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Examining the validity of Kramers-Kronig relations for the magnetic permeability
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We critically analyze the anomalies in the frequency dispersion of the magnetic permeability, showing that it
may be sometimes—without contradicting causality—inconsistent with the Kramers-Kronig relations for passive
materials, as formulated by Landau and Lifshitz, even at extremely low frequencies where the permeability has
definitely a very precise physical meaning. This suggests that in general the permeability may not satisfy the
Kramers-Kronig formulas for passive materials, and an alternative set of relations to link the real and imaginary
parts of the permeability in the frequency region where the permeability retains its physical meaning is proposed.
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I. INTRODUCTION

One of the most exciting developments in electromagnetism
in the last decade was the discovery of novel media with
unusual electromagnetic properties mainly determined by the
microstructure, and not directly by the chemical composition.
In particular, it was shown that by structuring conventional
bulk metals (with no intrinsic magnetism) it is possible to
induce a strong magnetic response.1 However, one of the most
debated features of the permeability of metamaterials is that
sometimes, even in the case of very low loss, the permeability
may exhibit an antiresonant response, which is inconsistent
with the Kramers-Kronig (KK) formulas for passive media
(e.g., Refs. 2 and 3). Up to now, it has been believed that such
pathology is invariably a consequence of the effects of spatial
dispersion and of higher-order multipoles.3,4 Here, we present
examples of metamaterials with negligible spatial dispersion
and such that the magnetic permeability is characterized by an
anomalous dispersion (i.e., with an antiresonant response) for
arbitrarily low frequencies, even when material absorption is
vanishingly small. It is argued that these findings put into
question, without contradicting the causal response of the
materials, the application of the standard KK relations for
passive media to the magnetic permeability.

II. PERMEABILITY WITH ANOMALOUS DISPERSION

In the first example, we consider a metamaterial formed
by long rods standing in air and oriented along the z direction,
arranged in a triangular (hexagonal) lattice with lattice constant
a. We restrict our attention to the case where the direction
of propagation and the electric field are in the xoy plane,
so that, for simplicity, in this first example the geometry is
intrinsically two dimensional. The rods have radius R = 0.4a,
and a plasmonic-type electrical response characterized by a
Drude dispersion model εinc = 1 − ω2

p/ω(ω + i�) and μ = 1
(the time variation e−iωt is assumed). The emergence of
artificial magnetism in metamaterials formed by particles
with a plasmonic-type response is well documented in the
literature.5–9 In particular, a metamaterial with a structure
similar to the one that we consider here was studied in Ref. 6,
and the coherent-potential approximation (CPA) was used to
extract the effective parameters. In simple terms, the idea of
the CPA is to embed a single cell of the metamaterial into

a uniform isotropic unbounded medium with parameters εe

and μe. If εe and μe are chosen in such a way that they are
coincident with the effective parameters of the metamaterial,
then the scattering from the metamaterial cell under plane wave
incidence should vanish. Based on these simple and intuitive
physical ideas, it is demonstrated in Ref. 6 that εe and μe can
be obtained by numerically solving the pair of equations given
by Eq. (2) of Ref. 6 with m = 0, 1. This ensures that the
scattering from the electric and magnetic dipoles induced in
the “unit cell” vanishes. For more details the reader is referred
to Ref. 6.

In Fig. 1 we plot the effective permeability (along the z
direction) calculated with the coherent-potential approxima-
tion in the limit of vanishingly small loss (� = 0+) and for
a plasma frequency such that ωpa/c = 10.0. We plot in the
same figure the effective permeability calculated using the
Clausius-Mossotti (CM) formula μCM = 1 + 1

Acell

1
α−1

m,zz−Cint,zz
,

where αm,zz is the magnetic polarizability of the rods (per

unit of length),10 and Cint,zz ≈ (ω
c

)2[−i 1
4 + 1

2π
ln(ω

c

√
Acell

4π
)] is

an interaction constant.11 The interaction constant takes into
account the frequency dispersion. It should be mentioned that
the interaction constant does not reduce to the usual value
Cint,xx = Cint,yy = 1/(2Acell) in the static limit, because in the
two-dimensional case Cint,zz �= Cint,xx (Ref. 10).

Notwithstanding the absence of loss mechanisms, it is seen
in Fig. 1 that both the CPA and the CM formula predict that
the permeability decreases monotonically with the frequency,
clearly violating the KK relations which, for passive materials,
completely preclude any anomalous dispersion effects in such
circumstances. In contrast with the results for the permeability,
the dispersion of the in-plane permittivity of the material is
completely consistent with the KK formulas (inset of Fig. 1).

The first reaction to these unsettling results is to argue
that the CPA and the CM theories break down. To shed
some light on this matter, we have calculated the effective
permeability using the full wave method of Ref. 12, and
the corresponding results are shown in Fig. 2. Specifically,
the curves associated with the labels μ

(1)
ef , μ

(2)
ef , and μ

(3)
ef were

obtained from the second-order derivatives of the nonlocal
dielectric function with respect to the wave vector,12 and the
corresponding formulas are given in Ref. 13. As discussed
in Ref. 13, in order that the material’s response is effectively
local and the effects of higher-order multipoles is negligible, it
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FIG. 1. (Color online) Effective permeability as a function of
frequency in the limit of vanishingly small loss for an array
of plasmonic-type particles arranged in a triangular lattice. Inset:
effective permittivity as a function of frequency. μCM and εCM were
obtained with the Clausius-Mossotti formula (taking into account the
dispersion of the interaction constant), μe and εe were obtained using
the CPA (see Ref. 6), and εef using the full wave method of Ref. 13.

is necessary that to a good approximation, μ
(1)
ef = μ

(2)
ef = μ

(3)
ef .

