into the effective parameters that violates
the standard Kramers-Kronig relations. We have shown, in
particular, that the time-domain metamaterial response always
starts with a noncausal time advance of the order ∼2a/c, where
2a is the inclusion lateral size (for a sphere, its diameter). This
small noncausal time advance becomes especially significant
in densely packed arrays, for which the time spent by the
wave to travel across one unit cell is comparable with this
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time advance. We have formulated the general conditions
under which anomalous negative-slope dispersion occurs in
metamaterial arrays formed by dielectric spheres, we have
derived a generalization of the Kramers-Kronig relations that
can properly take these noncausal effects into account, and
we have discussed a more refined homogenization model, still
based on point-dipole approximations, that can correct these
noncausal artifacts including the noncausality that can also be
associated with positive-slope dispersion. For simplicity we
have concentrated our efforts on the special case of βd = 0.
However, similar considerations may be extended to any fixed
value of βd. These concepts are particularly important in the
case of densely packed metamaterials, violating Eqs. (12),
for which standard Maxwell-Garnett homogenization methods
should be used with special care. In addition, they provide an
understanding of the characteristics, accuracy, and limitations
of approximate homogenization models for metamaterials, es-
pecially for the anomalous electromagnetic features displayed
by densely packed arrays.
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APPENDIX A

In this Appendix, we analytically prove that the full-wave
response function of an arbitrary metamaterial array strictly
obeys causality and the Kramers-Kronig relations when the
detailed microstructure of the unit cell is considered (beyond
the point-dipole approximation). Our first goal is to prove that
the metamaterial effective susceptibility based on Eq. (28),

Pav = ε0χeffEav, (A1)

cannot possibly have singularities in the upper half complex
ω plane, including the real axis for ω �= 0, in the presence of
finite loss (that can approach zero) for a passive and causal
system. Suppose that one such singularity existed for a given
(real-valued) wave vector β0 at the complex frequency ω0,
with Im[ω0] � 0, and imagine the array is excited with the
impressed current distribution Jext = J0e

iβ0·r with e−iω0t time
dependence. The microscopic fields along the array satisfy

∇ × E(r) = iω0μ0H(r)
(A2)∇ × H(r) = −iω0ε0E(r) − iω0P(r) + Jext,

where (E,H) represent the microscopic electric and magnetic
fields, and P = (ε − ε0)E and ε = ε(r) are the local permit-
tivity at frequency ω0. (We assume no conduction or magnetic
effects in the microscopic features of the array.)

In this general scenario as done in Ref. 12 we define
the spatially averaged fields (weighted by e−iβ0·r) as Eav =
1
V

∫
cell E(r)e−iβ0·rdV , which becomes a simple spatial averag-

ing for β0 = 0, as assumed in Sec. VI. Applying this averaging
to Eq. (A2) and using (A1) we obtain

iβ0 × Eav = iω0μ0Hav
(A3)

iβ0 × Hav = −iω0ε0 (1 + χeff) Eav + J0,

which shows that, under the assumption of χeff being singular
for the given pair (ω0,β0), the spatially averaged electric field
Eav is required to vanish for a nonzero excitation J0 �= 0.

Eq. (A2) implies that

∇ × ∇ × E(r) − ω2
0ε(r)μ0E(r) = iω0μ0Jext. (A4)

Multiplying both sides of Eq. (A4) by E∗(r), integrating over
one unit cell of the array, and using the fact that Eav = 0 (and
thus 1

V

∫
cell Jext · E∗dV = J0 · E∗

av = 0), it follows that for the
given pair (ω0,β0) associated with the singularity of χeff , we
have ∫

cell
(|∇ × E(r)|2 − ω2

0ε(r)μ0|E(r)|2)dV = 0. (A5)

Consider first the special case in which the singular
frequency lies along the positive imaginary axis ω0 = iξ , with
ξ > 0. It is well known that ε(r|ω = iξ ) > ε0 for any passive
and causal material,15 and thus in that case the integrand of
Eq. (A5) is the sum of two positive terms that must both
vanish for any arbitrary r. This implies that the assumption of
a singular pole along the imaginary axis enforces the trivial
solution E(r) = 0.

Consider now the general case ω0 = ξeiθ with
0◦ � θ � 180◦. Then Eq. (A5) may be written as∫

cell (−|∇ × E(r)|2e−i2θ + ξ 2ε(r)μ0|E(r)|2)dV = 0 and, ex-
tracting the imaginary part of both sides, it is found∫

cell
(|∇ × E|2 sin 2θ + ξ 2ε′′μ0|E|2)dV = 0, (A6)

where ε′′(r) = Im{ε(r|ω = ξeiθ )}. However, as demonstrated
in Appendix B, ε′′ has the same sign as the real part of ω, or
equivalently it has the same sign as sin 2θ . Thus, also in this
case we can conclude that E(r) = 0.