From Fig. 2 it can be seen that this condition is observed
up to ωa/c ≈ 1.0. For larger frequencies, the values ofμ(i)

ef
(i = 1,2,3) may be significantly different from one another,
indicating the presence of some spatial dispersion, particularly
around ωa/c ≈ 1.8. Quite surprisingly, the results of the full
wave simulations are very consistent with those of Fig. 1, and
instead of showing that the CPA and CM theories break down,
they further support that despite the loss being vanishingly
small, the permeability really decreases with frequency. In
particular, for low frequencies, the results obtained with the
CM formula match well the curves μ

(i)
ef , as can be seen in

Fig. 2.
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FIG. 2. (Color online) Effective permeability as a function of
frequency in the limit of vanishingly small loss for an array of
plasmonic-type particles arranged in a triangular lattice. μCM was
obtained with the Clausius-Mossotti formula, μ

(i)
ef using the full

wave method of Ref. 13, and μcl using the classical definition
of the magnetization vector (see the main text). Inset: magnetic
polarizability of a single inclusion as a function of frequency in the
limit of vanishingly small loss.

To further confirm that for ωa/c < 1.0, μ
(i)
ef may, indeed,

characterize the magnetic response of the material, we have
also calculated the permeability using the conventional defini-
tion of the magnetization vector: M = 1

Acell

∫
�

1
2 r × jddx dy,

where jd = −iωε0(εinc − 1)e represents the current density in
the inclusions, � is the unit cell (of the triangular lattice), and
Acell = a2 sin 60◦. Specifically, in a numerical simulation the
unbounded metamaterial was excited by an external distributed
macroscopic current of the form jext = ŷeikxx , such that kx

has a very small value,14 and the corresponding induced
microscopic electric field e was numerically calculated.13

Then, consistent with the usual meaning of the magnetic
permeability, we define μ0μcl = Bz/(Bzμ

−1
0 − Mz), where

Bz = 1
Acell

∫
�

bze
−ikxxdx dy is the average induction field. As

seen in Fig. 2 the result of such calculation concurs very well
with μ

(i)
ef (i = 1,2,3) at low frequencies (most likely the small

offset is a consequence of numerical errors), giving further
evidence that μ

(i)
ef may be regarded as the permeability for

ωa/c < 1.0, and indicating that theories based on the CPA
and CM formulas may be physically sound.

How can we understand this surprising result? First of all,
let us note that the anomalous dispersion of the permeability is
necessarily a consequence of the lattice interactions between
the inclusions. In fact, as shown in the inset of Fig. 2,
Re{αm,zz} (Re{α−1

m,zz}) is an increasing (decreasing) function
of frequency, and thus if the interaction between the particles
were negligible, the permeability would necessarily increase
with frequency. Within the framework of the CM model,
the anomalous dispersion effect is explained by the fact that
the real part of the interaction constant, C ′

int,zz, decreases
with frequency, compensating for the normal dispersion of
the magnetic polarizability, so that Re{α−1

m,zz} − C ′
int,zz is an

increasing function of frequency.
To study what happens in the presence of a stronger loss,

in Fig. 3 we depict the calculated effective permeability
μ = μ′ + iμ′′ (μ(i)

ef , and μcl) for the case where the collision
frequency is � = 0.01ωp (in real metals the collision fre-
quency may be actually smaller, e.g., for silver � ≈ 0.002ωp).
As seen, the real part of the permeability μ′ is still characterized
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FIG. 3. (Color online) Real part of the effective permeability μ′

as a function of frequency for an array of plasmonic-type particles
arranged in a triangular lattice when � = 0.01ωp . Inset: imaginary
part μ′′ of the permeability.
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FIG. 4. (Color online) Effective permeability evaluated along the
imaginary frequency axis for an array of plasmonic-type particles
arranged in a triangular lattice and different values of the collision
frequency. Solid lines: full wave method of Ref. 13; dashed lines:
CPA (see Ref. 6).

by an anomalous dispersion, whereas the imaginary part μ′′
is quite small, particularly in the band 0.5 < ωa/c < 1.0. The
results of Fig. 3 are consistent with those reported in Ref. 6,
but in that work neither the effect of anomalous dispersion nor
the limit of vanishingly small loss was discussed. Notice that
in the static limit the permeability is unity because the effect
of absorption—no matter how small—precludes any magnetic
effects in the static limit in metal-dielectric metamaterials.15 It
is worth noting that near ω = 0+ the permeability drops very
steeply because the induction field is pushed away from the
metal. For smaller values of loss the transition near ω = 0+ is
even more abrupt, and in the limit of vanishingly small loss
this transition occurs in an extremely narrow frequency band,
and that is why it is not seen in the scale of the plots of Figs. 1
and 2.

We have also studied the dispersion of the magnetic
permeability along the imaginary frequency axis. According to
the so-called third Kramers-Kronig formula,16 μ(iω) is com-
pletely determined by the imaginary part of the permeability,
μ′′, over the real frequency axis. In particular, for passive
materials μ(iω) should be a strictly decreasing function of ω

along the imaginary axis.16 In Fig. 4 we plot μ(iω) along the
imaginary axis for a metamaterial with the same geometry
as in the previous examples and for different values of loss:
�/ωp = 0+, 0.001, 0.05. The solid lines correspond to full
wave simulations12,13 and the dashed lines were obtained using
the CPA method. 6 As seen, in contradiction to the KK relations
for passive materials, μ(iω) exhibits a nonmonotonic behavior
and may increase with frequency. Very differently, the electric
permittivity ε(iω) is a strictly decreasing function of frequency
(not shown).

As illustrated by the second example (described next), the
anomalous dispersion may also be observed in the three-
dimensional case. To illustrate this, we consider a body
centered cubic (bcc) lattice of spherical particles with radius
R. The unit cell of the material can be taken as a cube
with side a with two particles per cell: one at the center
of the cube and one-eighth of the other particle centered at
each vertex of the cube. In Fig. 5 we depict the effective
permittivity and permeability of the metamaterial calculated
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FIG. 5. (Color online) Real part of the effective permeability μ′ as
a function of frequency for an array of plasmonic spheres arranged in
a bcc lattice. The plasma frequency is ωpa/c = 6.0 and the radius of
the particles is R = 0.35a. Solid lines: limit of vanishingly small loss;
dashed lines: � = 0.01ωp . Inset: real part of the effective permittivity
ε′ as a function of frequency.

using a time-domain implementation of the full wave method
of Ref. 12, assuming that the radius of the spheres is R = 0.35a

and that ωpa/c = 6.0.17 The real part of the permeability is
completely consistent with the results of the two-dimensional
case. As seen in Fig. 5, even in the limit of vanishing loss
(solid line) the permeability decreases monotonically with
the frequency. Absorption causes only a mild perturbation
in the effective parameters (dashed line, associated with � =
0.01ωp). These results further support the possibility of having
anomalous dispersion in the permeability, even in the lossless
limit.

In general, the anomalous dispersion effects are more
pronounced for larger particles and lower values of ωp. For
example, if the normalized plasma frequency is increased
to ωpa/c = 10.0 the anomalous dispersion effects become
somewhat weaker, as illustrated in Fig. 6 (solid blue line
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FIG. 6. (Color online) Effective permeability μ as a function of
frequency for an array of plasmonic spheres arranged in a bcc lattice in
the limit of vanishingly small loss. The plasma frequency is ωpa/c =
10.0 and the radius of the particles is R = 0.35a. Blue line (μef ):
full wave result; solid black line (μCM): CM formula with dispersive
interaction constant; dashed line (μL): Lewin’s formula.
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computed using the method of Ref. 12). It is interesting to
mention that the anomalous dispersion effect identified here
may be predicted by the Clausius-Mossotti formula

μCM = 1 + 1

Vcell

1

α−1
m − Cint

(1)

provided the frequency dispersion of the interaction constant
is considered.18,19 In fact, the magnetic polarizability αm of
spherical metallic particles with radius R, permeability μi = 1,
and permittivity εi can be estimated as (neglecting radiation
loss)20,21

α−1
m = 1

4πR3

F (θ ) + 2

F (θ ) − 1
, F (θ ) = 2(sin θ − θ cos θ)

(θ2 − 1) sin θ + θ cos θ
,

(2)

where θ = (ωR/c)
√

εi . The (real part of the) interaction
constant C ′

int is typically taken equal to 1/(3Vcell). However, the
interaction constant is actually a function of frequency due to
retardation effects and the finite speed of light.18,19 Following
Ref. 19, in the case of a bcc lattice we can estimate that
C ′

int ≈ 1
Vcell

[ 1
3 − 0.1(ω

c
a)2], where Vcell = a3/2 is the volume

of the unit cell. The effective permeability calculated using the
CM formula and frequency-dependent interaction constant is
represented by the curve with label μCM in Fig. 6. Consistent
with the full wave results, it is found that the permeability
decreases with frequency. If one had neglected the frequency
dependence of Cint and assumed C ′

int ≈ 1
3Vcell

, the permeability
would be described by the curve with label μL in Fig. 6,
which grows with frequency (such approximation is actually
completely equivalent to the well-known Lewin’s formula20).
This further emphasizes that the anomalous dispersion effect is
a consequence of the lattice interactions between the particles.
It is also evident from Fig. 6 that the CM formula provides only
a very rough estimate of the effective permeability, especially
in the case of relatively large filling ratios.

It should be noted that in the continuum limit, supposing
that a → 0 (and assuming that the magnetic polarizability per
unit of volume is kept invariant in this limit process), the
interaction constant approaches the static value C ′

int ≈ 1
3Vcell

.
Alternatively, if the size of the cell is small compared to
the wavelength, the multipoles cannot depend on the time
derivatives of the fields 22 (i.e., the relation between the local
field and the average macroscopic field is instantaneous in
time, and C ′

int has no frequency dispersion). Thus, as long as
the CM formula applies and provided α−1

m satisfies the basic
constraints of causality, in the continuum limit it is impossible
to have anomalous dispersion effects in the limit of vanishing
loss, and the KK formulas for passive media should apply.
However, the continuous case is an idealization, and in practice
all matter has some intrinsic granularity.

III. KRAMERS-KRONIG RELATIONS FOR PASSIVE
MEDIA REVISITED

To explain the reason for the incompatibility between the
results reported in the previous section and the KK relations
for passive media, next we briefly revisit the derivation of the
latter. The KK formulas establish a relation between the real
and imaginary parts of an analytical function χ (ω) = χ ′(ω) +
iχ ′′(ω). Provided χ (ω) is regular both in the upper half plane

and in the real axis, except possibly for a pole of order one at the
origin, it follows from the application of Cauchy’s theorem to a
closed contour that contains the segment −ωmax < ω < ωmax

of the real axis and a semicircumference C of radius ωmax

oriented counterclockwise in the upper half plane, that for ω

real valued (below “P.V.” stands for the principal value of the
integral):

χ (ω) = 1

ω
[χ (x)x]x=0 + 1

πi
P.V.

∫ ωmax

−ωmax

χ (x)

x − ω
dx + χC(ω).