We have proven that for any pole of χeff in the upper-half
complex ω plane the microscopic field distribution E(r) =
0, but this forces Jext to be zero in Eq. (A4), which in
turn contradicts our initial assumption that J0 �= 0. In other
words we have shown that the response function obtained
by averaging over one unit cell the local microscopic fields,
as suggested in Refs. 12–14, cannot have singularities in the
upper-half plane, including the real axis.

In addition we note that the causality of the material
response within the unit cell ensures that ε(r||ω| → ∞) = ε0,
that is,

lim
|ω|→∞

P(r) = 0. (A7)

In turn using Eq. (A1), this implies that χeff is strictly zero
on the outer semicircle in the upper-half ω plane for |ω| →
∞, and therefore it strictly satisfies all the requirements for
the Kramers-Kronig relations for any fixed real-valued wave-
vector β; Q.E.D.

In Fig. 10 we show the comparison between the extracted
permittivity curves of Fig. 9 and the full-wave retrieval of
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FIG. 10. (Color online) Comparison of the results in Fig. 9 with
full-wave FDTD results and Eq. (28) for an array of spheres with
ε = (20 + i 0.1k0d)ε0 and γ = 2.22.

εeff , obtained using (A1) and a finite-difference-time domain
(FDTD) full-wave simulator.36 The exact curve is calculated
in the limit of negligible losses (attributable to limitations
in the dispersive models available in our FDTD code) and
shown as the black curve in Fig. 10. It is seen that the
curve has a positive-slope Lorentzian dispersion, analogous
to the one predicted by Eq. (42) (red line), which corrects the
anomalous negative-slope dispersion in Eq. (6) (green line).
Because of the large array packing density, the static result
in the full-wave simulations is slightly different from the one
predicted by the point-dipole model, as expected because the
large capacitance at the gaps between neighboring spheres
that are almost touching introduces significant contributions
from higher-order multipoles. Despite the large coupling, the
first-array resonance is predicted with good accuracy by the
point-dipole model, around k0d = 2.2. The corrected model
Eq. (42) restores the causality response in the transition
between the static result and the first resonance and it avoids
the noncausal anomalous dispersion predicted by the point-
dipole approximation in Eq. (6), confirming that the approach
proposed in Sec. VII effectively restores the causality response

in metamaterial homogenization models based on point-dipole
approximations.

APPENDIX B

We demonstrate here that the imaginary part of the
permittivity of a causal passive material ε′′ has the same sign
as the real part of ω for any ω in the upper half-plane. To
this end, consider the function � χ (�)

�2−ω2 , where Im{ω} > 0 and
χ = ε/ε0 − 1. Integrating this function with respect to � on
a closed contour of the complex �-plane that consists of the
real axis and a semicircumference of infinite radius in the
upper-half plane, then applying the Cauchy integral formula,
it is easily shown that

χ (ω) = 1

πi

∫ +∞

−∞

�χ (�)

�2 − ω2
d�. (B1)

To obtain the above identity, we used the fact that the
integral over the semicircumference vanishes and that the
integrand has a single pole in the upper-half plane at � = ω.
For � real valued we can write χ (ω) = χ ′(ω) + iχ ′′(ω), with
χ ′ and χ ′′ real-valued and possessing even and odd parity,
respectively. Hence,

χ (ω) = 2

π

∫ +∞

0

�χ ′′(�)

�2 − ω2
d�. (B2)

This establishes the remarkable result that for ω in the
upper-half plane the susceptibility function is completely
determined by the values of its imaginary part over the real
axis. This result generalizes known results: for instance, for
frequencies along the imaginary axis ω = iξ , Eq. (B2) reduces
to the so-called third Kramers-Kronig relation, Eq. (82.15) in
Ref. 36. Also, in the limit where ω = ω′ + 0+i, the formula
reduces to the standard Kramers-Kronig relation χ ′(ω′) =
2
π
P

∫ +∞
0

� χ ′′(�)
�2−ω′2 d� because 1

�−ω
= P 1

�−ω
+ iπδ(� − ω′).

Using Eq. (B2), it is found for ω = ω′ + iω′′ in the upper-
half plane that

χ ′′(ω) = 4ω′ω′′

π

∫ +∞

0

�χ ′′(�)

|�2 − ω2|2 d�. (B3)

Therefore, χ ′′ = ε′′/ε0 has the same sign as ω′; Q.E.D.
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