(3)

The first term in the right-hand side of Eq. (3) corresponds to
the contribution of a possible pole of χ (ω) at ω = 0. Assuming
that χ (ω) represents the response of some physical system,
it follows that χ (ω) = χ∗(−ω) and the term [χ (x)x]x=0 is
necessarily purely imaginary. The function χC(ω) = χ ′

C(ω) +
iχ ′′

C(ω) represents the contribution of the semicircumference
with radius ωmax and is given by

χC(ω) = 1

πi

∫
C

χ (z)

z − ω
dz = 1

π

∫ π

0

χ (ωmaxe
iθ )

1 − e−iθω/ωmax
dθ.

(4)

Splitting the contributions of real and imaginary parts in
Eq. (3), and neglecting the contribution of the term χC , we
obtain

χ ′(ω) = 1

π
P.V.

∫ ωmax

−ωmax

χ ′′(x)

x − ω
dx, (5a)

χ ′′(ω) = 1

iω
[χ (x)x]x=0 − 1

π
P.V.

∫ ωmax

−ωmax

χ ′(x)

x − ω
dx. (5b)

In the particular case ωmax = +∞ these are the usual KK
relations. The reason why usually we can drop the term
χC is that the response of the system should vanish for
large frequencies, and thus χ (ω) → 0 as ω → ∞ (along any
direction in the upper half plane). However, as discussed
in Ref. 16 (p. 283), if one tries to apply these relations
to χ = μ − 1, in general it is not possible to take ωmax =
+∞. Indeed, arguing that for large frequencies the magnetic
response of the materials ceases, it is found from Eq. (5a)
that μ′(ω) − 1 = 1

π
P.V.

∫ +∞
−∞

μ′′(x)
x−ω

dx. However, for passive
materials, described uniquely by a local permittivity and a
local permeability, it is necessary that μ′′(ω) > 0 for ω > 0,
because otherwise the medium could generate electromagnetic
energy.3,16,23,24 Thus, since μ′′(ω)/ω > 0 for arbitrary ω, it
follows from the KK relations for passive media that μ(0) > 1,
i.e., if the KK formulas apply, then the material is necessarily
paramagnetic in the static limit, as also discussed in a recent
work.25 This would contradict the existence of diamagnetic
materials in the static limit. To avoid this absurd, in the book of
Landau and Lifshitz (Ref. 16, p. 283), it is argued that because
the magnetic permeability may lose its physical meaning at
relatively low frequencies, the derivation of the KK formulas
should be done by considering only the range of frequencies
|ω| � ωmax in the upper half ω plane, where ωmax is such that
the permeability is essentially constant and real valued in the
semicircumference |ω| = ωmax (we note here parenthetically
that in case of metamaterials it is not necessarily true that
the permeability loses its meaning at very small frequencies,
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as discussed in Ref. 26). In such conditions we can apply
formulas (5) to the function χ = μ − μ1 with μ1 = μ(ωmax),
which yields the relation

μ′(ω) − μ1 = 1

π
P.V.

∫ +ωmax

−ωmax

μ′′(x)

x − ω
dx. (6)

Since μ1 can be an arbitrary real number such a procedure
effectively solves the inconsistency related to the existence of
diamagnetic materials in the static limit.

However, even the modified KK relations proposed by
Landau and Lifshitz (which from hereafter are denoted by
KK-LL) cannot explain the results of Figs. 1 and 2. Indeed,
Eq. (6) predicts that in a transparency window where the effect
of loss is vanishingly small [such as μ′′(ω) ≈ 0], we have16

dμ

dω
= 1

π

∫ +ωmax

−ωmax

μ′′(x)

(x − ω)2
dx

= 4ω

π

∫ +ωmax

0

μ′′(x)x

(x2 − ω2)2
dx > 0. (7)

Therefore, the permeability should be a strictly increasing
function of frequency in a transparency window, in flagrant
contradiction with Figs. 1, 2, and 4.

Similarly, the third Kramers-Kronig formula (in the Landau
and Lifshitz framework) for the magnetic permeability,16

μ(iω) − μ1 = 2

π

∫ ωmax

0

xμ′′(x)

x2 + ω2
dx. (8)

implies that the permeability over the imaginary axis, μ(iω),
is a strictly decreasing function of frequency, in disagreement
with Fig. 4.

Let us critically analyze the arguments that led to the deriva-
tion of Eq. (6). As mentioned before, the Landau and Lifshitz
argument is based on the assumption that μ(ωmaxe

iθ ) ≈ μ1 =
const. for any angle 0 � θ � π . However, it is unlikely that in
general the magnetic response may be effectively constant
in the pertinent semicircumference. Indeed, it is expected
that the value of the permeability will be larger for complex
frequencies ω = ωmaxe

iθ that are closer to the resonances
(poles) of the permeability. As is well known, in the case of low
loss the poles of the permeability are very close to the real axis.
Hence, we can conclude that unless ωmax 
 ωres, where ωres

is the largest resonant frequency of μ, the permeability cannot
be considered constant in the semicircumference ω = ωmaxe

iθ .
For example, if the permeability has a pole close to ωmax

(which is the typical case in metamaterials), it seems quite
likely that the value of μ(ωmaxe

iθ ) − 1 over the imaginary
axis (θ = π/2) has a much smaller amplitude than its value
μ1 − 1 over the real axis. Therefore, we can estimate that
|χ (ωmaxe

iθ )| ∼ |μ1 − 1| for values of θ not too close to either
θ = 0 or θ = π , with χ = μ − μ1. On the other hand, the
function χC(ω) can be dropped in Eq. (3), if and only if
it is much smaller than the first two terms in the right-
hand side, or equivalently if |χC(ω)| � |χ (ω)|. But, using
Eq. (4), it is possible to estimate that for ω/ωmax < 1/2 we
have |χC(ω)| ∼ 1

π

∫ π

0 |χ (ωmaxe
iθ )|dθ ∼ |μ1 − 1|. Thus, we

have demonstrated that unless ωmax 
 ωres is satisfied, the
Landau and Lifshitz theory applies only for frequencies ω such
that |μ1 − 1| � |μ(ω) − μ1|. It should be obvious that except
in the case μ1 = 1 (which as mentioned before is incompatible

with the existence of diamagnetic materials) this restriction
may be difficult to be fulfilled in practice, and clearly puts
into question whether in general we can actually drop the term
χC(ω) in Eq. (3).

IV. PROPOSED RELATIONS TO LINK μ′ AND μ′′

As shown next, it is possible to relax the assumptions of
Landau and Lifshitz and still link the real and imaginary parts
of the magnetic permeability in the frequency region where
it retains its physical meaning. Indeed, suppose that as usual
the permeability μ(ω) is regular at the origin and consider
the function χ = (μ − μs)/ω2, with μs = μ(0). Clearly, χ is
an analytic function in the upper half plane and in the real
axis (loss, even if vanishingly small, is necessarily present),
with the exception of the point ω = 0, where it has a pole of
order one. Let us suppose, as in the usual approach, that the
permeability has physical meaning up to some frequency ωmax.
Proceeding as before, we can now estimate that |χC(ω)| ∼
1
π

∫ π

0 |χ (ωmaxe
iθ )|dθ ∼ |μs−1

ω2
max

| for ω/ωmax < 1/2. Hence, we

can drop the term χC(ω) in Eq. (3) when |μs−1
ω2

max
| � |μ−μs

ω2 |.
Clearly, this condition can be easily satisfied by μ provided
ω � ωmax. In other words, the factor 1/ω2 enhances the
low-frequency spectrum of the magnetic response of the
material, and thus also the contribution of the terms associated
with the integral over the real axis in Eq. (3). On the other
hand, it depresses the high-frequency content of μ, and thus,
as compared to the usual formulation, also the contribution
of the term χC(ω) in Eq. (3). Therefore the requirements for
the function (μ − μs)/ω2 satisfying the KK-LL relations are
much relaxed compared to the case of the function μ − μ1.
The KK-LL relations for (μ − μs)/ω2 link μ′ and μ′′ as
follows:

μ′(ω) − μs

ω2
= 1

π
P.V.

∫ ωmax

−ωmax

μ′′(x)

x2

1

x − ω
dx, (9a)

μ′′ (ω)

ω2
= 1

iω

(
dμ

dω

∣∣∣∣
ω=0

)

− 1

π
P.V.

∫ ωmax

−ωmax

μ′(x) − μs

x2

1

x − ω
dx. (9b)

From the previous discussion it should be clear that these re-
lations are increasingly accurate for smaller values of ω/ωmax,
and they are exact in the limit ωmax → ∞ (if this limit is
meaningful). Equations (9a) and (9b) are the formulas that we
propose here as an alternative to the standard KK-LL relations
for the permeability function. These formulas are also derived
in the Appendix using a different train of thought. Moreover,
as an alternative to the third KK-LL relation [Eq. (8)], we
propose

μ(iω) − μs

ω2
= − 2

π

∫ ωmax

0

μ′′(x)

x

1

x2 + ω2
dx. (10)

Let us study the implications of Eqs. (9a) and (9b) in what
concerns the dispersion of the permeability in a transparency
window. To begin with, we note that if χ ′′(ω) ≈ 0 we find from
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Eq. (5a) that

dχ

dω
(ω) = 1

π

∫ +ωmax

−ωmax

χ ′′(x)

(x − ω)2
dx

= 4ω

π

∫ +ωmax

0

χ ′′(x)x

(x2 − ω2)2
dx. (11)

Therefore, applying the above relation to χ = (μ − μs)/ω2

and noting that χ ′′ = Im{μ − μs}/ω2 = μ′′/ω2 > 0, for ω >

0, we conclude that

d

dω

(
μ − μs

ω2

)
> 0 if μ′′ (ω) ≈ 0, (12)

i.e., in the presence of vanishingly small loss it is nec-
essary that χ = (μ − μs)/ω2 is an increasing function
of frequency. Since we can write μ = μs + χω2, it fol-
lows that dμ/dω = ω(2χ + ωdχ/dω), or equivalently dμ

dω
=

2
ω

[(μ − μs) + ω3

2
dχ

dω
]. Thus, since dχ/dω > 0 in a transparent

material, we can immediately conclude that if μ > μs in the
considered frequency range, then dμ/dω > 0. However, if the
permeability of the material is less than μs , the derivative of
the permeability is a sum of two terms with opposite signs, and
thus the sign of dμ/dω is undetermined! Thus, the relations
(9) effectively allow for a regime of anomalous dispersion with
no loss when μ < μs , where the permeability function may
decrease with frequency. Such a result is completely consistent
and may explain, indeed, the dispersion of the permeability
of the metamaterials formed by plasmonic-type inclusions
described in Sec. II. To further support this assertion, we
depict in Fig. 7 the function (μ − 1)c2/ω2 as a function
of frequency for a material with the same parameters as in
Fig. 2. Consistent with Eq. (12), it is seen that (μ − 1)c2/ω2

is a strictly increasing function of frequency. Notice that we
took μs = 1, because even for vanishingly small loss (but
not exactly zero, � = 0+) the static permeability is unity, as
already discussed in Sec. II.

Similarly, Eq. (10) is less demanding than the usual
third KK-LL relation [Eq. (8)], as it does not require that
μ(iω) is a strictly decreasing function of frequency over the
imaginary axis, but rather that [μs − μ(iω)]/ω2 is a strictly
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FIG. 7. (Color online) Plot of (μ(i)
ef − 1)/(ω/c)2 as a function of

frequency for i = 1, 2, 3 (the three curves are virtually coincident
in the scale of the plot). Inset: group velocity as a function of
frequency.

decreasing function of ω. This restriction only implies that
μ(iω) decreases with frequency over the imaginary axis when
μ(iω) > μs . Actually, the condition μ(iω) > μs can never
occur because from Eq. (10) we see that μ(iω) < μs because
μ′′(ω) > 0 in the real axis. Hence, we conclude that Eq. (10)
enables a regime of anomalous dispersion in the imaginary
frequency axis, and this may explain the results of Fig. 4.

One question that may be raised about our theory is whether
the anomalous dispersion of the permeability can be truly
consistent with causality. The answer is yes, it is possible to
have anomalous dispersion with no loss without violating any
fundamental physical principle. For example, in Ref. 27 it was
shown that a metamaterial formed by arrays of crossed wires
may be characterized by a strong and broadband anomalous
dispersion of the index of refraction even for vanishingly small
loss. In fact, we believe that the only restriction on the effective
response of a lossless material is that the group velocity is
less than the velocity of light in vacuum, |vg| < c. Thus, for
an isotropic material characterized by the index of refraction
n = √

με it is necessary that | dω
dk

| < c, with k = ω
c
n, i.e.,

−1 < 1
n+ωdn/dω

< 1. Let us discuss specifically the case where
both the permittivity and permeability are simultaneously
positive so that 0 � vg < c and thus it is required that 1 <

n + ωdn/dω, and show that such a scenario is compatible
with a permeability having anomalous dispersion. Indeed,
if the index of refraction n = √

με of the material is less
than unity, the anomalous dispersion of the permeability can
always be compensated for by the positive dispersion of the
permittivity so that dn/dω > 0, and n + ωdn/dω remains
greater than unity. Alternatively, we can have dn/dω < 0
(due to the anomalous dispersion of the permeability), but
then n should be sufficiently large in the region of anomalous
dispersion. In particular, in the latter case it is necessary—but
not sufficient—that ε > 1/μ > 1.

The group velocity for a material with the same parameters
as in Fig. 2 is plotted in the inset of Fig. 7. The result is
clearly in accordance with the restriction |vg| < c. Somehow,
surprisingly, it is seen that the dispersion of the index of
refraction is virtually none. Therefore, in this example the
positive dispersion of the permittivity apparently compensates
perfectly for the anomalous dispersion of the permeability.

To conclude this section, we study the implications in
the static limit of the relations (9) for the permeability.
It is tempting to put ω = 0 in the right-hand side of
Eq. (9a) and use the fact that μ′′(ω)/ω > 0 to conclude
that limω→0[μ′(ω) − μs]/ω2 > 0. However, such reasoning
is flawed because if ω = 0 the integral in the right-hand side
of Eq. (9a) does not converge. In fact, as shown in Fig. 7 the
limω→0[μ′(ω) − μs]/ω2 can be negative, and thus we need to
proceed more carefully.28 A detailed discussion is out of the
scope of this work, but it is a simple exercise to show that since
the imaginary part of the permeability is an odd function of
frequency, μ′′(x) = −μ′′(−x), the limω→0[μ′(ω) − μs]/ω2 ≡
C [understood as the limit of the right-hand side of Eq. (9a)]
always exists. However, it is emphasized that the operator
limω→0 cannot be interchanged with the integration operator,
as discussed above, and thus C can be an arbitrary real
number. Hence, it follows that in the quasistatic limit we have
μ′(ω) ≈ μs + Cω2. Thus, we can conclude that the value of
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μs = μ(0) is a free parameter, and is not restricted in any
manner by Eq. (9). In particular, the existence of diamagnetic
materials is totally compatible with such formulas, even if
ωmax = +∞.

V. FURTHER DISCUSSION AND CONCLUSIONS

Let us summarize and critically analyze the findings of this
work. We have seen that metamaterials formed by inclusions
with a plasmonic-type response may have a magnetic response
characterized by anomalous dispersion, both in the real and in
the imaginary frequency axes, even when loss is vanishingly
small; and we have discussed that the usual KK-LL relations
for the permeability (assuming passivity, i.e., μ′′ > 0) cannot
possibly explain this property.

On the other hand, it is unquestionable that such metamate-
rials have a causal response, which can certainly be measured
or calculated with numerical methods. Does causality always
imply that the KK relations hold? Here we have to be
very careful. In truth, the response of any causal linear
system satisfies the KK relations with ωmax = +∞. Thus,
for example, if one conceives some device to measure the
permeability and defines the magnetic permeability as the
result of the measurement with such device, such permeability
will unquestionably satisfy the KK relations. How can we
reconcile this basic property with our results?

The subtle point is that the magnetic permeability μ cannot
be regarded as a true physical response for all frequencies. By
this we mean that if we conceive two different physical devices
to measure μ most likely the results of the measurements will
be consistent only up to some frequency ωmax, after which
the permeability loses meaning. In fact, it is important to
keep in mind that μ − 1 links the magnetization vector and
the magnetic field, and since for ω �= 0 the magnetization
vector M = 1

V

∫
1
2 r × jdd3r depends on the origin of the

coordinate system, the permeability only has a strict definition
(with physical meaning) in the quasistatic limit. Still, a more
attentive reader might protest—with reason—that this does
not solve our problem. Indeed, such reader might very well
argue that even if the response of the two devices does not
agree, each measured μ is still a physical response on its
own, and thus the result of each measurement should satisfy
individually the KK relations. This is certainly true. However,
the key point is that since beyond the frequency ωmax the
permeability μ loses its usual physical meaning, its imaginary
part is not any more constrained by the passivity condition
μ′′ > 0. Therefore, if one insists in defining μ as the result
of the measurement with some physical device (such that
the measured μ will indeed satisfy the KK relations), one
must be ready to accept that for some ω > ωmax (i.e., in
the spectral region where the permeability has no physical
meaning, e.g., because of the emergence of strong spatial
dispersion) we may have μ′′ < 0. It is important to make clear
that we totally reject the possibility of a permeability with
μ′′ < 0 in the region where it retains physical meaning: the
condition μ′′ < 0 violates passivity.3,16,23,24 However, if we
consider the analytical continuation of μ beyond the region
where it retains the usual physical meaning, it may very well
happen that in such a region, μ′′ < 0. Similarly, if we define
μ as the physical response of some device, we must also be

ready to accept that the condition μ′′ < 0 may occur in a
spectral region where the measured μ cannot be interpreted as
a magnetic permeability with its usual physical meaning. What
do these things show? They demonstrate that any conclusions
obtained from the KK relations based on the assumption that
μ′′ > 0 for ω > 0, for example, that μ(ω = 0) > 1 (i.e., that
all materials are paramagnetic in the static regime), may not
apply. In other words, μ as a physical response always satisfies
the KK relations with ωmax = +∞. However, conclusions
obtained from the KK relations taking into account that the
material is also passive may in general be incorrect, because
the condition μ′′ > 0 is only ensured in the spectral region
where μ has its usual meaning.

In this work, similar to what was done by Landau and
Lifshitz16 we have tried to obtain restrictions on the dispersion
of the magnetic permeability considering exclusively the
frequency region where it retains physical meaning and is
consistent with passivity (μ′′ > 0 for ω > 0). We argued
that the conditions under which the permeability function
satisfies the KK relations as formulated by Landau and Lifshitz
(KK-LL) may be too strong and are incompatible with a regime
of anomalous dispersion that apparently can be observed in
realistic metamaterials. Thus in general μ may not satisfy
the KK-LL relations (with ωmax finite and μ′′ > 0), even for
arbitrarily small frequencies where certainly the permeability
function has a very precise physical meaning. It was proven
that this regime of lossless anomalous dispersion is, however,
compatible with (μ − μs)/ω2 satisfying the KK-LL relations
(with finite ωmax and passivity ensured) provided μ < μs in
such regime. These results suggest that in general it is the
function (μ − μs)/ω2 that satisfies the KK-LL relations rather
than the permeability function, as is conventionally assumed,
because the former theory is based on weaker assumptions
than the latter.

It is important to underline that our results do not contradict
causality and that the reason why the corollaries of the KK
relations for passive materials are inapplicable (e.g., that
anomalous dispersion is not allowed in the case of vanishing
loss) is related to the fact that ideally the KK relations
for passive materials require that the magnetic response of
the material is defined for all frequencies in the upper-half
frequency plane (with μ′′ > 0 for ω > 0), whereas in general
the permeability can only be defined unambiguously for long
wavelengths. Indeed, in general μ − 1 cannot be a true physical
response for all frequencies (ensuring μ′′ > 0 for ω > 0),
because otherwise it would be impossible to have diamagnetic
materials. Even though this problem can be circumvented
in part if one assumes that μ has physical meaning up to a
frequency ωmax (as done in Ref. 16), i.e., that μ is a physical
response for signals with a sufficiently slow time variation,
the application of the KK-LL relations to μ is only possible
if μ(ω) − μ(ωmax) ≈ 0 for all complex frequencies (in the
upper half plane) such that |ω| = ωmax. However, as discussed
in Sec. III, this condition may be too strong and is certainly
not enforced by causality, and thus in general it may not be
observed.

Our findings do not contradict, but rather complement,
the theory of Landau and Lifshitz. As mentioned in a
footnote in Ref. 16 (p. 283), in natural magnetic materials the
parameter ωmax should be sufficiently large so that ωmaxτ 
 1,
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where τ is the shortest relaxation time for ferromagnetic
and paramagnetic processes. This condition can be adapted
to metamaterials as ωmax 
 ωres, where ωres is the largest
resonance frequency of μ. However, in practice this condition
may be impossible to fulfill in a metamaterial. For example,
the metamaterials considered in Sec. II have a strong magnetic
response from the static regime up to some frequency where
the permeability breaks down due to the effects of spatial
dispersion (e.g., at ωa/c = 1.8 for Fig. 2). Clearly, in such
circumstances it is impossible to define a ωmax consistent
with the definition of Landau and Lifshitz (actually the only
possibility would be ωmax = 0).

Moreover, in continuous media (limit case where a → 0)
the KK-LL relations are expected to apply. This is indicated
by the fact that in this limit the interaction constant is
C ′

int ≈ 1
Vcell

1
3 , and thus, at least within the framework of the

Clausius-Mossotti formula, it is impossible to have anomalous
dispersion effects in the limit of vanishing loss. This indicates
that the key reason for the KK-LL relations breaking down is
the intrinsic granularity of matter.

Finally, we note that unlike the permeability, the electric
permittivity can be defined unambiguously for arbitrarily large
frequencies. Indeed, ε − 1 links the averaged polarization
currents and the average electric field, and such quantities
can be defined unequivocally at any frequency (independent
of the origin of the coordinate system), no matter how large,
and hence, in principle, the findings of this work apply only
to the magnetic permeability function. Our theory can be
generalized in a trivial manner to the case of anisotropic
magnetic materials.
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APPENDIX

It is interesting to point out that the arguments that we
have used to conclude that (μ − μs)/ω2 satisfies the KK-LL
relations apply word for word to the function (μ−1

s − μ−1)/ω2,
which therefore also satisfies formulas analogous to Eqs. (9).
As shown in this appendix, in the case of metal-dielectric
metamaterials, it is possible to reach the same conclusion using
a quite different train of thought.

In fact, it is well known that the effective electromagnetic
response of a metamaterial can in general be characterized by
a nonlocal dielectric function of the form εeff(ω,k), where k is
the wave vector.12,29 Such framework is much more rigorous
than the more conventional effective medium approach based
on the definition of an effective permittivity ε and an effective
permeability μ. In particular, unlike the effective permeability,
which may lose its meaning at relatively small frequencies,
in principle the nonlocal dielectric function εeff(ω,k) can be
defined unambiguously over a wide range of frequencies,12

and thus we can assume that limω→∞ εeff(ω,k) = 1, i.e., for all
purposes we can take ωmax = +∞. Therefore, as demonstrated
in Ref. 29 (p. 13), εeff(ω,k) satisfies the KK relations for
arbitrary k fixed. On the other hand, a hypothetical isotropic
metamaterial characterized by an effective permittivity ε and
an effective permeability μ can be as well characterized—at
least in the frequency range where μ has physical meaning—
by a nonlocal dielectric function such that12,30

εeff(ω,k) = εI + c2

ω2
(μ−1 − 1)k × I × k. (A1)

But it should be evident that εeff(ω,k) can satisfy the
KK relations for arbitrary k fixed if, and only if, both ε

and (1 − μ−1)/ω2 satisfy the same relations. This finding
is in complete harmony with our previous assertion that
(μ−1

s − μ−1)/ω2 should satisfy the KK relations, because
the static effective permeability associated with any metal-
dielectric metamaterial is necessarily trivial, μs = 1, as dis-
cussed at length in Ref. 15.
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21L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, J. Appl.

Phys. 99, 043102 (2006).
22A. D. Buckingham, J. Chem. Phys. 30, 1580 (1959).
23M. G. Silveirinha, Phys. Rev. B 80, 235120 (2009).

165119-8

http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1103/PhysRevE.68.065602
http://dx.doi.org/10.1103/PhysRevE.68.065602
http://dx.doi.org/10.1103/PhysRevE.70.048602
http://dx.doi.org/10.1103/PhysRevB.75.195111
http://dx.doi.org/10.1103/PhysRevB.75.195111
http://dx.doi.org/10.1103/PhysRevLett.93.243902
http://dx.doi.org/10.1103/PhysRevLett.96.223901
http://dx.doi.org/10.1103/PhysRevLett.96.223901
http://dx.doi.org/10.1364/OE.14.001557
http://dx.doi.org/10.1364/OE.14.001557
http://dx.doi.org/10.1103/PhysRevB.75.024304
http://dx.doi.org/10.1103/PhysRevB.79.045111
http://dx.doi.org/10.1103/PhysRevB.79.045111
http://dx.doi.org/10.1103/PhysRevB.75.075119
http://dx.doi.org/10.1103/PhysRevE.73.046612
http://dx.doi.org/10.1103/PhysRevB.75.115104
http://dx.doi.org/10.1103/PhysRevB.80.235124
http://dx.doi.org/10.1103/PhysRevB.80.235124
http://dx.doi.org/10.1103/PhysRevA.82.052508
http://dx.doi.org/10.1103/PhysRevA.82.052508
http://dx.doi.org/10.1103/PhysRevB.76.245117
http://arXiv.org/abs/cond-matprotect $elax /$0701332v1
http://dx.doi.org/10.1063/1.2173309
http://dx.doi.org/10.1063/1.2173309
http://dx.doi.org/10.1063/1.1730242
http://dx.doi.org/10.1103/PhysRevB.80.235120


EXAMINING THE VALIDITY OF KRAMERS-KRONIG RELATIONS . . . PHYSICAL REVIEW B 83, 165119 (2011)

24M. G. Silveirinha and S. I. Maslovski, Phys. Rev. Lett. 105, 189301
(2010).

25V. A. Markel, Phys. Rev. E 78 026608 (2008).
26R. Merlin, Proc. Nat. Acad. Sci. USA 106, 1693

(2009).
27M. G. Silveirinha, Phys. Rev. Lett. 102, 193903 (2009).
28In fact, it is only possible to conclude from Eq. (5a) that

χ ′(0) > 0 when χ ′′(x)/x > 0, if χ does not have a pole at the

origin. This is demonstrated by the example χ = ε − 1 with
ε = 1 − ω2

p/ω(ω + i�). In this case, χ ′ = −ω2
p/(ω2 + �2) and

χ ′′ = �ω2
p/[ω(ω2 + �2)] , and thus χ ′(0) = −ω2

p/�2 < 0 .
29V. Agranovich and V. Ginzburg, Spatial Dispersion in Crystal

Optics and the Theory of Excitons (Wiley- Interscience, New York,
1966).

30V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov,
Phys. Rev. B 69, 165112 (2004).

165119-9

http://dx.doi.org/10.1103/PhysRevLett.105.189301
http://dx.doi.org/10.1103/PhysRevLett.105.189301
http://dx.doi.org/10.1103/PhysRevE.78.026608
http://dx.doi.org/10.1073/pnas.0808478106
http://dx.doi.org/10.1073/pnas.0808478106
http://dx.doi.org/10.1103/PhysRevLett.102.193903
http://dx.doi.org/10.1103/PhysRevB.69.165112

